Skip to main content
Log in

Three-dimensional ultrasound subwavelength arbitrary focusing with broadband sparse metalens

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Ultrasound focusing in three-dimensional (3D) space is of crucial and enduring significance in a variety of biomedical and industrial applications. Conventional ultrasound focusing based on active phase array or passive geometry of bulky size is unable to realize the 3D arbitrary focusing with subwavelength resolution. Acoustic metamaterial of complex deep-subwavelength microstructure has facilitated the advanced airborne-sound-focusing but is inevitably not applicable for underwater ultrasound, restricted by the law between the multi-modes coupling/thermal viscosity and the feature size of the structure. Here, we aim to circumvent the restriction by increasing the feature size of the metamaterial while keeping the compact overall geometry, and realize the robust subwavelength ultrasound focusing with the sparse metalens of the wavelength-scale meta-atom. We theoretically propose and demonstrate numerically and experimentally the broadband arbitrary ultrasound focusing in 3D space. The axial and off-axis ultrasound focusing with the subwavelength resolution (FWHM<0.58λ) are achieved by the spatially sparse and compact metalens within one-octave bandwidth. With advantages of 3D freewheeling focusing, subwavelength resolution, spatial sparsity, geometric simplicity, and broadband, the sparse metalens would offer more initiatives to advanced researches in ultrasound focusing and empower applications such as precise biomedical imaging and therapy, nondestructive evaluation, integrated and multiplexed ultrasound devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. T. Clement, and K. Hynynen, Phys. Med. Biol. 47, 1219 (2002).

    Article  Google Scholar 

  2. S. Chatillon, G. Cattiaux, M. Serre, and O. Roy, Ultrasonics 38, 131 (2000).

    Article  Google Scholar 

  3. S. W. Shin, A. R. Qureshi, J. Y. Lee, and C. B. Yun, Smart Mater. Struct. 17, 055002 (2008).

    Article  ADS  Google Scholar 

  4. C. Mougenot, M. O. Köhler, J. Enholm, B. Quesson, and C. Moonen, Med. Phys. 38, 272 (2011).

    Article  Google Scholar 

  5. P. Y. Chen, H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, L. A. Lyu, I. C. Tseng, L. Y. Feng, H. C. Tsai, S. M. Chen, Y. J. Lu, J. J. Wang, T. C. Yen, Y. H. Ma, T. Wu, J. P. Chen, J. I. Chuang, J. W. Shin, C. Hsueh, and K. C. Wei, Neuro-Oncology 12, 1050 (2010).

