Skip to main content
Log in

Charge density wave and weak Kondo effect in a Dirac semimetal CeSbTe

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Using angle-resolved photoemission spectroscopy (ARPES) and low-energy electron diffraction (LEED), together with density-functional theory (DFT) calculation, we report the formation of charge density wave (CDW) and its interplay with the Kondo effect and topological states in CeSbTe. The observed Fermi surface (FS) exhibits parallel segments that can be well connected by the observed CDW ordering vector, indicating that the CDW order is driven by the electron-phonon coupling (EPC) as a result of the nested FS. The CDW gap is large (∼0.3 eV) and momentum-dependent, which naturally explains the robust CDW order up to high temperatures. The gap opening leads to a reduced density of states (DOS) near the Fermi level (EF), which correspondingly suppresses the many-body Kondo effect, leading to very localized 4f electrons at 20 K and above. The topological Dirac cone at the X point is found to remain gapless inside the CDW phase. Our results provide evidence for the competition between CDW and the Kondo effect in a Kondo lattice system. The robust CDW order in CeSbTe and related compounds provide an opportunity to search for the long-sought-after axionic insulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kiss, T. Yokoya, A. Chainani, S. Shin, T. Hanaguri, M. Nohara, and H. Takagi, Nat. Phys. 3, 720 (2007).

    Article  Google Scholar 

  2. C. W. Chen, J. Choe, and E. Morosan, Rep. Prog. Phys. 79, 084505 (2016).

    Article  ADS  Google Scholar 

  3. J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. V. Zimmermann, E. M. Forgan, and S. M. Hayden, Nat. Phys. 8, 871 (2012), arXiv: 1206.4333.

    Article  Google Scholar 

  4. E. A. Nowadnick, S. Johnston, B. Moritz, R. T. Scalettar, and T. P. Devereaux, Phys. Rev. Lett. 109, 246404 (2012), arXiv: 1209.0829.

    Article  ADS  Google Scholar 

  5. W. Kohn, Phys. Rev. Lett. 19, 8 (1967).

    Article  Google Scholar 

  6. A. Kogar, M. S. Rak, S. Vig, A. A. Husain, F. Flicker, Y. I. Joe, L. Venema, G. J. MacDougall, T. C. Chiang, E. Fradkin, J. van Wezel, and P. Abbamonte, Science 358, 1314 (2017), arXiv: 1611.04217.

    Article  ADS  Google Scholar 

  7. T. E. Kidd, T. Miller, M. Y. Chou, and T. C. Chiang, Phys. Rev. Lett. 88, 226402 (2002).

    Article  ADS  Google Scholar 

  8. K. Rossnagel, J. Phys.-Condens. Matter 23, 213001 (2011).

    Article  ADS  Google Scholar 

  9. X. Zhu, Y. Cao, J. Zhang, E. W. Plummer, and J. Guo, Proc. Natl. Acad. Sci. USA 112, 2367 (2015), arXiv: 1503.01858.

    Article  ADS  Google Scholar 

  10. D. W. Shen, B. P. Xie, J. F. Zhao, L. X. Yang, L. Fang, J. Shi, R. H. He, D. H. Lu, H. H. Wen, and D. L. Feng, Phys. Rev. Lett. 99, 216404 (2007), arXiv: cond-mat/0612064.

    Article  ADS  Google Scholar 

  11. Y. Huang, D. N. Sheng, and C. S. Ting, Phys. Rev. B 99, 195109 (2019), arXiv: 1901.05643.

    Article  ADS  Google Scholar 

  12. M. Inamdar, and S. Ramakrishnan, Phys. Rev. B 77, 113103 (2008).

    Article  ADS  Google Scholar 

  13. P. Coleman, Heavy fermions: Electrons at the edge of magnetism, in: Handbook of Magnetism and Advanced Magnetic Materials, vol. 1 (Wiley, New York, 2007).

    Google Scholar 

  14. A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  15. X. Zhang, Q. Gu, H. Sun, T. Luo, Y. Liu, Y. Chen, Z. Shao, Z. Zhang, S. Li, Y. Sun, Y. Li, X. Li, S. Xue, J. Ge, Y. Xing, R. Comin, Z. Zhu, P. Gao, B. Yan, J. Feng, M. Pan, and J. Wang, Phys. Rev. B 102, 035125 (2020), arXiv: 2006.16786.

