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Inferring network structures from available data has attracted much interest in network science; however, in many realistic net-
works, only some of the nodes are perceptible while others are hidden, making it a challenging task. In this work, we develop
a method for reconstructing the network with hidden nodes and links, taking account of fast-varying noise and time-delay inter-
actions. By calculating the correlations of available data with different derivative orders for multiple pairs of accessible nodes,
analyzing and integrating the relationships between different correlations, and defining diverse hidden-node-related reconstruction
motifs, we can effectively identify the hidden nodes and hidden links in the network.
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1 Introduction

The structure of a complex network is closely associated with
its functions, and thus, revealing the network structure is cru-
cial to understanding and controlling its behaviors. In prac-
tice, one can observe the activities of a network by measur-
ing output data of certain network units (e.g., nodes), but the
network structure is often not directly detectable. Hence,
inferring the network structure from measurable data, i.e.,
network reconstruction, becomes a critical task [1-14]. In
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neuroscience, inference of some practical neural networks
with experimental data has been performed [15-18]. The
major difficulty in network reconstruction is data shortage,
namely, some nodes or links are not accessible or are hidden,
data of which are not measurable. Thus, inferring network
structures by analysis of accessible data only and uncovering
hidden nodes becomes a challenging task. Many approaches
to extracting information about hidden nodes have been per-
formed in different kinds of networks, such as ascertaining
existence of a hidden node together with its accessible neigh-
bors [19-21]; detecting the total number of hidden nodes in a
given network [22,23]; describing the effects of hidden nodes
for network inferences [24-26]; inferring hidden nodes and
their interaction structure for spin systems with known tran-
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sition probability [27-29]; and reconstructing interactions be-
tween two accessible nodes linked through distant paths with
all nodes in between hidden nodes, by analysis of the data of
these two nodes only [30, 31]. Despite all the above efforts,
reconstruction of the dark world associated with multiple hid-
den nodes with totally unknown interactions and network dy-
namics still lacks clarity.

In this paper, by calculating different orders of correlations
between available data of accessible nodes, integrating the
correlation results obtained from multiple pairs of different
accessible nodes, and defining diverse hidden-node-related
reconstruction motifs, hidden nodes can be recognized and
discriminated, links among accessible and hidden nodes in
the network can be inferred, and rich information regard-
ing intensities and time delays of all detected links can be
extracted. In this work, two key points, namely, the pres-
ence of fast-varying noises and time-delay for signal propa-
gation through interactions in the network, are considered.
Generally, these two factors are pervasive in realistic sys-
tems [32-36] and they can bring difficulties in analyzing net-
work behaviors by generating random fluctuations and mak-
ing network dynamics more complicated [37-40]. In this
work, we present that these factors are greatly helpful in ex-
amining hidden nodes and the associated dark network struc-
ture.

2 Uncovering hidden nodes and hidden structure
by applying noise injection: theory and method

Neural networks have attracted huge attention in practice,
where a number of units are often not accessible while im-
portant for realistic functions of neural systems [41-46]. Let
us consider a neural network with the units described by the
Bär model [47, 48]

dxi(t)
dt
= −1
ε

xi(t)(xi(t) − 1)
(
xi(t) −

yi(t) + b
a

)
+

N∑
j=1, j,i

wi j

(
x j

(
t − τ̂i j

)
− xi (t)

)
, i = 1, 2, · · · ,N,

(1a)
dyi(t)

dt
= f (xi (t)) − yi(t), (1b)

f (xi) =


0, xi <

1
3
,

1 − 6.75xi (xi − 1)2 , −1
3
≤ xi ≤ 1,

1, xi > 1,

(1c)

where xi and yi refer to the membrane potential and recovery
variable of neuron i, respectively, and wi j ( j,i) represents
the coupling intensity from node j to node i with τ̂i j being

interaction time-delay, if this direct interaction exists. Fig-
ure 1(a) illustrates an example of an artificial network with
N = 8, where M = 6 red nodes are accessible, that is, their
data can be measured, and certain signals can be injected,
and N − M = 2 black nodes and all black links are hidden.
The task is to detect the hidden nodes and infer all links with
available data of accessible nodes only. To do so, white noise
is injected into an accessible node, for example, node A, and
the data of two accessible nodes A and B (B,A) are mea-
sured, then the differential equation for A is changed to

dxA(t)
dt

= − 1
ε

xA(t)(xA(t) − 1)
(
xA(t) − yA(t) + b

a

)
+

N∑
j=1, j,A

wA j

(
x j(t − τ̂A j) − xA (t)

)
+ ΓA(t), (2a)

where noise ΓA(t) injected to node A is the signal that pro-
vides rich information on the hidden structure in the net-
work, as shown below. The noise has a correlation time much
smaller than the characteristic time of network dynamics, and
is approximated by white noise, satisfying

⟨ΓA(t)⟩ = 0;
⟨
ΓA(t)ΓA(t + t′)

⟩
= QAδ(t′). (2b)

The outputs from A and B are

xA(t1), xA(t2), · · · , xA(tk), · · · , xA(tL),

xB(t1), xB(t2), · · · , xB(tk), · · · , xB(tL), (2c)

with the sampling interval △t

0 < △t = tk+1 − tk ≪ 1 for k = 1, 2, · · · , L − 1.

A and B can be selected among all the accessible nodes of
Figure 1(a).

