Skip to main content
Log in

Evidence for charge and spin density waves in single crystals of La3Ni2O7 and La3Ni2O6

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Charge and spin orders are intimately related to superconductivity in copper oxide superconductors. Elucidation of the competing orders in various nickel oxide compounds is crucial, given the fact that superconductivity has been discovered in Nd0.8Sr0.2NiO2 films. Herein, we report structural, electronic transport, magnetic, and thermodynamic characterizations of single crystals of La3Ni2O7 and La3Ni2O6. La3Ni2O7 is metallic with mixed Ni2+ and Ni3+ valent states. Resistivity measurements yield two transition-like kinks at ∼ 110 and 153 K. The kink at 153 K is further revealed from magnetization and specific heat measurements, indicative of the formation of charge and spin density waves. La3Ni2O6 single crystals obtained from the topochemical reduction of La3Ni2O7 are insulating and show an anomaly at ∼176 K on magnetic susceptibility. The transition-like behaviors of La3Ni2O7 and La3Ni2O6 are analogous to those observed in La4Ni3O10 and La4Ni3O8, suggesting that charge and spin density waves are a common feature in the ternary La−Ni−O system with mixed-valent states of nickel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley, H. R. Lee, Y. Cui, Y. Hikita, and H. Y. Hwang, Nature 572, 624 (2019).

    Article  ADS  Google Scholar 

  2. Q. Gu, and H. H. Wen, Innovation 3, 100202 (2022), arXiv: 2109.07654.

    Google Scholar 

  3. Q. Gao, Y. Zhao, X. J. Zhou, and Z. Zhu, Chin. Phys. Lett. 38, 077401 (2021), arXiv: 2102.10292.

    Article  ADS  Google Scholar 

  4. B. Vignolle, S. M. Hayden, D. F. McMorrow, H. M. Rønnow, B. Lake, C. D. Frost, and T. G. Perring, Nat. Phys. 3, 163 (2007).

    Article  Google Scholar 

  5. B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, Nature 518, 179 (2015).

    Article  ADS  Google Scholar 

  6. G. M. Zhang, Y. Yang, and F. C. Zhang, Phys. Rev. B 101, 020501 (2020), arXiv: 1909.11845.

    Article  ADS  Google Scholar 

  7. Y. Zhang, L. F. Lin, W. Hu, A. Moreo, S. Dong, and E. Dagotto, Phys. Rev. B 102, 195117 (2020), arXiv: 2008.04392.

    Article  ADS  Google Scholar 

  8. B. X. Wang, H. Zheng, E. Krivyakina, O. Chmaissem, P. P. Lopes, J. W. Lynn, L. C. Gallington, Y. Ren, S. Rosenkranz, J. F. Mitchell, and D. Phelan, Phys. Rev. Mater. 4, 084409 (2020), arXiv: 2006.09548.

    Article  Google Scholar 

  9. K. W. Lee, and W. E. Pickett, Phys. Rev. B 70, 165109 (2004), arXiv: cond-mat/0405570.

    Article  ADS  Google Scholar 

  10. Q. Li, C. P. He, X. Y. Zhu, J. Si, X. W. Fan, and H. H. Wen, Sci. China-Phys. Mech. Astron. 64, 227411 (2021), arXiv: 2006.10988.

    Article  ADS  Google Scholar 

  11. V. I. Anisimov, D. Bukhvalov, and T. M. Rice, Phys. Rev. B 59, 7901 (1999).

    Article  ADS  Google Scholar 

  12. P. Worm, L. Si, M. Kitatani, R. Arita, J. M. Tomczak, and K. Held, Phys. Rev. Mater. 6, L091801 (2022).

    Article  ADS  Google Scholar 

  13. G. A. Pan, D. Ferenc Segedin, H. LaBollita, Q. Song, E. M. Nica, B. H. Goodge, A. T. Pierce, S. Doyle, S. Novakov, D. Córdova Carrizales, A. T. N’Diaye, P. Shafer, H. Paik, J. T. Heron, J. A. Mason, A. Yacoby, L. F. Kourkoutis, O. Erten, C. M. Brooks, A. S. Botana, and J. A. Mundy, Nat. Mater. 21, 160 (2022), arXiv: 2109.09726.

    Article  ADS  Google Scholar 

  14. X. Ding, S. Shen, H. Leng, M. Xu, Y. Zhao, J. Zhao, X. Sui, X. Wu, H. Xiao, X. Zu, B. Huang, H. Luo, P. Yu, and L. Qiao, Sci. China-Phys. Mech. Astron. 65, 267411 (2022), arXiv: 2201.13032.

    Article  ADS  Google Scholar 

  15. X. Zhou, X. Zhang, J. Yi, P. Qin, Z. Feng, P. Jiang, Z. Zhong, H. Yan, X. Wang, H. Chen, H. Wu, X. Zhang, Z. Meng, X. Yu, M. B. H. Breese, J. Cao, J. Wang, C. Jiang, and Z. Liu, Adv. Mater. 34, 2106117(2022).

