Skip to main content
Log in

Extension of Noether’s theorem in \({\cal P}{\cal T}\)-symmetry systems and its experimental demonstration in an optical setup

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Noether’s theorem is one of the fundamental laws in physics, relating the symmetry of a physical system to its constant of motion and conservation law. On the other hand, there exist a variety of non-Hermitian parity-time (\({\cal P}{\cal T}\))-symmetric systems, which exhibit novel quantum properties and have attracted increasing interest. In this work, we extend Noether’s theorem to a class of significant \({\cal P}{\cal T}\)-symmetry systems for which the eigenvalues of the \({\cal P}{\cal T}\)-symmetry Hamiltonian \({{\hat H}_{{\cal P}{\cal T}}}\) change from purely real numbers to purely imaginary numbers, and introduce a generalized expectation value of an operator based on biorthogonal quantum mechanics. We find that the generalized expectation value of a time-independent operator is a constant of motion when the operator presents a standard symmetry in the \({\cal P}{\cal T}\)-symmetry unbroken regime, or a chiral symmetry in the \({\cal P}{\cal T}\)-symmetry broken regime. In addition, we experimentally investigate the extended Noether’s theorem in \({\cal P}{\cal T}\)-symmetry single-qubit and two-qubit systems using an optical setup. Our experiment demonstrates the existence of the constant of motion and reveals how this constant of motion can be used to judge whether the \({\cal P}{\cal T}\)-symmetry of a system is broken. Furthermore, a novel phenomenon of masking quantum information is first observed in a \({\cal P}{\cal T}\)-symmetry two-qubit system. This study not only contributes to full understanding of the relation between symmetry and conservation law in \({\cal P}{\cal T}\)-symmetry physics, but also has potential applications in quantum information theory and quantum communication protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Altland, and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997), arXiv: cond-mat/9602137.

    Article  ADS  Google Scholar 

  2. S. Malzard, C. Poli, and H. Schomerus, Phys. Rev. Lett. 115, 200402 (2015), arXiv: 1508.03985.

    Article  ADS  Google Scholar 

  3. Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, Phys. Rev. X 8, 031079 (2018), arXiv: 1802.07964.

    Google Scholar 

  4. K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Phys. Rev. X 9, 041015 (2019), arXiv: 1812.09133.

    Google Scholar 

  5. K. Y. Bliokh, J. Dressel, and F. Nori, New J. Phys. 16, 093037 (2014), arXiv: 1404.5486.

    Article  ADS  Google Scholar 

  6. M. Li, X. Ni, M. Weiner, A. Alù, and A. B. Khanikaev, Phys. Rev. B 100, 045423 (2019), arXiv: 1807.00913.

    Article  ADS  Google Scholar 

  7. E. Noether, Transp. Theor. Statist. Phys. 1, 186 (1971), arXiv: physics/0503066.

    Article  ADS  Google Scholar 

  8. N. Ma, Y. Z. You, and Z. Y. Meng, Phys. Rev. Lett. 122, 175701 (2019), arXiv: 1811.08823.

    Article  ADS  Google Scholar 

  9. R. Shankar, Principles of Quantum Mechanics, 2nd ed. (Springer, New York, 1994).

    Book  MATH  Google Scholar 

  10. I. Marvian, and R. W. Spekkens, Nat. Commun. 5, 3821 (2014), arXiv: 1404.3236.

    Article  ADS  Google Scholar 

  11. P. M. Zhang, M. Elbistan, P. A. Horvathy, and P. Kosiński, Eur. Phys. J. Plus 135, 223 (2020), arXiv: 1903.05070.

    Article  Google Scholar 

  12. K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, New J. Phys. 15, 033026 (2013), arXiv: 1208.4523.

    Article  ADS  Google Scholar 

  13. L. Burns, K. Y. Bliokh, F. Nori, and J. Dressel, New J. Phys. 22, 053050 (2020), arXiv: 1912.10522.

    Article  ADS  MathSciNet  Google Scholar 

  14. J. J. García-Ripoll, V. M. Pérez-García, and V. Vekslerchik, Phys. Rev. E 64, 056602 (2001), arXiv: cond-mat/0106487.