Rich information about the network structure can be ex-
tracted by diverse correlation calculations with data of xA(t)
and xB(t) as:

Cν,1BA(t′ = k′∆t) =
1
L

L∑
k=1

x(ν)
B (tk+k′)x(1)

A (tk), (3)

where x(ν)
i is the νth-order “derivative” of xi, defined by

x(ν)
i (tk) =

x(ν−1)
i (tk+1) − x(ν−1)

i (tk)
∆t

, x(0)
i (tk) = xi(tk).

We take xi(tk) = 0 for all k ≤ 0 and k > L. In eq. (3) cor-
relations for different ν′s include various and often mutually
independent information. If there is an interaction path from
A to B with distance d, we have

ÎBA(d) = w j1A

d−1∏
µ=2

w jµ jµ−1 wB jd−1 , (4a)
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Figure 1 Reconstruction of a simple network described by eqs. (1) and (2) through reconstruction motifs. a = 0.84, b = 0.07, ε = 0.04, and QA = 0.2. All
direct interactions wi j take values in (0.8, 1.2) and time-delay τ̂i j in (0.2, 1) with equal probabilities. (a) Network structure under consideration. Nodes 7, 8 and
all links are hidden (black nodes and links). (b)-(d) Three network motifs used for inferring hidden nodes and hidden links by using eq. (6). Namely, we can
definitely identify the hidden nodes (node 7 in (b), 7 in (c) and 8 in (d)), the colored links (blue colored in (b) and purple colored in (c) and (d), and differentiate
them from the remaining hidden nodes and hidden links). (e)-(j) Some correlations between given pairs of accessible nodes A and B (B , A), Ed+1,1

BA (t′)’s
plotted against t′ ((e), (f) for motif (b); (g), (h) for motif (c); and (i), (j) for motif (d)). All circles indicate actual interaction intensities QA ÎBA(d) (vertical
heights) and actual total time delays τ̂BA(d) (horizontal t′s positions of circles) along the interaction paths, which overlap accurately with the reconstructed
ones (peak height QAIBA(d) and peak positions τBA(d)). The network structure in (a) is fully reconstructed by applying network motifs in (b)-(d). Note that
node 7 and blue links are inferred by the motif in (b), and the hidden node 7 (8) and all purple links are inferred by the motif in (c) ((d)) through identities in
eqs. (6a) and (6b) (eqs. (6c) and (6d)).

τ̂BA(d) = τ̂ j1A +

d−1∑
µ=2

τ̂ jµ jµ−1 + τ̂B jd−1 , (4b)

where ÎBA(d), τ̂BA(d) indicates the actual interaction intensity
and total time delay along the path of length d

A→ j1 → · · · → jµ → · · · → jd−1 → B. (4c)

Based on eqs. (1) and (4) and for an actual interaction path
from node A to node B with distance d, we have

x(d+1)
B (t) = ÎBA(d)x(1)

A (t − τ̂BA(d)) + other terms.

Eq. (3) can be further derived to

Eν=d+1,1
BA (t′) =Cd+1,1

BA (t′)∆t

=

0(∆t), t′k , τ̂BA(d);

QA ÎBA(d) + 0(∆t), t′k = τ̂BA(d).
(5)

Hence, the interaction from A to B of ÎBA(d) and τ̂BA(d) can
be inferred from accessible data of nodes A and B by com-
putation of the peak height ÎBA(d)≈IBA(d) and peak position
τ̂BA(d)≈τBA(d) in eq. (5), where IBA(d) and τBA(d) refer to the
reconstructed interaction intensity and total time delay along
the path, respectively [30, 49, 50].

By analysis of the output data of the accessible nodes of
eq. (2c), rich information on paths can be extracted with dif-
ferent distances using eqs. (4) and (5) from d = 1 to, in prin-
ciple, any large d if data of sufficiently large length L ≫ 1

and small enough sampling interval ∆t ≪ 1 are available.
In addition, this information can be employed to infer in-
teraction structure in networks not only between accessible
nodes (d = 1), but also between accessible and hidden nodes
(d = 2), and even between hidden nodes (d ≥ 3).

We demonstrate the results of the above analyses by com-
puting a simple network structure in Figure 1(a) with data
of accessible nodes only. Figure 1(e)-(j) present some cases
of Ed+1,1

BA (t′) calculated from eq. (5) for several d = 2 and
d = 3 pairs with nonzero peaks. In Figure 1(b), (e), (f), it can
be concluded that there is definitely one hidden node along
each interaction path 1 → 3, 4 and 2 → 3, 4. Without fur-
ther analysis, the four peaks in Figure 1(e) and (f) may be
associated with any of the four cases from one to four hidden
nodes. However, by integrating the correlations of all the four
peaks in addition to appropriate computation and derivation,
we conclude definitely that all the four paths pass through a
single hidden node (say node 7). For instance, by comparing
the peak heights (identifying QAIBA(d)) and peak positions
(showing τBA(d)), we can convincingly reach the above con-
clusion, that is, if equalities

τB1A1 (d = 2) − τB1A2 (d = 2) = τB2A1 (d′) − τB2A2 (d′)

= τh1A1 (1) − τh1A2 (1) ≈ τ̂h1A1 (1) − τ̂h1A2 (1), (6a)

IB1A1 (d = 2)/IB1A2 (d = 2) = IB2A1 (d′)/IB2A2 (d′)

