Skip to main content
Log in

Bound states in the continuum in all-dielectric metasurfaces with scaled lattice constants

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Bound states in the continuum (BICs) have emerged as an efficient tool for trapping light at the nanoscale, promising several exciting applications in photonics. Breaking the structural symmetry has been proposed as an effective way of exciting quasi-BlCs (QBICs) and generating high-Q resonances. Herein, we demonstrate that QBICs can be excited in an all-dielectric metasurface by scaling the lattice of the metasurface, causing translational symmetry breaking. The corresponding BICs arise from band folding from the band edge to the Γ point in the first Brillouin zone. Multipole analysis reveals that the toroidal dipole dominates these QBICs. Furthermore, scaling the lattice along different directions provides additional freedom for tailoring QBICs, enabling polarization-dependent or -independent QBICs. In addition, this allows the realization of two QBICs at different wavelengths using plane-wave illumination with different polarizations on the metasurface. We experimentally demonstrated the existence of these BICs by fabricating silicon metasurfaces with scaled lattices and measuring their transmission spectra. The vanished resonant linewidth identifies BICs in the transmission spectrum, and the QBICs are characterized by high-Q Fano resonances with the Q-factor reaching 2000. Our results have potential applications in enhancing light-matter interaction, such as laser, nonlinear harmonic generation, and strong coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Vahala, Nature 424, 839 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, Nat. Commun. 5, 4424 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. I. Staude, and J. Schilling, Nat. Photon. 11, 274 (2017).

    Article  CAS  ADS  Google Scholar 

  4. X. Zhang, J. Deng, M. Jin, Y. Li, N. Mao, Y. Tang, X. Liu, W. Cai, Y. Wang, K. Li, Y. Liu, and G. Li, Sci. China-Phys. Mech. Astron. 64, 294215 (2021).

    Article  ADS  Google Scholar 

  5. S. Jahani, and Z. Jacob, Nat. Nanotech. 11, 23 (2016).

    Article  CAS  ADS  Google Scholar 

  6. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, Science 354, aag2472 (2016).

    Article  PubMed  Google Scholar 

  7. L. Huang, Y. Yu, and L. Cao, Nano Lett. 13, 3559 (2013), arXiv: 1304.5671.

    Article  CAS  PubMed  ADS  Google Scholar 

  8. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. B. Zhang, and B. Luk’yanchuk, Sci. Rep. 2, 492 (2012), arXiv: 1205.1610.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  9. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, Phys. Rev. Lett. 108, 097402 (2012), arXiv: 1108.4911.

    Article  PubMed  ADS  Google Scholar 

  10. B. F. Gao, M. X. Ren, W. Wu, W. Cai, and J. J. Xu, Sci. China-Phys. Mech. Astron. 64, 240362 (2021), arXiv: 2101.06491.

    Article  CAS  ADS  Google Scholar 

  11. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, Opt. Express 20, 20599 (2012).

    Article  PubMed  ADS  Google Scholar 

  12. J. B. Khurgin, Nat. Nanotech. 10, 2 (2015), arXiv: 1411.6577.

    Article  CAS  ADS  Google Scholar 

  13. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, Nat. Rev. Mater. 1, 16048 (2016).

    Article  CAS  ADS  Google Scholar 

  14. S. Li, C. Zhou, T. Liu, and S. Xiao, Phys. Rev. A 100, 063803 (2019).

    Article  CAS  ADS  Google Scholar 

  15. A. F. Sadreev, Rep. Prog. Phys. 84, 055901 (2021), arXiv: 2011.01221.

    Article  MathSciNet  CAS  ADS  Google Scholar 

  16. L. Huang, L. Xu, M. Rahmani, D. Neshev, and A. E. Miroshnichenko, Adv. Photon. 3, 016004 (2021).

    Article  ADS  Google Scholar 

  17. K. Fan, I. V. Shadrivov, and W. J. Padilla, Optica 6, 169 (2019).

    Article  CAS  ADS  Google Scholar 

  18. D. R. Abujetas, N. van Hoof, S. ter Huurne, J. Gómez Rivas, and J. A. Sánchez-Gil, Optica 6, 996 (2019).

    Article  ADS  Google Scholar 

  19. L. Huang, Y. K. Chiang, S. Huang, C. Shen, F. Deng, Y. Cheng, B. Jia, Y. Li, D. A. Powell, and A. E. Miroshnichenko, Nat. Commun. 12, 4819 (2021), arXiv: 2103.11581.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. E. N. Bulgakov, and A. F. Sadreev, Phys. Rev. A 90, 053801 (2014), arXiv: 1411.4355.