    Article  ADS  Google Scholar 

  15. Q. C. Wu, Y. H. Zhou, B. L. Ye, T. Liu, and C. P. Yang, New J. Phys. 23, 113005 (2021).

    Article  ADS  Google Scholar 

  16. D. Li, and C. Zheng, Entropy 24, 1563 (2022).

    Article  ADS  Google Scholar 

  17. X. E. Gao, D. L. Li, Z. H. Liu, and C. Zheng, Acta Phys. Sin. 71, 240303 (2022).

    Article  Google Scholar 

  18. H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, Phys. Rev. A 82, 043803 (2010), arXiv: 1005.5189.

    Article  ADS  Google Scholar 

  19. A. Mostafazadeh, J. Math. Phys. 43, 205 (2002), arXiv: math-ph/0107001.

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Mostafazadeh, J. Phys. A-Math. Gen. 36, 7081 (2003), arXiv: quant-ph/0304080.

    Article  ADS  Google Scholar 

  21. M. V. Berry, J. Phys. A-Math. Theor. 41, 244007 (2008).

    Article  ADS  Google Scholar 

  22. A. Mostafazadeh, Int. J. Geom. Methods Mod. Phys. 07, 1191 (2010), arXiv: 0810.5643.

    Article  Google Scholar 

  23. F. Ruzicka, K. S. Agarwal, and Y. N. Joglekar, J. Phys.-Conf. Ser. 2038, 012021 (2021).

    Article  Google Scholar 

  24. Z. Bian, L. Xiao, K. Wang, X. Zhan, F. A. Onanga, F. Ruzicka, W. Yi, Y. N. Joglekar, and P. Xue, Phys. Rev. Res. 2, 022039 (2020), arXiv: 1903.09806.

    Article  Google Scholar 

  25. M. H. Teimourpour, R. El-Ganainy, A. Eisfeld, A. Szameit, and D. N. Christodoulides, Phys. Rev. A 90, 053817 (2014), arXiv: 1408.1561.

    Article  ADS  Google Scholar 

  26. J. D. H. Rivero, and L. Ge, Phys. Rev. Lett. 125, 083902 (2020), arXiv: 2101.09239.

    Article  ADS  MathSciNet  Google Scholar 

  27. C. M. Bender, and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998), arXiv: physics/9712001.

    Article  ADS  MathSciNet  Google Scholar 

  28. L. Ge, Y. D. Chong, and A. D. Stone, Phys. Rev. A 85, 023802 (2012), arXiv: 1112.5167.

    Article  ADS  Google Scholar 

  29. B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014), arXiv: 1308.4564.

    Article  Google Scholar 

  30. H. Jing, S. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, Phys. Rev. Lett. 113, 053604 (2014), arXiv: 1403.0657.

    Article  ADS  Google Scholar 

  31. V. V. Konotop, J. Yang, and D. A. Zezyulin, Rev. Mod. Phys. 88, 035002 (2016), arXiv: 1603.06826.

    Article  ADS  Google Scholar 

  32. R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Nat. Phys. 14, 11 (2018).

    Article  Google Scholar 

  33. O. Sigwarth, and C. Miniatura, AAPPS Bull. 32, 23 (2022).

    Article  ADS  Google Scholar 

  34. C. Zheng, Europhys. Lett. 136, 30002 (2021).

    Article  ADS  Google Scholar 

  35. G. Q. Zhang, Z. Chen, D. Xu, N. Shammah, M. Liao, T. F. Li, L. Tong, S. Y. Zhu, F. Nori, and J. Q. You, PRX Quantum 2, 020307 (2021), arXiv: 2104.09811.