= Ih1A1 (1)/Ih1A2 (1) ≈ Îh1A1 (1)/Îh1A2 (1) (6b)
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are justified, a hidden node h1 and its inputs from A1 and A2

nodes can be determined; and if equations

τB1A1 (d = 2) − τB2A1 (d = 2) = τB1A2 (d′) − τB2A2 (d′)

= τB1h2 (1) − τB2h2 (1) ≈ τ̂B1h2 (1) − τ̂B2h2 (1), (6c)

IB1A1 (d = 2)/IB2A1 (d = 2) = IB1A2 (d′)/IB2A2 (d′)

= IB1h2 (1)/IB2h2 (1) ≈ ÎB1h2 (1)/ÎB2h2 (1) (6d)

are valid, a single hidden node h2 and its outputs to nodes B1

and B2 can be inferred. In eq. (6), all these d − 1 and d′ − 1
nodes are hidden in the considered paths. It can be easily
verified that the four peaks of Figure 1(e) and (f) satisfy all
eqs. (6a)-(6d) with d = d′ = 2, A1 = 1, A2 = 2, B1 = 3,
B2 = 4, and identify h1 = h2 = 7 and its inputs and outputs
by blue color shown in Figure 1(b). The four peaks of Fig-
ure 1(g) and (h) satisfy eqs. (6a) and (6b) with d = 2, d′ = 3,
A1 = 1, A2 = 2, B1 = 3, B2 = 6, and determine h1 = 7 and its
inputs and outputs by purple color as shown in Figure 1(c).
The four peaks of Figure 1(i) and (j) justify eqs. (6c) and (6d)
with d = 2, d′ = 3, A1 = 4, A2 = 2, B1 = 6, B2 = 5, and
identify h2 = 8 and its input and outputs by purple color as
shown in Figure 1(d). With substructure, the motif in Fig-
ure 1(b), hidden node 7 can uniquely be identified, that is,
identify node 7 and all its inputs from observable nodes and
outputs to observable nodes from all the rest of the hidden
nodes and other links. The motif in Figure 1(c) (Figure 1(d))
determines hidden node 7 (8) and identifies the hidden node
and its inputs (outputs) links with observable nodes from any
other hidden nodes and hidden links. Hence, the simplest de-
tectable structure is distinguished as a reconstruction motif,
with which a hidden node and some of its links with accessi-
ble nodes can be recognized according to the analysis of mea-
sured accessible node data in the motif. In this work, three
different motifs are shown in Figure 1(b)-(d), with which we
can evidently distinguish all hidden nodes and hidden links in
the network of Figure 1(a). Some more complex motifs with
distant interaction paths are displayed in Appendix Figure a1.

3 Uncovering hidden nodes and hidden structure
by applying noise injection: numerical demon-
stration

We demonstrate the above in a simple network how to use
noise injection and analyze output data of the accessible
nodes to uncover hidden nodes and links. This method can
be directly extended to more complex and larger networks
by utilizing the network motifs in Figure 1(b)-(d). A com-
plex network of size N = 20 is illustrated in Figure 2(a).
In this network, ten red nodes (Figure 2(b)) are accessible,
while all the other black nodes in Figure 2(a) are hidden, and
the interaction structures of the whole network and network

dynamics are all unknown. The time series (e.g., eq. (2c)) of
the accessible nodes are generated using eqs. (1) and (2) with
noise being injected to one of the accessible nodes (i.e., node
A in Figure 2(b)). The aim is network reconstruction, that is,
to explore additional hidden nodes in Figure 2(a) and infer
hidden links associated with these uncovered nodes.

Based on the correlation results of d = 1 [50], all direct
interactions between accessible nodes (red arrows in Fig-
ure 2(c)) can be easily investigated. The reconstructed results
of IBA(d) and τBA(d) for all pairs of d = 2 (A, B = 1, 2, ..., 10)
are listed in Table a1 and those for d = 3 are in Table a2 by
quantities of Roman type. In addition, hidden nodes and links
can be inferred by using Ed+1,1

BA (t′) with d = 2 (blue nodes and
links in Figure 2(d) and blue numbers in Table a3) through
motif in Figure 1(b) and by using Ed+1,1

BA (t′) with d = 2, 3
(purple nodes and links in Figure 2(e) and purple numbers in
Tables a3 and a4) based on motifs in Figure 1(c) and (d). For
example, by integrating the results in Tables a1 and a2 and
systematically applying eqs. (6) with network motifs in Fig-
ure 1(b)-(d), we obtain the structures of Figure 2(d) and (e)
step by step, fully reconstructing network of Figure 2(a). In
Figure 2(f) and (g), we plot ratio of intensities R =

IhµA1
IhµA2

and
time delay differences ∆τ = τhµA1 − τhµA2 between any pairs

of inputs and also R =
IB1hµ

IB2hµ
and ∆τ = τB1hµ −τB2hµ for outputs

with µ = 1, 2, · · · ,N − M for all hidden nodes, and com-

pare these reconstructed values with actual ones (R̂ =
ÎhµA1

ÎhµA2
or

R̂ =
ÎB1hµ

ÎB2hµ
and ∆τ̂ = τ̂hµA1 − τ̂hµA2 or ∆τ̂ = τ̂B1hµ − τ̂B2hµ). All

dots distribute along the diagonal lines, confirming accept-
able reconstruction of these network quantities. It should be
indicated that for each hidden node, two arbitrary factors, one
for time delays and the other for interaction intensity, are not
determined. Note that network in Figure 2(e) has 50% hid-
den nodes and more than 85% links output from or input to
hidden nodes. It is a fascinating success for us to conclude
the complete reconstruction.