    Article  Google Scholar 

  6. R. L. King, J. R. Brown, and K. B. Pauly, Ultrasound Med. Biol. 40, 1512 (2014).

    Article  Google Scholar 

  7. V. Chaplin, M. A. Phipps, and C. F. Caskey, Phys. Med. Biol. 63, 105016 (2018), arXiv: 1712.07048.

    Article  Google Scholar 

  8. W. Legon, T. F. Sato, A. Opitz, J. Mueller, A. Barbour, A. Williams, and W. J. Tyler, Nat. Neurosci. 17, 322 (2014).

    Article  Google Scholar 

  9. D. M. Panczykowski, E. A. Monaco III, and R. M. Friedlander, Neurosurgery 74, N8 (2014).

    Article  Google Scholar 

  10. L. R. Gavrilov, and J. W. Hand, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 47, 125 (2000).

    Article  Google Scholar 

  11. J. W. Hand, A. Shaw, N. Sadhoo, S. Rajagopal, R. J. Dickinson, and L. R. Gavrilov, Phys. Med. Biol. 54, 5675 (2009).

    Article  Google Scholar 

  12. D. C. Calvo, A. L. Thangawng, M. Nicholas, and C. N. Layman, Appl. Phys. Lett. 107, 014103 (2015).

    Article  ADS  Google Scholar 

  13. C. Rubio, J. M. Fuster, S. Castiñeira-Ibáñez, A. Uris, F. Belmar, and P. Candelas, Sensors 17, 1690 (2017).

    Article  ADS  Google Scholar 

  14. Z. Liang, and J. Li, Phys. Rev. Lett. 108, 114301 (2012).

    Article  ADS  Google Scholar 

  15. Y. Li, X. Jiang, R. Li, B. Liang, X. Zou, L. Yin, and J. Cheng, Phys. Rev. Appl. 2, 064002 (2014), arXiv: 1407.1138.

    Article  ADS  Google Scholar 

  16. Y. Li, X. Jiang, B. Liang, J. Cheng, and L. Zhang, Phys. Rev. Appl. 4, 024003 (2015).

    Article  ADS  Google Scholar 

  17. G. Ma, and P. Sheng, Sci. Adv. 2, e1501595 (2016).

    Article  ADS  Google Scholar 

  18. B. Assouar, B. Liang, Y. Wu, Y. Li, J. C. Cheng, and Y. Jing, Nat. Rev. Mater. 3, 460 (2018).

    Article  ADS  Google Scholar 

  19. S. Zhang, L. Yin, and N. Fang, Phys. Rev. Lett. 102, 194301 (2009).

    Article  ADS  Google Scholar 

  20. J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, Nat. Mater. 8, 931 (2009).

    Article  ADS  Google Scholar 

  21. Y. Li, B. Liang, X. Tao, X. Zhu, X. Zou, and J. Cheng, Appl. Phys. Lett. 101, 233508 (2012).

    Article  ADS  Google Scholar 

  22. N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, Nature 525, 77 (2015).

    Article  ADS  Google Scholar 

  23. J. Zhao, H. Ye, K. Huang, Z. N. Chen, B. Li, and C.-W. Qiu, Sci. Rep. 4, 6275 (2014).

    Google Scholar 

  24. W. Wang, Y. Xie, A. Konneker, B. I. Popa, and S. A. Cummer, Appl. Phys. Lett. 105, 101904 (2014).

    Article  ADS  Google Scholar 

  25. S. Qi, Y. Li, and B. Assouar, Phys. Rev. Appl. 7, 054006 (2017).

    Article  ADS  Google Scholar 

  26. P. Peng, B. Xiao, and Y. Wu, Phys. Lett. A 378, 3389 (2014).

    Article  ADS  Google Scholar 

  27. X. D. Fan, Y. F. Zhu, B. Liang, J. Yang, and J. C. Cheng, Appl. Phys. Lett. 109, 243501 (2016).

    Article  ADS  Google Scholar 

  28. W. Li, F. Meng, and X. Huang, Appl. Phys. Lett. 117, 021901 (2020).

    Article  ADS  Google Scholar 

  29. X. Jiang, Y. Li, and L. Zhang, J. Acoust. Soc. Am. 141, EL363 (2017).

    Article  ADS  Google Scholar 

  30. T. P. Martin, C. J. Naify, E. A. Skerritt, C. N. Layman, M. Nicholas, D. C. Calvo, G. J. Orris, D. Torrent, and J. Sánchez-Dehesa, Phys. Rev. Appl. 4, 034003 (2015), arXiv: 1506.05140.

    Article  ADS  Google Scholar 

  31. Z. Lin, X. Guo, J. Tu, J. Cheng, J. Wu, P. Huang, and D. Zhang, Appl. Phys. Lett. 107, 113505 (2015).

    Article  ADS  Google Scholar 

  32. C. Li, Y. Yang, X. Guo, J. Tu, P. Huang, F. Li, and D. Zhang, Appl. Phys. Lett. 111, 053701 (2017).

    Article  ADS  Google Scholar 

  33. J. Chen, J. Rao, D. Lisevych, and Z. Fan, Appl. Phys. Lett. 114, 104101 (2019).

    Article  ADS  Google Scholar 

  34. J. P. Xia, and H. X. Sun, Appl. Phys. Lett. 106, 063505 (2015).

    Article  ADS  Google Scholar 

  35. Y. X. Shen, Y. G. Peng, F. Cai, K. Huang, D. G. Zhao, C. W. Qiu, H. Zheng, and X. F. Zhu, Nat. Commun. 10, 3411 (2019).

    Article  ADS  Google Scholar 

  36. X. Jiang, Y. Li, D. Ta, and W. Wang, Phys. Rev. B 102, 064308 (2020).

    Article  ADS  Google Scholar 

  37. Y. Shen, X. Zhu, F. Cai, T. Ma, F. Li, X. Xia, Y. Li, C. Wang, and H. Zheng, Phys. Rev. Appl. 11, 034009 (2019).

    Article  ADS  Google Scholar 

  38. X. Jiang, B. Liang, J. Yang, J. Yang, and J. Cheng, J. Appl. Phys. 123, 091717 (2018).

    Article  ADS  Google Scholar 

  39. J. Xia, X. Zhang, H. Sun, S. Yuan, J. Qian, and Y. Ge, Phys. Rev. Appl. 10, 014016 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Jiang, DeAn Ta or Cheng-Wei Qiu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11904055, 12034005, and 11827808), the STCSM Science and Technology Innovation Plan of Shanghai Science and Technology Commission (Grant Nos. 20ZR1404200, and 21JC1400300), the Shanghai Chenguang Program (Grant No. 20CG02), the Program of Shanghai Academic Research Leader (Grant No. 19XD1400500), and the Independent Research Project from State Key Laboratory of ASIC and System (Grant No. 2021MS007).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., He, J., Zhang, C. et al. Three-dimensional ultrasound subwavelength arbitrary focusing with broadband sparse metalens. Sci. China Phys. Mech. Astron. 65, 224311 (2022). https://doi.org/10.1007/s11433-021-1784-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1784-3

Keywords

Navigation