    Article  Google Scholar 

  16. N. N. Wang, M. W. Yang, Z. Yang, K. Y. Chen, H. Zhang, Q. H. Zhang, Z. H. Zhu, Y. Uwatoko, L. Gu, X. L. Dong, J. P. Sun, K. J. Jin, and J. G. Cheng, Nat. Commun. 13, 4367 (2022), arXiv: 2109.12811.

    Article  ADS  Google Scholar 

  17. C. He, X. Ming, Q. Li, X. Zhu, J. Si, and H. H. Wen, J. Phys.-Condens. Matter 33, 265701 (2021), arXiv: 2010.11777.

    Article  ADS  Google Scholar 

  18. Q. Li, C. He, J. Si, X. Zhu, Y. Zhang, and H. H. Wen, Commun. Mater. 1, 16 (2020), arXiv: 1911.02420.

    Article  Google Scholar 

  19. M. Huo, Z. Liu, H. Sun, L. Li, H. Lui, C. Huang, F. Liang, B. Shen, and M. Wang, Chin. Phys. B 31, 107401 (2022).

    Article  ADS  Google Scholar 

  20. J. Zhang, H. Zheng, Y. Ren, and J. F. Mitchell, Cryst. Growth Des. 17, 2730 (2017).

    Article  Google Scholar 

  21. J. Zhang, H. Zheng, Y. S. Chen, Y. Ren, M. Yonemura, A. Huq, and J. F. Mitchell, Phys. Rev. Mater. 4, 083402 (2020), arXiv: 1904.10048.

    Article  Google Scholar 

  22. H. Guo, Z. W. Li, L. Zhao, Z. Hu, C. F. Chang, C. Y. Kuo, W. Schmidt, A. Piovano, T. W. Pi, O. Sobolev, D. I. Khomskii, L. H. Tjeng, and A. C. Komarek, Nat. Commun. 9, 43 (2018), arXiv: 1705.02589.

    Article  ADS  Google Scholar 

  23. J. Zhang, D. Phelan, A. S. Botana, Y. S. Chen, H. Zheng, M. Krogstad, S. G. Wang, Y. Qiu, J. A. Rodriguez-Rivera, R. Osborn, S. Rosenkranz, M. R. Norman, and J. F. Mitchell, Nat. Commun. 11, 6003 (2020), arXiv: 2004.07897.

    Article  ADS  Google Scholar 

  24. J. L. García-Muñoz, J. Rodríguez-Carvajal, P. Lacorre, and J. B. Torrance, Phys. Rev. B 46, 4414 (1992).

    Article  ADS  Google Scholar 

  25. J. Zhang, Y. S. Chen, D. Phelan, H. Zheng, M. R. Norman, and J. F. Mitchell, Proc. Natl. Acad. Sci. USA 113, 8945 (2016), arXiv: 1601.03711.

    Article  ADS  Google Scholar 

  26. J. Zhang, D. M. Pajerowski, A. S. Botana, H. Zheng, L. Harriger, J. Rodriguez-Rivera, J. P. C. Ruff, N. J. Schreiber, B. Wang, Y. S. Chen, W. C. Chen, M. R. Norman, S. Rosenkranz, J. F. Mitchell, and D. Phelan, Phys. Rev. Lett. 122, 247201 (2019), arXiv: 1903.03246.

    Article  ADS  Google Scholar 

  27. K. Sreedhar, M. McElfresh, D. Perry, D. Kim, P. Metcalf, and J. M. Honig, J. Solid State Chem. 110, 208 (1994).

    Article  ADS  Google Scholar 

  28. Z. Zhang, M. Greenblatt, and J. B. Goodenough, J. Solid State Chem. 108, 402 (1994).

    Article  ADS  Google Scholar 

  29. S. Taniguchi, T. Nishikawa, Y. Yasui, Y. Kobayashi, J. Takeda, S. Shamoto, and M. Sato, J. Phys. Soc. Jpn. 64, 1644 (1995).

    Article  ADS  Google Scholar 

  30. Y. Kobayashi, S. Taniguchi, M. Kasai, M. Sato, T. Nishioka, and M. Kontani, J. Phys. Soc. Jpn. 65, 3978 (1996).

    Article  ADS  Google Scholar 

  31. C. D. Ling, D. N. Argyriou, G. Wu, and J. J. Neumeier, J. Solid State Chem. 152, 517 (1999).

    Article  ADS  Google Scholar 

  32. Z. Zhang, and M. Greenblatt, J. Solid State Chem. 117, 236 (1995).

    Article  ADS  Google Scholar 

  33. X. Fan, and H. H. Wen, J. Phys.-Condens. Matter 33, 075503 (2020).

    Article  ADS  Google Scholar 

  34. G. Wu, J. J. Neumeier, and M. F. Hundley, Phys. Rev. B 63, 245120 (2001).

    Article  ADS  Google Scholar 

  35. D. K. Seo, W. Liang, M. H. Whangbo, Z. Zhang, and M. Greenblatt, Inorg. Chem. 35, 6396 (1996).

    Article  Google Scholar 

  36. A. S. Botana, V. Pardo, W. E. Pickett, and M. R. Norman, Phys. Rev. B 94, 081105 (2016), arXiv: 1604.06326.

    Article  ADS  Google Scholar 

  37. V. V. Poltavets, M. Greenblatt, G. H. Fecher, and C. Felser, Phys. Rev. Lett. 102, 046405 (2009).

    Article  ADS  Google Scholar 

  38. N. Roberts-Warren, J. Crocker, A. P. Dioguardi, K. R. Shirer, V. V. Poltavets, M. Greenblatt, P. Klavins, and N. J. Curro, Phys. Rev. B 88, 075124 (2013), arXiv: 1308.1322.