In Figure 2(e) and Tables a3, a4, all the hidden nodes
and hidden links of network in Figure 2(a) have been re-
constructed by employing the motifs in Figure 1(b)-(d) only.
With a given network, a larger ratio of hidden nodes relative
to observable nodes can certainly render the task of uncov-
ering the hidden structure more difficult. In these cases, the
calculation of additional correlations of data of measurable
nodes and identification of additional motifs with larger d′s
(e.g., d > 3) (such as those in Figure a1 and others) may
help us in full reconstruction. Nevertheless, the conditions
for complete reconstruction (such as the requirements of the
ratio of accessible nodes relative to hidden nodes, link den-
sity, and network structures) are still significant, which war-
rants further investigation.
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Figure 2 Reconstruction of a complex network with excitable dynamics described by eqs. (1) and (2). Each node has probability P = 0.25 to have input from
or output to another node, and all other parameters are the same as in Figure 1. (a) Network to be reconstructed. All black nodes and links are unknown, and
the network dynamics are unknown either. (b) Accessible nodes with measurable data and noise injection applicable. (c) By analysis of d = 1 correlations of
eqs. (3)-(5), direct interactions between accessible nodes can be inferred by red arrows. (d) By integration of d = 2 correlations in Table a1 and application of
the network motif in Figure 1(b), some hidden nodes and the associated links are inferred by blue nodes and blue arrows (blue numbers in Table a3). (e) By
integration of the results of both d = 2 and d = 3 in Tables a1, a2 and application of the network motifs in Figure 1(c) and (d), all the rest of the hidden nodes
and their interaction structure are inferred by purple nodes and purple arrows (purple quantities in Tables a3, a4). (f) Ratios of reconstructed intensities between

any pairs of inputs (R =
IhµA1
IhµA2

for red circles) and outputs (R =
IB1hµ
IB2hµ

for blue circles) for each given hidden nodes are plotted against actual ones (R̂ =
ÎhµA1
ÎhµA2

or

R̂ =
ÎB1hµ

ÎB2hµ
). (g) Same as (f) with differences of reconstructed time delays plotted (∆τ = τhµA1 − τhµA2 for red dot and ∆τ = τB1hµ − τB2hµ for blue dots versus

actual ones ∆τ̂ = τ̂hµA1 − τ̂hµA2 or ∆τ̂ = τ̂B1hµ − τ̂B2hµ ). All dots in (f) and (g) can be found along the diagonal lines, confirming acceptable reconstruction. Full
integrating analyses for inferring structures (d) and (e) are given in Tables a3 and a4. Here, the complex network is reconstructed based on the network motifs
in Figure 1(b) (all blue nodes and links) and Figure 1(c) and (d) (all purple nodes and links).

4 Uncovering hidden nodes and hidden links for
network with internal and distributed noises

In the above discussion, injected noises are used to infer dark
network structures associated with hidden nodes. This strat-
egy is anticipated to be applicable in several realistic systems.
However, there are also some practical cases where signal in-
jections are difficult while internal noises are present and dis-
tributed in network nodes. In this work, internally distributed
noises have become crucial. This issue can be examined with
exactly the same algorithms in sect. 3, where, however, inter-
nal noises are present not only in accessible nodes but also
in hidden nodes, producing additional rich information for
network reconstruction.

For internal fast-varying noises, eq. (1a) is replaced by

dxi(t)
dt
= − 1
ε

xi(t)(xi(t) − 1)
(
xi(t) −

yi(t) + b
a

)

+

N∑
j=1, j,i

wi j

(
x j

(
t − τ̂i j

)
− xi (t)

)
+ Γi(t), (7)

with nodes i = 1, 2, · · · ,M < N being measurable and nodes
i = M + 1, · · · ,N being hidden. Because distributed noises
derived from the microscopic world have a much shorter cor-
relation time compared with the characteristic time of macro-
scopic network dynamics, white noise approximations are
adopted⟨
Γi(t)Γ j(t + t′)

⟩
= Qiδi jδ(t′). (8)

Note the intensities of Qi are unknown, but all Qi for acces-
sible nodes can be easily determined, based on available data
Qi =

1
L
∑L

k=1 x(1)
i (tk)x(1)

i (tk)∆t. With data of two measurable
nodes A and B (eq. (2c)), we can follow all the computation
procedures of eqs. (3)-(5). Then, all the internally distributed
noises serve as the signal sources in eq. (5) for reconstruc-
tion of hidden nodes and dark interaction structure. The only
difference is that one may observe more peaks in Ed+1,1

BA (t′),
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inferring more information from all noise signal sources in-
cluding noises in both accessible nodes and in hidden nodes
along all paths between these two accessible nodes. For a di-
rect interaction (d = 1) between two accessible nodes, eq. (5)
is changed to

E2,1
BA(t

′
) =


0(∆t), t

′

k , τBA,−τAB,

QAIBA + 0(∆t), t
′

k = τBA,

−QBIAB + 0(∆t), t
′

k = −τAB.

