Skip to main content
Log in

Rate compatible reconciliation for continuous-variable quantum key distribution using Raptor-like LDPC codes

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In the practical continuous-variable quantum key distribution (CV-QKD) system, the postprocessing process, particularly the error correction part, significantly impacts the system performance. Multi-edge type low-density parity-check (MET-LDPC) codes are suitable for CV-QKD systems because of their Shannon-limit-approaching performance at a low signal-to-noise ratio (SNR). However, the process of designing a low-rate MET-LDPC code with good performance is extremely complicated. Thus, we introduce Raptor-like LDPC (RL-LDPC) codes into the CV-QKD system, exhibiting both the rate compatible property of the Raptor code and capacity-approaching performance of MET-LDPC codes. Moreover, this technique can significantly reduce the cost of constructing a new matrix. We design the RL-LDPC matrix with a code rate of 0.02 and easily and effectively adjust this rate from 0.016 to 0.034. Simulation results show that we can achieve more than 98% reconciliation efficiency in a range of code rate variation using only one RL-LDPC code that can support high-speed decoding with an SNR less than −16.45 dB. This code allows the system to maintain a high key extraction rate under various SNRs, paving the way for practical applications of CV-QKD systems with different transmission distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. Shamsul Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, Adv. Opt. Photon. 12, 1012 (2020), arXiv: 1906.01645.

    Article  Google Scholar 

  2. F. Xu, X. Ma, Q. Zhang, H. K. Lo, and J. W. Pan, Rev. Mod. Phys. 92, 025002 (2020), arXiv: 1903.09051.

    Article  ADS  Google Scholar 

  3. E. Diamanti, H. K. Lo, B. Qi, and Z. Yuan, npj Quantum Inf. 2, 16025 (2016).

    Article  Google Scholar 

  4. C. H. Bennett, and G. Brassard, in Quantum Cryptography: Public Key Distribution and Coin Tossing: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, 1984), pp. 175–179.

  5. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002), arXiv: quant-ph/0101098.

    Article  ADS  Google Scholar 

  6. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, Rev. Mod. Phys. 81, 1301 (2009), arXiv: 0802.4155.

    Article  ADS  Google Scholar 

  7. F. Grosshans, and P. Grangier, Phys. Rev. Lett. 88, 057902 (2002), arXiv: quant-ph/0109084.

    Article  ADS  Google Scholar 

  8. F. Grosshans, G. van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, Nature 421, 238 (2003), arXiv: quant-ph/0312016.

    Article  ADS  Google Scholar 

  9. S. L. Braunstein, and P. van Loock, Rev. Mod. Phys. 77, 513 (2005), arXiv: quant-ph/0410100.

    Article  ADS  Google Scholar 

  10. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621 (2012), arXiv: 1110.3234.

    Article  ADS  Google Scholar 

  11. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, Nat. Photon. 7, 378 (2013), arXiv: 1210.6216.

    Article  ADS  Google Scholar 

  12. Y. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, Y. Huang, C. Xu, X. Zhang, Z. Wang, M. Li, X. Zhang, Z. Zheng, B. Chu, X. Gao, N. Meng, W. Cai, Z. Wang, G. Wang, S. Yu, and H. Guo, Quantum Sci. Technol. 4, 035006 (2019).

    Article  ADS  Google Scholar 

  13. Y. Zhang, Z. Chen, S. Pirandola, X. Wang, C. Zhou, B. Chu, Y. Zhao, B. Xu, S. Yu, and H. Guo, Phys. Rev. Lett. 125, 010502 (2020), arXiv: 2001.02555.