    Article  ADS  Google Scholar 

  36. X. Ni, D. Smirnova, A. Poddubny, D. Leykam, Y. Chong, and A. B. Khanikaev, Phys. Rev. B 98, 165129 (2018).

    Article  ADS  Google Scholar 

  37. D. X. Chen, Y. Zhang, J. L. Zhao, Q. C. Wu, Y. L. Fang, C. P. Yang, and F. Nori, Phys. Rev. A 106, 022438 (2022), arXiv: 2209.02481.

    Article  ADS  Google Scholar 

  38. H. Xu, D. G. Lai, Y. B. Qian, B. P. Hou, A. Miranowicz, and F. Nori, Phys. Rev. A 104, 053518 (2021), arXiv: 2107.13891.

    Article  ADS  Google Scholar 

  39. J. S. Tang, Y. T. Wang, S. Yu, D. Y. He, J. S. Xu, B. H. Liu, G. Chen, Y. N. Sun, K. Sun, Y. J. Han, C. F. Li, and G. C. Guo, Nat. Photon. 10, 642 (2016).

    Article  ADS  Google Scholar 

  40. Y. T. Wang, Z. P. Li, S. Yu, Z. J. Ke, W. Liu, Y. Meng, Y. Z. Yang, J. S. Tang, C. F. Li, and G. C. Guo, Phys. Rev. Lett. 124, 230402 (2020).

    Article  ADS  Google Scholar 

  41. J. Li, A. K. Harter, J. Liu, L. de Melo, Y. N. Joglekar, and L. Luo, Nat. Commun. 10, 855 (2019).

    Article  ADS  Google Scholar 

  42. H. Z. Chen, T. Liu, H. Y. Luan, R. J. Liu, X. Y. Wang, X. F. Zhu, Y. B. Li, Z. M. Gu, S. J. Liang, H. Gao, L. Lu, L. Ge, S. Zhang, J. Zhu, and R. M. Ma, Nat. Phys. 16, 571 (2020).

    Article  Google Scholar 

  43. C. Wu, A. Fan, and S. D. Liang, AAPPS Bull. 32, 39 (2022).

    Article  ADS  Google Scholar 

  44. C. Zheng, L. Hao, and G. L. Long, Phil. Trans. R. Soc. A. 371, 20120053 (2013), arXiv: 1105.6157.

    Article  ADS  Google Scholar 

  45. L. Xiao, K. Wang, X. Zhan, Z. Bian, K. Kawabata, M. Ueda, W. Yi, and P. Xue, Phys. Rev. Lett. 123, 230401 (2019), arXiv: 1812.01213.

    Article  ADS  Google Scholar 

  46. Y. Ashida, S. Furukawa, and M. Ueda, Nat. Commun. 8, 15791 (2017), arXiv: 1611.00396.

    Article  ADS  Google Scholar 

  47. H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Nature 537, 80 (2016), arXiv: 1602.06881.

    Article  ADS  Google Scholar 

  48. J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter, Nature 537, 76 (2016).

    Article  ADS  Google Scholar 

  49. K. Kawabata, Y. Ashida, and M. Ueda, Phys. Rev. Lett. 119, 190401 (2017), arXiv: 1705.04628.

    Article  ADS  Google Scholar 

  50. J. Wen, C. Zheng, Z. Ye, T. Xin, and G. Long, Phys. Rev. Res. 3, 013256 (2021), arXiv: 2101.00175.

    Article  Google Scholar 

  51. Y. L. Fang, J. L. Zhao, Y. Zhang, D. X. Chen, Q. C. Wu, Y. H. Zhou, C. P. Yang, and F. Nori, Commun. Phys. 4, 223 (2021), arXiv: 2111.03803.