(9)

Two peaks caused by internal noises in both nodes A and B
may exist at right positions, if there are bi-direct interactions

between A and B. For d = 2 indirect interaction path with a
hidden node h in between A and B, we have

E3,1
BA(t

′
)

=


0(∆t), t

′

k , τBA(2),−τAB(2), τAh − τBh,

QAIBA(2) + 0(∆t), t
′

k = τBA(2),

QBIAB(2) + 0(∆t), t
′

k = −τAB(2),

−QhIAhIBh + 0(∆t), t
′

k = τAh − τBh.

(10)

A general correlation form for path of distance d A →
h1 → · · · → hν → h(d−1) → B reads

Ed+1,1
BA (t

′
) =



0(∆t), t
′

k , all the following specific values,

QAIBA(d) + 0(∆t), t
′

k = τBA(d),

(−1)dQBIAB(d) + 0(∆t), t
′

k = −τAB(d),
...

(−1)νQhν IAhν (ν)IBhν (d − ν) + 0(∆t), t
′

k = τAhν (ν) − τBhν (d − ν),
...

(−1)d−1Qhd−1 IAhd−1 (d − 1)IBhd−1 (1) + 0(∆t) t
′

k = τAhd−1 (d − 1) − τBh1 (1).

(11)

Unlike eq. (5), where only a single peak is generated by the
injected noise for any path of various distance d′s, in eq. (11)
for a path of length d, d + 1 peaks result in noises distributed
in the d + 1 nodes. All our task is to reconstruct the quan-
tities of ÎBA(dBA) and τ̂BA(dBA) by eqs. (3)-(11) and integrate
these reconstructed quantities for different pairs of accessible
nodes to brighten up hidden nodes and their hidden structure
in the whole network. In Figure 3(a), another reconstruc-
tion motif is shown for d = d′ = 2 (interactions with orange
color aside from the same-colored node) under the condition
of distributed noises, additional to the motif structure of Fig-
ure 1(b). By using eq. (6c) and the last line of eq. (10) and
considering peak quantities in Figure 3(b),

τB1A(2) − τB2A(2) = τB2B1 (2) = τB1h(1) − τB2h(1), (12)

which definitely recognizes the hidden node h with its input
A → h and outputs h → B1, B2 based on the novel signal
peak offered by noise in the hidden node h (the peak in the
bottom panel of Figure 3(b)).

In Figure 3(c), we do exactly the same as in Figure 2, with
internal and distributed noises applying in eq. (7) (for com-
parison, we use Qi = QA = 0.2). By using d = 2 corre-
lations and the motif in Figure 1(b), blue hidden nodes and
links can also be inferred in Figure 3(c). By taking into con-
sideration the motif in Figure 3(a), additional orange hidden
nodes and hidden links in Figure 3(c) are determined with-

out further consideration of d = 3 correlations. By compar-
ison with Tables a1 and a3, peak heights and peak positions
of Ed+1,1

BA (t′)/QA correlation curves in eq. (5) with d = 2 in
Table a5 for the network of Figure 2(a) with internally dis-
tributed noises eq. (7) are presented. The reconstructed re-
sults align well with the actual ones. It is evident that all data
in Table a1 appear in Table a5 approximately, demonstrat-
ing that the analyses applied by the noise injection approach
also work for internal and distributed noises. Moreover, this
observation indicates wide applications of our reconstruction
approach in realistic systems. A fascinating observation is
that noises in hidden nodes could offer more information for
network inference (underline quantities in Table a5). In Ta-
ble a6, we go further to do the same as in Table a3 for un-
covering hidden nodes and hidden links by using d = d′ = 2
motifs only, where some hidden nodes (nodes 17, 18, 19) and
the associated interactions in orange color, which cannot be
examined with injected noises in Table a3, can be clearly re-
constructed in Table a6, with only d = 2 correlation calcu-
lation of accessible node pairs using the motif in Figure 3(a)
(i.e., by signals from noises in the hidden nodes).

5 Conclusion

In conclusion, a method for analyzing singularities caused
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(a) (b)

(c)

B1

B2

A

B1

B2

A h h

E
B

1
A

E
B

2
A

E
B

2
B

1

Figure 3 Reconstructing a complex network with internally distributed noises. (a) Another reconstruction motif of d = d′ = 2, additional to the motif in
Figure 1(b), based also on d = d′ = 2 correlation computation in eqs. (6c) and (10). Hidden node 4 and its input and outputs could be fixed by correlations
definitely. (b) Some Ed+1,1

BA (t′) curves plotted against t′ for d = 2. Data are produced by the motif network in (a) with internal noises distributed in all network
nodes, Qi = 0.2, i = 1, 2, · · · , 4. By applying eq. (10) for Ed+1,1

B1A (t′), Ed+1,1
B2A (t′), Ed+1,1

B2 B1
(t′) with d = 2 for multiple pairs of accessible nodes, a new reconstruction

motif can be defined in (a). (c) Reconstructing the network structure of Figure 2(a) under internally distributed noises with correlations upper to d = 2. All
blue hidden nodes and links are acquired by the noise signals from accessible nodes, while orange hidden nodes and links are reconstructed with the signals
(peaks of correlation E3,1

A1A2
(t′)) from noises in the hidden nodes. All the associated quantities are given in Tables a5 and a6, where noises in the hidden nodes

contribute more peak signals in Table a5, and motif (a) infers additional hidden nodes and hidden links in Table a6.