    Article  ADS  Google Scholar 

  39. W. Cai, H. Sun, W. Xia, C. Wu, Y. Liu, H. Liu, Y. Gong, D. X. Yao, Y. Guo, and M. Wang, Phys. Rev. B 102, 144525 (2020), arXiv: 1912.05166.

    Article  ADS  Google Scholar 

  40. H. Sun, C. Chen, Y. Hou, W. Wang, Y. Gong, M. Huo, L. Li, J. Yu, W. Cai, N. Liu, R. Wu, D. X. Yao, and M. Wang, Sci. China-Phys. Mech. Astron. 64, 118211 (2021), arXiv: 2104.09412.

    Article  ADS  Google Scholar 

  41. L. Li, X. Hu, Z. Liu, J. Yu, B. Cheng, S. Deng, L. He, K. Cao, D. X. Yao, and M. Wang, Sci. China-Phys. Mech. Astron. 64, 287412 (2021), arXiv: 2105.09556.

    Article  ADS  Google Scholar 

  42. V. V. Poltavets, K. A. Lokshin, S. Dikmen, M. Croft, T. Egarai, and M. Greenblatt, J. Am. Chem. Soc. 128, 9050 (2006).

    Article  Google Scholar 

  43. L. Qiao, and X. Bi, Europhys. Lett. 93, 57002 (2011).

    Article  ADS  Google Scholar 

  44. Y. Liu, P. Liu, W. Qin, X. Wu, and G. Yang, Electrochim. Acta 297, 623 (2019).

    Article  Google Scholar 

  45. H. Chen, Z. Wu, Y. Zhong, T. Chen, X. Liu, J. Qu, W. Xiang, J. Li, X. Chen, X. Guo, and B. Zhong, Electrochim. Acta 308, 64 (2019).

    Article  Google Scholar 

  46. F. Rivadulla, J. S. Zhou, and J. B. Goodenough, Phys. Rev. B 67, 165110 (2003), arXiv: cond-mat/0302426.

    Article  ADS  Google Scholar 

  47. C. Liu, V. F. C. Humbert, T. M. Bretz-Sullivan, G. Wang, D. Hong, F. Wrobel, J. Zhang, J. D. Hoffman, J. E. Pearson, J. S. Jiang, C. Chang, A. Suslov, N. Mason, M. R. Norman, and A. Bhattacharya, Nat. Commun. 11, 1402 (2020), arXiv: 2002.04159.

    Article  ADS  Google Scholar 

  48. L. Li, N. Narayanan, S. Jin, J. Yu, Z. Liu, H. Sun, C. W. Wang, V. K. Peterson, Y. Liu, S. Danilkin, D. X. Yao, D. Yu, and M. Wang, Phys. Rev. B 102, 094413 (2020), arXiv: 2006.03356.

    Article  ADS  Google Scholar 

  49. L. Ortega-San Martin, J. P. Chapman, L. Lezama, J. Sánchez Marcos, J. Rodríguez-Fernández, M. I. Arriortua, and T. Rojo, Eur. J. Inorg. Chem. 2006(7), 1362 (2006).

    Article  Google Scholar 

  50. K. P. Rajeev, G. V. Shivashankar, and A. K. Raychaudhuri, Solid State Commun. 79, 591 (1991).

    Article  ADS  Google Scholar 

  51. C. H. Chen, S. W. Cheong, and A. S. Cooper, Phys. Rev. Lett. 71, 2461 (1993).

    Article  ADS  Google Scholar 

  52. S. H. Lee, and S. W. Cheong, Phys. Rev. Lett. 79, 2514 (1997), arXiv: cond-mat/9706110.

    Article  ADS  Google Scholar 

  53. R. Zhong, B. L. Winn, G. Gu, D. Reznik, and J. M. Tranquada, Phys. Rev. Lett. 118, 177601 (2017), arXiv: 1608.04799.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hualei Sun or Meng Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12174454, 11904414, 11904416, and U2130101), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021B1515120015), the Guangzhou Basic and Applied Basic Research Foundation (Grant No. 202201011123), and the National Key Research and Development Program of China (Grant Nos. 2019YFA0705702, 2020YFA0406003, 2021YFA1400401, and 2021YFA0718900).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Sun, H., Huo, M. et al. Evidence for charge and spin density waves in single crystals of La3Ni2O7 and La3Ni2O6. Sci. China Phys. Mech. Astron. 66, 217411 (2023). https://doi.org/10.1007/s11433-022-1962-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1962-4

Navigation