    Article  Google Scholar 

  52. H. Shen, B. Zhen, and L. Fu, Phys. Rev. Lett. 120, 146402 (2018), arXiv: 1706.07435.

    Article  ADS  MathSciNet  Google Scholar 

  53. K. Chen, and A. B. Khanikaev, Phys. Rev. B 105, L081112 (2022), arXiv: 2111.12573.

    Article  ADS  Google Scholar 

  54. Y. Choi, C. Hahn, J. W. Yoon, and S. H. Song, Nat. Commun. 9, 2182 (2018).

    Article  ADS  Google Scholar 

  55. D. C. Brody, J. Phys. A-Math. Theor. 47, 035305 (2013), arXiv: 1308.2609.

    Article  ADS  Google Scholar 

  56. F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, Phys. Rev. Lett. 121, 026808 (2018), arXiv: 1805.06492.

    Article  ADS  Google Scholar 

  57. Q. C. Wu, Y. H. Chen, B. H. Huang, Y. Xia, and J. Song, Phys. Rev. A 94, 053421 (2016), arXiv: 1604.04971.

    Article  ADS  Google Scholar 

  58. C. Y. Ju, A. Miranowicz, G. Y. Chen, and F. Nori, Phys. Rev. A 100, 062118 (2019), arXiv: 1906.08071.

    Article  ADS  MathSciNet  Google Scholar 

  59. K. Modi, A. K. Pati, A. Sen(De), and U. Sen, Phys. Rev. Lett. 120, 230501 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  60. Z. H. Liu, X. B. Liang, K. Sun, Q. Li, Y. Meng, M. Yang, B. Li, J. L. Chen, J. S. Xu, C. F. Li, and G. C. Guo, Phys. Rev. Lett. 126, 170505 (2021), arXiv: 2011.04963.

    Article  ADS  Google Scholar 

  61. C. Y. Ju, A. Miranowicz, F. Minganti, C. T. Chan, G. Y. Chen, and F. Nori, Phys. Rev. Res. 4, 023070 (2022), arXiv: 2107.11910.

    Article  Google Scholar 

  62. D. C. Brody, and E. M. Graefe, Phys. Rev. Lett. 109, 230405 (2012), arXiv: 1208.5297.

    Article  ADS  Google Scholar 

  63. L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang, X. P. Wang, J. Li, K. Mochizuki, D. Kim, N. Kawakami, W. Yi, H. Obuse, B. C. Sanders, and P. Xue, Nat. Phys. 13, 1117 (2017).

    Article  Google Scholar 

  64. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Phys. Rev. A 64, 052312 (2001), arXiv: quant-ph/0103121.

    Article  ADS  Google Scholar 

  65. M. Naghiloo, M. Abbasi, Y. N. Joglekar, and K. W. Murch, Nat. Phys. 15, 1232 (2019), arXiv: 1901.07968.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12264040, 12204311, 11804228, 11865013, and U21A20436), the Jiangxi Natural Science Foundation (Grant Nos. 20212BAB211018, 20192ACBL20051), the Project of Jiangxi Province Higher Educational Science and Technology Program (Grant Nos. GJJ190891, and GJJ211735), and the Key-Area Research and Development Program of Guangdong Province (Grant No. 2018B03-0326001). Franco Nori is supported in part by the Nippon Telegraph and Telephone (NTT) Corporation Research, the Japan Science and Technology (JST) Agency [via the Quantum Leap Flagship Program (Q-LEAP), and Moonshot R&D Grant Number JPMJMS2061], the Japan Society for the Promotion of Science (JSPS) [via the Grants-in-Aid for Scientific Research (KAKENHI) Grant No. JP20H00134], the Army Research Office (ARO) (Grant No. W911NF-18-1-0358), the Asian Office of Aerospace Research and Development (AOARD) (Grant No. FA2386-20-1-4069), and the Foundational Questions Institute Fund (FQXi) (Grant No. FQXi-IAF19-06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Xu Chen, Chui-Ping Yang or Franco Nori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, QC., Zhao, JL., Fang, YL. et al. Extension of Noether’s theorem in \({\cal P}{\cal T}\)-symmetry systems and its experimental demonstration in an optical setup. Sci. China Phys. Mech. Astron. 66, 240312 (2023). https://doi.org/10.1007/s11433-022-2067-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-2067-x

Navigation