    Article  ADS  Google Scholar 

  16. Y. Li, Y. Wu, C. Xu, N. Liu, J. Ma, B. Lv, G. Yao, Y. Liu, H. Bai, X. Yang, L. Qiao, M. Li, L. Li, H. Xing, Y. Huang, J. Ma, M. Shi, C. Cao, Y. Liu, C. Liu, J. Jia, and Z.-A. Xu, arXiv: 2004.03441.

  17. H. Weng, X. Dai, and Z. Fang, J. Phys.-Condens. Matter 28, 303001 (2016), arXiv: 1603.04744.

    Article  Google Scholar 

  18. Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Science 343, 864 (2014), arXiv: 1310.0391.

    Article  ADS  Google Scholar 

  19. Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).

    Article  ADS  Google Scholar 

  20. B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015), arXiv: 1502.04684.

    Google Scholar 

  21. S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, Science 347, 294 (2015).

    Article  ADS  Google Scholar 

  22. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011), arXiv: 1007.0016.

    Article  ADS  Google Scholar 

  23. H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015), arXiv: 1501.00060.

    Google Scholar 

  24. L. X. Yang, Z. K. Liu, Y. Sun, H. Peng, H. F. Yang, T. Zhang, B. Zhou, Y. Zhang, Y. F. Guo, M. Rahn, D. Prabhakaran, Z. Hussain, S. K. Mo, C. Felser, B. Yan, and Y. L. Chen, Nat. Phys. 11, 728 (2015).

    Article  Google Scholar 

  25. G. Bian, T. R. Chang, R. Sankar, S. Y. Xu, H. Zheng, T. Neupert, C. K. Chiu, S. M. Huang, G. Chang, I. Belopolski, D. S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B. K. Wang, C. C. Lee, H. T. Jeng, C. Zhang, Z. Yuan, S. Jia, A. Bansil, F. Chou, H. Lin, and M. Z. Hasan, Nat. Commun. 7, 10556 (2016).

    Article  ADS  Google Scholar 

  26. B. Q. Lv, Z. L. Feng, Q. N. Xu, X. Gao, J. Z. Ma, L. Y. Kong, P. Richard, Y. B. Huang, V. N. Strocov, C. Fang, H. M. Weng, Y. G. Shi, T. Qian, and H. Ding, Nature 546, 627 (2017).

    Article  ADS  Google Scholar 

  27. Z. P. Sun, C. Q. Hua, X. L. Liu, Z. T. Liu, M. Ye, S. Qiao, Z. H. Liu, J. S. Liu, Y. F. Guo, Y. H. Lu, and D. W. Shen, Phys. Rev. B 101, 155114 (2020).

    Article  ADS  Google Scholar 

  28. Z. Wang, and S. C. Zhang, Phys. Rev. B 87, 161107 (2013), arXiv: 1207.5234.

    Article  ADS  Google Scholar 

  29. B. Roy, and J. D. Sau, Phys. Rev. B 92, 125141 (2015), arXiv: 1406.4501.

    Article  ADS  Google Scholar 

  30. M. Laubach, C. Platt, R. Thomale, T. Neupert, and S. Rachel, Phys. Rev. B 94, 241102 (2016), arXiv: 1609.02925.

    Article  ADS  Google Scholar 

  31. R. X. Zhang, J. A. Hutasoit, Y. Sun, B. Yan, C. Xu, and C. X. Liu, Phys. Rev. B 93, 041108 (2016), arXiv: 1503.00358.

    Article  ADS  Google Scholar 

  32. J. Gooth, B. Bradlyn, S. Honnali, C. Schindler, N. Kumar, J. Noky, Y. Qi, C. Shekhar, Y. Sun, Z. Wang, B. A. Bernevig, and C. Felser, Nature 575, 315 (2019), arXiv: 1906.04510.

