Skip to main content
Log in

All-silicon chiral metasurfaces and wavefront shaping assisted by interference

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Chiral metasurfaces have different electromagnetic responses with circularly polarized lights, showing as circular dichroism and optical activity. Here, a novel kind of all-silicon chiral metasurface is proposed by introducing destructive interference between achiral meta-atoms. The maximum value of circular dichroism spectra can reach 0.49. By adding an antireflective layer at the side of the silicon substrate, the maximum circular dichroism reaches 0.54. What is more, the bandwidth of circular dichroism greater than 0.4 reaches 0.15 THz. Two samples are fabricated to verify the feasibility of this scheme, and the experimental results are in good agreement with the simulations. In addition, the proposed scheme can also be used to generate various interesting functions, such as beam control and vortex generator. This flexible and efficient implementation solution of chiral metasurface can bring new ideas to the development of chiral devices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. T. B. Kelvin, Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light (Clay and Sons, London, 1904).

    MATH  Google Scholar 

  2. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, Cambridge, 2009).

    Google Scholar 

  3. J. C. Bose, and R. J. Strutt, Proc. R. Soc. London, 63, 146 (1898).

    Article  Google Scholar 

  4. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, Science 325, 1513 (2009).

    Article  ADS  Google Scholar 

  5. Z. Y. Yang, M. Zhao, P. X. Lu, and Y. F. Lu, Opt. Lett. 35, 2588 (2010).

    Article  ADS  Google Scholar 

  6. Z. Yang, M. Zhao, and P. Lu, Opt. Express 19, 4255 (2011).

    Article  ADS  Google Scholar 

  7. J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, Appl. Phys. Lett. 100, 101109 (2012).

    Article  ADS  Google Scholar 

  8. K. Dietrich, C. Menzel, D. Lehr, O. Puffky, U. Hübner, T. Pertsch, A. Tünnermann, and E. B. Kley, Appl. Phys. Lett. 104, 193107 (2014).

    Article  ADS  Google Scholar 

  9. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, Phys. Rev. Lett. 97, 167401 (2006), arXiv: physics/0604234.

    Article  ADS  Google Scholar 

  10. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, Opt. Lett. 34, 3047 (2009).

    Article  ADS  Google Scholar 

  11. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 10, 2075 (2010).

    Article  ADS  Google Scholar 

  12. G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, Nano Lett. 15, 5739 (2015).

    Article  ADS  Google Scholar 

  13. S. Zanotto, G. Mazzamuto, F. Riboli, G. Biasiol, G. C. La Rocca, A. Tredicucci, and A. Pitanti, Nanophotonics 8, 2291 (2019), arXiv: 1907.07468.

    Article  Google Scholar 

  14. X. Dong, X. Luo, Y. Zhou, Y. Lu, F. Hu, X. Xu, and G. Li, Opt. Express 28, 30675 (2020).

    Article  ADS  Google Scholar 

  15. E. Plum, V. A. Fedotov, and N. I. Zheludev, Appl. Phys. Lett. 93, 191911 (2008), arXiv: 0807.0523.

    Article  ADS  Google Scholar 

  16. W. C. Bunn, Chemical Crystallography (Oxford University Press, New York, 1945).

    Google Scholar 

  17. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, Phys. Rev. Lett. 102, 113902 (2009).

    Article  ADS  Google Scholar 

  18. E. Plum, V. A. Fedotov, and N. I. Zheludev, Appl. Phys. Lett. 108, 141905 (2016).

    Article  ADS  Google Scholar 

  19. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, Phys. Rev. B 80, 153104 (2009), arXiv: 0908.2524.

    Article  ADS  Google Scholar 

  20. R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, Opt. Express 18, 13425 (2010), arXiv: 1006.0322.

    Article  ADS  Google Scholar 

  21. T. Cao, C. Wei, and Y. Li, Opt. Mater. Express 6, 303 (2016).

    Article  ADS  Google Scholar 

  22. S. Zhou, P. Lai, G. Dong, P. Li, Y. Li, Z. Zhu, C. Guan, and J. Shi, Opt. Express 27, 15359 (2019).

    Article  ADS  Google Scholar 

  23. S. Yang, Y. Li, X. Chen, Q. Yang, J. Han, and W. Zhang, Opt. Lett. 45, 6146 (2020).

    Article  ADS  Google Scholar 

  24. F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, Adv. Funct. Mater. 27, 1704295 (2017).

    Article  Google Scholar 

  25. A. S. Rana, I. Kim, M. A. Ansari, M. S. Anwar, M. Saleem, T. Tauqeer, A. Danner, M. Zubair, M. Q. Mehmood, and J. Rho, ACS Appl. Mater. Interf. 12, 48899 (2020).

    Article  Google Scholar 

  26. C. Zheng, J. Li, G. Wang, J. Li, S. Wang, M. Li, H. Zhao, Z. Yue, Y. Zhang, Y. Zhang, and J. Yao, Nanophotonics 10, 1347 (2021).

    Article  Google Scholar 

  27. J. Li, C. Zheng, G. Wang, J. Li, H. Zhao, Y. Yang, Z. Zhang, M. Yang, L. Wu, J. Li, Y. Zhang, Y. Zhang, and J. Yao, Photon. Res. 9, 567 (2021).

    Article  Google Scholar 

  28. F. Zhang, M. Pu, X. Li, X. Ma, Y. Guo, P. Gao, H. Yu, M. Gu, and X. Luo, Adv. Mater. 33, e2008157 (2021).

    Article  Google Scholar 

  29. M. Liu, P. Huo, W. Zhu, C. Zhang, S. Zhang, M. Song, S. Zhang, Q. Zhou, L. Chen, H. J. Lezec, A. Agrawal, Y. Lu, and T. Xu, Nat. Commun. 12, 2230 (2021).

    Article  ADS  Google Scholar 

  30. M. Liu, W. Zhu, P. Huo, L. Feng, M. Song, C. Zhang, L. Chen, H. J. Lezec, Y. Lu, A. Agrawal, and T. Xu, Light: Sci. Appl. 10, 107 (2021).

    Article  ADS  Google Scholar 

  31. J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, Phys. Rev. Lett. 118, 113901 (2017).

    Article  ADS  Google Scholar 

  32. R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, and F. Capasso, Science 358, 896 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  33. C. Zheng, J. Li, S. Wang, J. Li, M. Li, H. Zhao, X. Hao, H. Zang, Y. Zhang, and J. Yao, Appl. Phys. Lett. 118, 051101 (2021).

    Article  ADS  Google Scholar 

  34. H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, Adv. Opt. Mater. 6, 1700773 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yating Zhang or Jianquan Yao.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61675147, 61735010, and 91838301), National Key Research and Development Program of China (Grant No. 2017YFA0700202), Basic Research Program of Shenzhen (Grant No. JCYJ20170412154447469), and Program for Science & Technology Innovation Talents of Henan Province (Grant No. 202102310001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Li, J., Li, J. et al. All-silicon chiral metasurfaces and wavefront shaping assisted by interference. Sci. China Phys. Mech. Astron. 64, 114212 (2021). https://doi.org/10.1007/s11433-021-1768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1768-0

PACS number(s)

Navigation