by fast-varying noises, both externally injected to or inter-
nally present in network nodes, is developed to uncover hid-
den nodes and the associated hidden structure in the network.
By calculation of the correlations of measurable data for mul-
tiple pairs of accessible nodes with different derivative orders
(eqs. (3)-(5), (7)-(12)) and finding out quantitative relations
between various correlations with use of reconstruction mo-
tifs in Figures 1(b)-(d) and 3(a), the hidden world of networks
is successfully brightened by recognizing hidden nodes, ex-
amining the interaction structure between hidden nodes and
accessible nodes, and calculating the quantities of all links in-
putting to and outputting from any hidden node explored. All
the analysis here dealts with linear diffusive couplings. The
approach can also be applied to nonlinear chemical synapses
for neural networks. Moreover, the identities for interaction
intensities no longer work; however, those for time delays
work equally in hidden network reconstruction.

It is emphasized that though in this paper, correlations
Ed+1,1

BA (t′) were analyzed for d = 1, 2 and 3 only (Figure 2,
3, and Tables a1-a6), all correlations of different d involve
possibly independent information, and synthesizing the find-
ings of even large d′s can aid in inferring hidden nodes and
hidden structure in more difficult conditions, that is, to ex-
amine larger numbers of hidden nodes with smaller part of
accessible nodes in networks.

In all eqs. (3)–(12), white noises play an active role in
the reconstruction of hidden nodes and their associated in-
teraction structure. However, noises also play negative roles
in causing random fluctuations, destroying the active sig-
nals. In theory, this issue can surely be addressed when suffi-
ciently high-frequency measurements (△t≪1) are employed,
and large data sets (L≫1) are gathered. However, it remains a
great challenge to increase the reconstruction quality of hid-
den nodes and hidden structures, given limited measurement
frequencies and available data in real measurements.

In several realistic networks, some units of importance are
often not reachable [51-53]. Systematic analyses of these
hidden parts according to measurable, accessible data can
help understand and control the whole network structures and
the network functions [9, 54]. Applications of the theoretical
approaches to some practically important systems according
to real data may be future work for network reconstruction
research.
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Appendix

Table a1 Peak heights/positions of Ed+1,1
BA (t′)/QA curves (quantities of Roman type, IBA(2)/(τBA(2)/∆t)) for d = 2 for all accessible A nodes (vertical nodes

1-10 in Figure 2(b)) and B (B,A) nodes (horizontal nodes 1-10 in Figure 2(b)). All italic quantities show actual ÎBA(2)/(τ̂BA(2)/∆t) in the network eq. (1). All
black quantities infer d = 2 paths passing through a hidden node. In some grids for d = 2, multiple data pairs represent multiple paths between the given pair of
(A, B) nodes through different hidden nodes. For example, as there is only one path with d = 2 from node 3 to hidden node 13 then to node 9, in grid (3, 9) the
quantity of Roman type shows peak height of E3,1

9,3(τ′)/QA = I9,3(2) = 0.993 and peak position τ9,3(2)/∆t = 96 while the quantities of italic type Î9,3(2)=1.011
and τ̂(2)/∆t = 96 are in eqs. (1), (4a), (4b). All reconstructed quantities of Roman type satisfactorily reproduce actual ones of italic type

A
Interaction intensities/total time delays τBA/∆t for d = 2 interaction paths

B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10

1 – – 1.046/142 – – – – 0.891/120 0.971/70 1.225/174

– – 1.109/142 – – – – – 0.906/120 0.969/70 1.280/174

– – – – – – – – – 0.972/122

– – – – – – – – – 0.994/122

2 0.709/124 – 0.963/182 0.678/126 – – – 0.874/130 0.932/80 0.941/132

0.727/124 – 0.929/182 0.691/126 – – – 0.888/130 0.950/80 0.975/132

3 0.825/138 – – 0.843/166 1.180/146 – – – 0.993/96 –

0.825/138 – – 0.894/166 1.210/146 – – – 1.011/96 –

– – – 0.749/140 1.137/114 – – – – –

– – – 0.785/140 1.134/114 – – – – –

– – – 1.192/82 – – – – – –

– – – 1.208/82 – – – – – –

4 – – – – 1.323/138 – – – 1.091/88 –

– – – – 1.303/138 – – – 1.088/88 –

5 – – – – – 1.335/132 1.009/110 – – –

– – – – – 1.321/132 1.019/110 – – –

6 – – – – – – – – – –

– – – – – – – – – –

7 – – – – – – – 0.946/84 – 1.061/66

– – – – – – – 0.979/84 – 1.093/66

8 – – – – – 0.850/188 0.659/152 – – –

– – – – – 0.949/188 0.754/152 – – –

– – – – – 0.930/144 0.710/122 – – –

– – – – – 0.945/144 0.729/122 – – –

9 – – – – – – – 0.901/142 – 1.034/184

– – – – – – – 0.978/142 – 1.086/184

– – – – – – – 0.945/126 – 0.791/180

– – – – – – – 1.005/126 – 0.802/180

– – – – – – – – – 1.071/124

– – – – – – – – – 1.092/124

10 – – – – – – – 1.264/116 – –

– – – – – – – 1.246/116 – –
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Table a2 The same as Table a1 with d = 3 interaction paths considered and computed with two hidden nodes in the paths