    Article  ADS  Google Scholar 

  33. L. M. Schoop, A. Topp, J. Lippmann, F. Orlandi, L. Müchler, M. G. Vergniory, Y. Sun, A. W. Rost, V. Duppel, M. Krivenkov, S. Sheoran, P. Manuel, A. Varykhalov, B. Yan, R. K. Kremer, C. R. Ast, and B. V. Lotsch, Sci. Adv. 4, eaar2317 (2018), arXiv: 1707.03408.

    Article  ADS  Google Scholar 

  34. L. M. Schoop, M. N. Ali, C. Straßer, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lotsch, and C. R. Ast, Nat. Commun. 7, 11696 (2016), arXiv: 1509.00861.

    Article  ADS  Google Scholar 

  35. M. Neupane, I. Belopolski, M. M. Hosen, D. S. Sanchez, R. Sankar, M. Szlawska, S. Y. Xu, K. Dimitri, N. Dhakal, P. Maldonado, P. M. Oppeneer, D. Kaczorowski, F. Chou, M. Z. Hasan, and T. Durakiewicz, Phys. Rev. B 93, 201104 (2016), arXiv: 1604.00720.

    Article  ADS  Google Scholar 

  36. B. Lv, J. Chen, L. Qiao, J. Ma, X. Yang, M. Li, M. Wang, Q. Tao, and Z. A. Xu, J. Phys.-Condens. Matter 31, 355601 (2019).

    Article  Google Scholar 

  37. L. Petaccia, P. Vilmercati, S. Gorovikov, M. Barnaba, A. Bianco, D. Cocco, C. Masciovecchio, and A. Goldoni, Nucl. Instrum. Methods Phys. Res. Sect. A 606, 780 (2009).

    Article  ADS  Google Scholar 

  38. G. Kresse, and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  39. A. Topp, M. G. Vergniory, M. Krivenkov, A. Varykhalov, F. Rodolakis, J. L. McChesney, B. V. Lotsch, C. R. Ast, and L. M. Schoop, J. Phys. Chem. Solids 128, 296 (2019).

    Article  ADS  Google Scholar 

  40. V. Brouet, W. L. Yang, X. J. Zhou, Z. Hussain, N. Ru, K. Y. Shin, I. R. Fisher, and Z. X. Shen, Phys. Rev. Lett. 93, 126405 (2004), arXiv: cond-mat/0403398.

    Article  ADS  Google Scholar 

  41. V. Brouet, W. L. Yang, X. J. Zhou, Z. Hussain, R. G. Moore, R. He, D. H. Lu, Z. X. Shen, J. Laverock, S. B. Dugdale, N. Ru, and I. R. Fisher, Phys. Rev. B 77, 235104 (2008), arXiv: 0801.2672.

    Article  ADS  Google Scholar 

  42. G. H. Gweon, J. D. Denlinger, J. A. Clack, J. W. Allen, C. G. Olson, E. Dimasi, M. C. Aronson, B. Foran, and S. Lee, Phys. Rev. Lett. 81, 886 (1998).

    Article  ADS  Google Scholar 

  43. K. Y. Shin, V. Brouet, N. Ru, Z. X. Shen, and I. R. Fisher, Phys. Rev. B 72, 085132 (2005).

    Article  ADS  Google Scholar 

  44. D. R. Garcia, G. H. Gweon, S. Y. Zhou, J. Graf, C. M. Jozwiak, M. H. Jung, Y. S. Kwon, and A. Lanzara, Phys. Rev. Lett. 98, 166403 (2007), arXiv: cond-mat/0703535.

    Article  ADS  Google Scholar 

  45. J. S. Kang, D. H. Kim, H. J. Lee, J. Hwang, H. K. Lee, H. D. Kim, B. H. Min, K. E. Lee, Y. S. Kwon, J. W. Kim, K. Kim, B. H. Kim, and B. I. Min, Phys. Rev. B 85, 085104 (2012).

    Article  ADS  Google Scholar 

  46. E. Lee, D. H. Kim, J. D. Denlinger, J. Kim, K. Kim, B. I. Min, B. H. Min, Y. S. Kwon, and J. S. Kang, Phys. Rev. B 91, 125137 (2015).