    Article  ADS  Google Scholar 

  14. H. Guo, Z. Li, S. Yu, and Y. Zhang, Fundam. Res. 1, 96 (2021).

    Article  Google Scholar 

  15. P. Jouguet, D. Elkouss, and S. Kunz-Jacques, Phys. Rev. A 90, 042329 (2014), arXiv: 1406.1050.

    Article  ADS  Google Scholar 

  16. A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, Phys. Rev. A 77, 042325 (2008), arXiv: 0712.3823.

    Article  ADS  Google Scholar 

  17. P. Jouguet, S. Kunz-Jacques, and A. Leverrier, Phys. Rev. A 84, 062317 (2011), arXiv: 1110.0100.

    Article  ADS  Google Scholar 

  18. S. M. Zhao, Z. G. Shen, H. Xiao, and L. Wang, Sci. China-Phys. Mech. Astron. 61, 090323 (2018).

    Article  Google Scholar 

  19. Z. L. Bai, X. Y. Wang, S. S. Yang, and Y. M. Li, Sci. China-Phys. Mech. Astron. 59, 614201 (2016).

    Article  Google Scholar 

  20. M. Milicevic, C. Feng, L. M. Zhang, and P. G. Gulak, npj Quantum Inf. 4, 21 (2018), arXiv: 1702.07740.

    Article  ADS  Google Scholar 

  21. C. Zhou, X. Wang, Y. Zhang, Z. Zhang, S. Yu, and H. Guo, Phys. Rev. Appl. 12, 054013 (2019), arXiv: 1908.04526.

    Article  ADS  Google Scholar 

  22. T. Richardson, and R. Urbanke, in Workshop honoring Prof. Bob McEliece on his 60th birthday (California Institute of Technology, Pasadena, California, 2002), pp. 24–25.

    Google Scholar 

  23. A. Leverrier, and P. Grangier, Phys. Rev. Lett. 102, 180504 (2009), arXiv: 0812.4246.

    Article  ADS  Google Scholar 

  24. X. Wang, Y. Zhang, S. Yu, B. Xu, Z. Li, and H. Guo, Quantum Inf. Comput. 17, 1123 (2017).

    MathSciNet  Google Scholar 

  25. S. S. Yang, Z. G. Lu, and Y. M. Li, J. Lightwave Technol. 38, 3935 (2020).

    Article  ADS  Google Scholar 

  26. A. Rakita, N. Nikolić, M. Mildner, J. Matiasek, and A. Elbe-Bürger, Sci. Rep. 10, 1 (2020).

    Article  ADS  Google Scholar 

  27. S. I. Park, Y. Wu, H. M. Kim, N. Hur, and J. Kim, IEEE Trans. Broadcast. 60, 239 (2014).

    Article  Google Scholar 

  28. T. Y. Chen, K. Vakilinia, D. Divsalar, and R. D. Wesel, IEEE Trans. Commun. 63, 1522 (2015).

    Article  Google Scholar 

  29. J. Liu, and R. C. de Lamare, AEU-Int. J. Electron. Commun. 69, 1582 (2015).

    Article  Google Scholar 

  30. A. Shokrollahi, IEEE Trans. Inform. Theor. 52, 2551 (2006).

    Article  Google Scholar 

  31. A. Leverrier, F. Grosshans, and P. Grangier, Phys. Rev. A 81, 062343 (2010), arXiv: 1005.0339.

    Article  ADS  Google Scholar 

  32. P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, Phys. Rev. A 86, 032309 (2012), arXiv: 1206.6357.

    Article  ADS  Google Scholar 

  33. F. Grosshans, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, Quantum Inf. Comput. 3, 535 (2003).

    MathSciNet  Google Scholar 

  34. G. Van Assche, J. Cardinal, and N. J. Cerf, IEEE Trans. Inform. Theor. 50, 394 (2004).

    Article  Google Scholar 

  35. C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, IEEE Trans. Inform. Theor. 41, 1915 (1995).

    Article  Google Scholar 

  36. X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, IEEE Trans. Inform. Theor. 51, 386 (2005).

    Article  Google Scholar 

  37. X. Wang, Y. Zhang, S. Yu, and H. Guo, Sci. Rep. 8, 10543 (2018), arXiv: 1711.01783.

    Article  ADS  Google Scholar 

  38. X. Wang, Y. Zhang, S. Yu, and H. Guo, Quantum Inf. Process. 18, 264 (2019), arXiv: 1806.00173.

    Article  ADS  Google Scholar 

  39. C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, Sci. Rep. 5, 14607 (2015).

    Article  ADS  Google Scholar 

  40. D. Huang, P. Huang, D. Lin, and G. Zeng, Sci. Rep. 6, 19201 (2016).

    Article  ADS  Google Scholar 

  41. S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Nat. Commun. 8, 15043 (2017), arXiv: 1512.04945.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiangYu Wang or ZiYang Chen.

Additional information

This work was supported by the Key Program of National Natural Science Foundation of China (Grant No. 61531003), the National Natural Science Foundation of China (Grant No. 62001041), and the Fund of State Key Laboratory of Information Photonics and Optical Communications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Wang, X., Zhang, Z. et al. Rate compatible reconciliation for continuous-variable quantum key distribution using Raptor-like LDPC codes. Sci. China Phys. Mech. Astron. 64, 260311 (2021). https://doi.org/10.1007/s11433-021-1688-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1688-4

PACS number(s)

Navigation