A
Interaction intensities/total time delays τBA/∆t for d = 3 interaction paths

B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10

1 – – – 1.099/214 1.422/194 – – 1.263/224 1.244/144 1.000/278

– – – 1.053/214 1.424/194 – – 1.319/224 1.190/144 1.053/278

– – – 1.132/114 0.969/146 – – 1.027/164 – 1.149/146

– – – 1.161/114 1.090/146 – – 1.058/164 – 1.181/146

2 – – – 1.013/224 1.291/204 – – 1.055/174 1.325/154 0.845/156

– – – 1.033/224 1.397/204 – – 1.038/174 1.167/154 1.158/156

– – – 0.798/154 0.850/186 – – – – –

– – – 0.972/154 0.913/186 – – – – –

3 – – – – – – – 0.921/188 1.080/138 1.068/190

– – – – – – – 0.987/188 1.056/138 1.083/190

4 – – – – – – – 0.906/180 1.091/130 1.088/182

– – – – – – – 1.063/180 1.137/130 1.167/182

5 0.901/174 – – – – – – – – –

1.029/174 – – 0.978/176 – – – – – –

6 – – – – – – – – – –

7 – – – – – – – – – –

8 0.963/186 – – 0.609/188 – – – – – –

0.736/186 – – 0.700/188 – – – – – –

9 – – – – – 1.005/240 0.788/204 1.183/234 – 1.147/288

– – – – – 1.141/240 0.907/204 1.120/234 – 0.894/288

10 – – – – – 1.490/230 1.132/194 – – –

– – – – – 1.415/230 1.125/194 – – –

(a) (b) (c) (d)
A2

A1

B1

B2

A2
A2 A3

A1

A1 A2 A3A1

B1 B1 B3B2
B2 B1 B3B2

Figure a1 Four motifs for distances of interactions larger than those of motifs in Figure 1(b)-(d). All green nodes and links are identified by the given motifs.
Motifs with even large d′s can be also found in the similar manner.
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Table a3 The same as Table a1 for reconstructed results with black data in Table a1 replaced by blue and purple colors, indicating that we have uniquely
explored the numbered hidden nodes (the particular numbers of hidden nodes in brackets are adopted from Figure 2(a)) with all its inputs and outputs. Blue
colored results are obtained by analyzing Table a1 only for d = d′ = 2 in eq. (6) with network motif in Figure 1(b) (shown in Figure 2(d)), and purple colored
ones by integrating data in both Tables a1, a2 and applying eq. (6) for d = 2, d′ = 3 with network motifs in Figure 1(c) and (d) (shown in Figure 2(e))

A
Uncovering hidden node and hidden links in Table a1

B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10

1 – – 1.046/142 – – – – 0.891/120 0.971/70 1.225/174

– – (16) – – – – (11) (11) (20)

– – – – – – – – – 0.972/122

– – – – – – – – – (11)

2 0.709/124 – 0.963/182 0.678/126 – – – 0.874/130 0.932/80 0.941/132

(12) – (16) (12) – – – (11) (11) (11)

3 0.825/138 – – 0.843/166 1.180/146 – – – 0.993/96 –

(12) – – (13) (13) – – – (13) –

– – – 0.749/140 1.137/114 – – – – –

– – – (12) (17) – – – – –

– – – 1.192/82 – – – – – –

– – – (17) – – – – – –

4 – – – – 1.323/138 – – – 1.091/88 –

– – – – (13) – – – (13) –

5 – – – – – 1.335/132 1.009/110 – – –

– – – – – (14) (14) – – –

6 – – – – – – – – – –

7 – – – – – – – 0.946/84 – 1.061/66

– – – – – – – (15) – (15)

8 – – – – – 0.850/188 0.659/152 – – –

– – – – – (18) (18) – – –

– – – – – 0.930/144 0.710/122 – – –

– – – – – (14) (14) – – –

9 – – – – – – – 0.901/142 – 1.034/184

– – – – – – – (15) – (20)

– – – – – – – 0.945/126 – 0.791/180

– – – – – – – (19) – (19)

– – – – – – – – – 1.071/124

– – – – – – – – – (15)

10 – – – – – – – 1.264/116 – –

– – – – – – – (19) – –



Z. Zhang, et al. Sci. China-Phys. Mech. Astron. April (2024) Vol. 67 No. 4 240511-12

Table a4 The same as Table a3 with d = 3 interaction paths considered. Here, purple numbers integrate and synthesize data in both Tables a1 and a2 by
applying network motifs in Figure 1(c) and (d), and the purple numbers in Tables a3 and a4 definitely construct all purple part of hidden nodes and hidden
network structure of Figure 2(e). Moreover, the blue numbers in Table a3 and purple numbers in both Tables a3 and this table together perform complete
recovery of the hidden part of network Figure 2(a)

A
Uncovering hidden node and hidden links in Table a2

B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10

1 – – – 1.099/214 1.422/194 – – 1.263/224 1.244/144 1.000/278

– – – (11,13) (11,13) – – (20,19) (11,13) (20,19)

– – – 1.132/114 0.969/146 – – 1.027/164 – 1.149/146

– – – (16,17) (16,17) – – (11,15) – (11,15)

2 – – – 1.013/224 1.291/204 – – 1.055/174 1.325/154 0.845/156

– – – (11,13) (11,13) – – (11,15) (11,13) (11,15)