    Article  ADS  Google Scholar 

  47. J. S. Kang, C. G. Olson, Y. S. Kwon, J. H. Shim, and B. I. Min, Phys. Rev. B 74, 085115 (2006).

    Article  ADS  Google Scholar 

  48. K. E. Lee, C. I. Lee, H. J. Oh, M. A. Jung, B. H. Min, H. J. Im, T. Iizuka, Y. S. Lee, S. Kimura, and Y. S. Kwon, Phys. Rev. B 78, 134408 (2008).

    Article  ADS  Google Scholar 

  49. A. Tomic, Z. Rak, J. P. Veazey, C. D. Malliakas, S. D. Mahanti, M. G. Kanatzidis, and S. H. Tessmer, Phys. Rev. B 79, 085422 (2009), ar-Xiv: 0808.2638.

    Article  ADS  Google Scholar 

  50. J. W. Allen, J. Phys. Soc. Jpn. 74, 34 (2005), arXiv: cond-mat/0502367.

    Article  ADS  Google Scholar 

  51. S. Kirchner, S. Paschen, Q. Chen, S. Wirth, D. Feng, J. D. Thompson, and Q. Si, Rev. Mod. Phys. 92, 011002 (2020).

    Article  ADS  Google Scholar 

  52. S. Jang, R. Kealhofer, C. John, S. Doyle, J. S. Hong, J. H. Shim, Q. Si, O. Erten, J. D. Denlinger, and J. G. Analytis, Sci. Adv. 5, eaat7158 (2019).

    Article  ADS  Google Scholar 

  53. P. Li, Z. Wu, F. Wu, C. Guo, Y. Liu, H. Liu, Z. Sun, M. Shi, F. Rodolakis, J. L. McChesney, C. Cao, H. Yuan, F. Steglich, and Y. Liu, Phys. Rev. B 100, 155110 (2019).

    Article  ADS  Google Scholar 

  54. A. Sekiyama, T. Iwasaki, K. Matsuda, Y. Saitoh, Y. Ônuki, and S. Suga, Nature 403, 396 (2000).

    Article  ADS  Google Scholar 

  55. J. S. Kang, C. G. Olson, Y. S. Kwon, S. W. Han, K. H. Kim, A. Sekiyama, S. Kasai, S. Suga, and B. I. Min, J. Phys.-Condens. Matter 16, 9163 (2004).

    Article  ADS  Google Scholar 

  56. M. M. Hosen, G. Dhakal, K. Dimitri, P. Maldonado, A. Aperis, F. Kabir, C. Sims, P. Riseborough, P. M. Oppeneer, D. Kaczorowski, T. Durakiewicz, and M. Neupane, Sci. Rep. 8, 13283 (2018), arXiv: 1707.05292.

    Article  ADS  Google Scholar 

  57. K. Pandey, R. Basnet, A. Wegner, G. Acharya, M. Nabi, J. Liu, J. Wang, Y. Takahashi, B. Da, and J. Hu, arXiv: 2006.05536.

  58. P. Zhang, P. Richard, T. Qian, Y. M. Xu, X. Dai, and H. Ding, Rev. Sci. Instrum. 82, 043712 (2011), arXiv: 1104.1524.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Cao, Zhu-An Xu or Yang Liu.

Additional information

This work was supported by the National Key R&D Program of the Ministry of Science and Technology of China (Grant Nos. 2016YFA0300203, and 2017YFA0303100), the National Science Foundation of China (Grant Nos. 11674280, and 11774305), and the Science Challenge Program of China. Part of this research used Beam line 03U of the Shanghai Synchrotron Radiation Facility, which was supported by ME2 Project (Grant No. 11227902) from the National Natural Science Foundation of China. We also acknowledge Elettra Sincrotrone Trieste for providing access to its synchrotron radiation facilities. Finally, we would like to thank Dr. Cheng-Maw Cheng, Dr. Pei-Yu Chuang, Dr. Zhengtai Liu, Dr. S. Gonzalez and Dr. G. Di Santo for help in the synchrotron ARPES measurements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Lv, B., Fang, Y. et al. Charge density wave and weak Kondo effect in a Dirac semimetal CeSbTe. Sci. China Phys. Mech. Astron. 64, 237412 (2021). https://doi.org/10.1007/s11433-020-1642-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1642-2

Keywords

Navigation