    Article  ADS  Google Scholar 

  21. E. N. Bulgakov, and A. F. Sadreev, Phys. Rev. A 96, 013841 (2017), arXiv: 1706.06719.

    Article  ADS  Google Scholar 

  22. C. Zhou, L. Huang, R. Jin, L. Xu, G. Li, M. Rahmani, X. Chen, W. Lu, and A. E. Miroshnichenko, Laser Photon. Rev. 17, 2200564 (2023).

    Article  ADS  Google Scholar 

  23. J. Tian, Q. Li, P. A. Belov, R. K. Sinha, W. Qian, and M. Qiu, ACS Photon. 7, 1436 (2020).

    Article  CAS  Google Scholar 

  24. B. Wang, W. Liu, M. Zhao, J. Wang, Y. Zhang, A. Chen, F. Guan, X. Liu, L. Shi, and J. Zi, Nat. Photon. 14, 623 (2020), arXiv: 1909.12618.

    Article  CAS  ADS  Google Scholar 

  25. X. Wang, J. Wang, X. Zhao, L. Shi, and J. Zi, ACS Photon. 10, 2316 (2023).

    Article  CAS  Google Scholar 

  26. J. Wang, L. Shi, and J. Zi, Phys. Rev. Lett. 129, 236101 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  27. K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, Phys. Rev. Lett. 121, 193903 (2018), arXiv: 1809.00330.

    Article  PubMed  ADS  Google Scholar 

  28. L. Xu, K. Zangeneh Kamali, L. Huang, M. Rahmani, A. Smirnov, R. Camacho-Morales, Y. Ma, G. Zhang, M. Woolley, D. Neshev, and A. E. Miroshnichenko, Adv. Sci. 6, 1802119 (2019).

    Article  Google Scholar 

  29. L. Xu, M. Rahmani, Y. Ma, D. A. Smirnova, K. Z. Kamali, F. Deng, Y. K. Chiang, L. Huang, H. Zhang, S. Gould, D. N. Neshev, and A. E. Miroshnichenko, Adv. Photon. 2, 1 (2020).

    Article  CAS  Google Scholar 

  30. J. Wang, J. Kühne, T. Karamanos, C. Rockstuhl, S. A. Maier, and A. Tittl, Adv. Funct. Mater. 31, 2104652 (2021).

    Article  CAS  Google Scholar 

  31. A. S. Kupriianov, Y. Xu, A. Sayanskiy, V. Dmitriev, Y. S. Kivshar, and V. R. Tuz, Phys. Rev. Appl. 12, 014024 (2019), arXiv: 1904.04688.

    Article  CAS  ADS  Google Scholar 

  32. J. Yu, B. Ma, R. Qin, P. Ghosh, M. Qiu, and Q. Li, ACS Photon. 9, 3391 (2022).

    Article  CAS  Google Scholar 

  33. A. Overvig, N. Yu, and A. Alù, Phys. Rev. Lett. 126, 073001 (2021), arXiv: 2006.05484.

    Article  CAS  PubMed  ADS  Google Scholar 

  34. W. Liu, B. Wang, Y. Zhang, J. Wang, M. Zhao, F. Guan, X. Liu, L. Shi, and J. Zi, Phys. Rev. Lett. 123, 116104 (2019), arXiv: 1904.01733.

    Article  CAS  PubMed  ADS  Google Scholar 

  35. X. Zhang, W. Shi, J. Gu, L. Cong, X. Chen, K. Wang, Q. Xu, J. Han, and W. Zhang, Opt. Express 30, 29088 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. J. Li, J. Li, C. Zheng, Z. Yue, S. Wang, M. Li, H. Zhao, Y. Zhang, and J. Yao, Carbon 182, 506 (2021).

    Article  CAS  Google Scholar 

  37. J. Li, Z. Yue, J. Li, C. Zheng, Y. Zhang, and J. Yao, Opt. Laser Tech. 161, 109173 (2023).

    Article  Google Scholar 

  38. S. Li, B. Ma, Q. Li, and M. V. Rybin, Nano Lett. 23, 6399 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, Nature 541, 196 (2017), arXiv: 1508.05164.