– – – 0.798/154 0.850/186 – – – – –

– – – (16,17) (16,17) – – – – –

3 – – – – – – – 0.921/188 1.080/138 1.068/190

– – – – – – – (13,11) (13,11) (13,11)

4 – – – – – – – 0.906/180 1.091/130 1.088/182

– – – – – – – (13,11) (13,11) (13,11)

5 0.901/174 – – – – – – – – –

(14,12) – – – – – – – – –

6 – – – – – – – – – –

7 – – – – – – – – – –

8 0.963/186 – – 0.609/188 – – – – – –

(14,12) – – (14,12) – – – – – –

9 – – – – – 1.005/240 0.788/204 1.183/234 – 1.147/288

– – – – – (19,18) (19,18) (20,19) – (20,19)

10 – – – – – 1.490/230 1.132/194 – – –

– – – – – (19,18) (19,18) – – –

Table a5 The same as Table a1 with internal and distributed noises eq. (7) considered. For a comparison with Table a1, we take Qi = 0.2, i = 1, 2, ..., 20.
All quantities in Table a1 appear approximately in this table (quantities without underline). The additional quantities with underline in this table are taken from
peaks produced by noises in hidden nodes. Note, in this table only peaks with positive time-delay are shown. There are other peaks, symmetric to those peaks
and not adding any novel information, are not shown. This rule is also followed in Table a6

A
Interaction intensities/total time delays τBA/∆t for d = 2 interaction paths in distributed noises

B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10
1 – – 1.191/142 –0.764/2 – – – 0.842/120 0.982/70 1.282/174

– – – – – – – – – 1.096/122
2 0.679/124 – 0.884/182 0.607/126 – – – 0.935/130 0.788/80 1.020/132
3 0.745/138 – – 0.971/166 1.113/146 – – – 1.012/96 –

– – – 0.854/140 1.110/114 – – – – –
– – – 1.084/82 – – – – – –

4 – – – – 1.171/138 – – – 0.998/88 –
– – – – –1.350/32 – – – – –

5 – – – –0.998/20 – 1.364/132 1.066/110 – – –
6 – – – – – – – – – –
7 – – – – – –0.966/22 – 0.941/84 – 1.014/66

– – – – – –1.279/36 – – – –
8 – – – – – 0.928/188 0.626/152 – – –0.783/2

– – – – – 0.861/144 0.748/122 – – –1.118/54
9 – – – –0.916/70 –1.054/50 – – 0.901/142 – 1.008/184

– – – – – – – 1.011/126 – 0.792/180
– – – – – – – –0.908/50 – 1.113/124
– – – – – – – – – –0.893/52

10 – – – – – – – 1.118/116 – –
– – – – – – – –0.876/18 – –
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Table a6 The same as Table a3 with internal and distributed noises considered. All blue quantities are identical to the ones in Table a3, which are reconstructed
by eq. (6) and motif in Figure 1(b). All orange data, with or without underline, provide additional information of hidden structures. Interestingly, hidden nodes
17, 18, 19 and the related interactions, which cannot be identified in Table a3, are definitely inferred with the information generated by noise sources of hidden
nodes and by applying the motif in Figure 3(a). All the remaining black quantities and hidden nodes 16, 20 could not be inferred with correlations upper to
d = 2

A
Uncovering hidden node and hidden links in Table a5

B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10

1 – – 1.191/142 –0.764/2 – – – 0.842/120 0.982/70 1.282/174

– – (12) – – – (11) (11)

– – – – – – – – – 1.096/122

– – – – – – – – – (11)

2 0.679/124 – 0.884/182 0.607/126 – – – 0.935/130 0.788/80 1.020/132

(12) – (12) – – – (11) (11) (11)

3 0.745/138 – – 0.971/166 1.113/146 – – – 1.012/96 –

(12) – – (13) (13) – – – (13) –

– – – 0.854/140 1.110/114 – – – – –

– – – (12) (17) – – – – –

– – – 1.084/82 – – – – – –

– – – (17) – – – – – –

4 – – – – 1.171/138 – – – 0.998/88 –

– – – – (13) – – – (13) –

– – – – –1.350/32 – – – – –

– – – – (17) – – – – –

5 – – – –0.998/20 – 1.364/132 1.066/110 – – –

– – – (13) – (14) (14) – – –

6 – – – – – – – – – –

7 – – – – – –0.966/22 – 0.941/84 – 1.014/66

– – – – – (14) – (15) – (15)

– – – – – –1.279/36 – – – –

– – – – – (18) – – – –

8 – – – – – 0.928/188 0.626/152 – – –0.783/2

– – – – – (18) (18) – – (11)

– – – – – 0.861/144 0.748/122 – – –1.118/54

– – – – – (14) (14) – – (19)

9 – – – –0.916/70 –1.054/50 – – 0.901/142 – 1.008/184

– – – (13) (13) – – (15) –

– – – – – – – 1.011/126 – 0.792/180

– – – – – – – (19) – (19)

– – – – – – – –0.908/50 – 1.113/124

– – – – – – – (11) – (15)

– – – – – – – – – –0.893/52

– – – – – – – – – (11)

10 – – – – – – – 1.118/116 – –

– – – – – – – – –

– – – – – – – –0.876/18 – –

– – – – – – – (15) – –
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