    Article  CAS  PubMed  ADS  Google Scholar 

  40. S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domínguez, and A. I. Kuznetsov, Nat. Nanotech. 13, 1042 (2018), arXiv: 1803.09993.

    Article  CAS  ADS  Google Scholar 

  41. K. Koshelev, Y. Tang, K. Li, D. Y. Choi, G. Li, and Y. Kivshar, ACS Photon. 6, 1639 (2019).

    Article  CAS  Google Scholar 

  42. Z. Liu, Y. Xu, Y. Lin, J. Xiang, T. Feng, Q. Cao, J. Li, S. Lan, and J. Liu, Phys. Rev. Lett. 123, 253901 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. A. C. Overvig, S. Shrestha, and N. Yu, Nanophotonics 7, 1157 (2018).

    Article  CAS  Google Scholar 

  44. Y. Gao, L. Xu, and X. Shen, Opt. Express 30, 46680 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Y. Gao, J. Ge, S. Sun, and X. Shen, Results Phys. 43, 106078 (2022), arXiv: 2210.17038.

    Article  Google Scholar 

  46. S. You, M. Zhou, L. Xu, D. Chen, M. Fan, J. Huang, W. Ma, S. Luo, M. Rahmani, C. Zhou, A. E. Miroshnichenko, and L. Huang, Nanophotonics 12, 2051 (2023).

    Article  CAS  Google Scholar 

  47. Y. Shi, L. M. Zhou, A. Q. Liu, M. Nieto-Vesperinas, T. Zhu, A. Hassanfiroozi, J. Liu, H. Zhang, D. P. Tsai, H. Li, W. Ding, W. Zhu, Y. F. Yu, A. Mazzulla, G. Cipparrone, P. C. Wu, C. T. Chan, and C. W. Qiu, Nano Lett. 22, 1769 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  48. E. A. Gurvitz, K. S. Ladutenko, P. A. Dergachev, A. B. Evlyukhin, A. E. Miroshnichenko, and A. S. Shalin, Laser Photon. Rev. 13, 1800266 (2019), arXiv: 1810.04945.

    Article  ADS  Google Scholar 

  49. P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y. W. Huang, P. R. Wu, Y. H. Chen, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, ACS Nano 12, 1920 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Z. J. Yang, Y. H. Deng, Y. Yu, and J. He, Nanoscale 12, 10639 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. A. B. Evlyukhin, M. A. Poleva, A. V. Prokhorov, K. V. Baryshnikova, A. E. Miroshnichenko, and B. N. Chichkov, Laser Photon. Rev. 15, 2100206 (2021).

    Article  ADS  Google Scholar 

  52. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010), arXiv: 0902.3014.

    Article  CAS  ADS  Google Scholar 

  53. W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, Adv. Opt. Mater. 6, 1800502 (2018).

    Article  Google Scholar 

  54. C. Zhou, S. Li, Y. Wang, and M. Zhan, Phys. Rev. B 100, 195306 (2019).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaobiao Zhou, Lujun Huang or Andrey E. Miroshnichenko.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12004084, 12164008, and 62261008), the Guizhou Provincial Science and Technology Projects (Grant No. ZK[2021]030), the Science and Technology Innovation Team Project of Guizhou Colleges and Universities (Grant No. [2023]060), the Science and Technology Talent Support Project of the Department of Education in the Guizhou Province (Grant No. KY[2018]043), the Construction Project of Characteristic Key Laboratory in Guizhou Colleges and Universities (Grant No. Y[2021]003), the Key Laboratory of Guizhou Minzu University (Grant No. GZMUSYS [2021]03), the Australian Research Council Discovery Project (Grant No. DP200101353), the UNSW Scientia Fellowship Program, and the Shanghai Pujiang Program (Grant No. 22PJ1402900). Mohsen Rahmani acknowledges support from the Royal Society and the Wolfson Foundation.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., You, S., Xu, L. et al. Bound states in the continuum in all-dielectric metasurfaces with scaled lattice constants. Sci. China Phys. Mech. Astron. 66, 124212 (2023). https://doi.org/10.1007/s11433-023-2207-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2207-9

Navigation