Skip to main content
Log in

Spin excitations in nickelate superconductors

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Applying a three-band model and the random phase approximation, we theoretically study the spin excitations in nickelate superconductors, which have been newly discovered. The spin excitations were found to be incommensurate in the low energy region. The spin resonance phenomenon emerged as the excitation energy increased. The intensity can be maximized at the incommensurate or commensurate momentum, depending on the out-of-plane momentum. The spin excitations reverted to incommensurate at higher energies. We also discuss the similarities and differences in the spin excitations of nickelate and cuprate superconductors. Our predicted results can be later validated in inelastic neutron scattering experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Lee, N. Nagaosa, and X. G. Wen, Rev. Mod. Phys. 78, 17 (2006).

    ADS  Google Scholar 

  2. Y. B. Liu, Y. Liu, W. H. Jiao, Z. Ren, and G. H. Cao, Sci. China-Phys. Mech. Astron. 61, 127405 (2018), arXiv: 1808.05813.

    ADS  Google Scholar 

  3. J. Yang, T. Oka, Z. Li, H. X. Yang, J. Q. Li, G. F. Chen, and G. Q. Zheng, Sci. China-Phys. Mech. Astron. 61, 117411 (2018), arXiv: 1707.04085.

    ADS  Google Scholar 

  4. A. Bhattacharyya, D. T. Adroja, M. Smidman, and V. K. Anand, Sci. China-Phys. Mech. Astron. 61, 127402 (2018), arXiv: 1811.12677.

    ADS  Google Scholar 

  5. M. Crespin, P. Levitz, and L. Gatineau, J. Chem. Soc. Faraday Trans. 279, 1181 (1983).

    Google Scholar 

  6. M. A. Hayward, M. A. Green, M. J. Rosseinsky, and J. Sloan, J. Am. Chem. Soc. 121, 8843 (1999).

    Google Scholar 

  7. M. A. Hayward, and M. J. Rosseinsky, Solid State Sci. 5, 839 (2003).

    ADS  Google Scholar 

  8. T. Siegrist, S. M. Zahurak, D. W. Murphy, and R. S. Roth, Nature 334, 231 (1988).

    ADS  Google Scholar 

  9. V. I. Anisimov, D. Bukhvalov, and T. M. Rice, Phys. Rev. B 59, 7901 (1999).

    ADS  Google Scholar 

  10. A. Ikeda, T. Manabe, and M. Naito, Physica C 495, 134 (2013).

    ADS  Google Scholar 

  11. A. Ikeda, Y. Krockenberger, H. Irie, M. Naito, and H. Yamamoto, Appl. Phys. Express 9, 061101 (2016).

    ADS  Google Scholar 

  12. K. W. Lee, and W. E. Pickett, Phys. Rev. B 70, 165109 (2004), arXiv: cond-mat/0405570.

    ADS  Google Scholar 

  13. T. Liu, H. Wu, T. Jia, X. Zhang, Z. Zeng, H. Q. Lin, and X. G. Li, AIP Adv. 4, 047132 (2014).

    ADS  Google Scholar 

  14. A. S. Botana, and M. R. Norman, Phys. Rev. Mater. 2, 104803 (2018), arXiv: 1807.05046.

    Google Scholar 

  15. D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley, H. R. Lee, Y. Cui, Y. Hikita, and H. Y. Hwang, Nature 572, 624 (2019).

    ADS  Google Scholar 

  16. A. S. Botana, and M. R. Norman, Phys. Rev. X 10, 011024 (2020).

    Google Scholar 

  17. H. Sakakibara, H. Usui, K. Suzuki, T. Kotani, H. Aoki, and K. Kuroki, arXiv: 1909.00060.

  18. M. Hepting, D. Li, C. J. Jia, H. Lu, E. Paris, Y. Tseng, X. Feng, M. Osada, E. Been, Y. Hikita, Y. D. Chuang, Z. Hussain, K. J. Zhou, A. Nag, M. Garcia-Fernandez, M. Rossi, H. Y. Huang, D. J. Huang, Z. X. Shen, T. Schmitt, H. Y. Hwang, B. Moritz, J. Zaanen, T. P. Devereaux, and W. S. Lee, Nat. Mater. 19, 381 (2020), arXiv: 1909.02678.

    ADS  Google Scholar 

  19. X. Wu, D. Di Sante, T. Schwemmer, W. Hanke, H. Y. Hwang, S. Raghu, and R. Thomale, Phys. Rev. B 101, 060504 (2020), arXiv: 1909.03015.

    ADS  Google Scholar 

  20. Y. Nomura, M. Hirayama, T. Tadano, Y. Yoshimoto, K. Nakamura, and R. Arita, Phys. Rev. B 100, 205138 (2019), arXiv: 1909.03942.

    ADS  Google Scholar 

  21. J. Gao, Z. Wang, C. Fang, and H. Weng, arXiv: 1909.04657.

  22. S. Ryee, H. Yoon, T. J. Kim, M. Y. Jeong, and M. J. Han, Phys. Rev. B 101, 064513 (2020), arXiv: 1909.05824.

    ADS  Google Scholar 

  23. N. Singh, arXiv: 1909.07688.

  24. G. M. Zhang, Y. Yang, and F. C. Zhang, Phys. Rev. B 101, 020501(R) (2020), arXiv: 1909.11845.

    ADS  Google Scholar 

  25. P. Jiang, L. Si, Z. Liao, and Z. Zhong, Phys. Rev. B 100, 201106 (2019).

    ADS  Google Scholar 

  26. L. H. Hu, and C. Wu, Phys. Rev. Res. 1, 032046 (2019), arXiv: 1910.02482.

    Google Scholar 

  27. M. Hirayama, T. Tadano, Y. Nomura, and R. Arita, Phys. Rev. B 101, 075107 (2020), arXiv: 1910.03974.

    ADS  Google Scholar 

  28. F. Bernardini, V. Olevano, and A. Cano, Phys. Rev. Res. 2, 013219 (2020), arXiv: 1910.13269.

    Google Scholar 

  29. Y. Gu, S. Zhu, X. Wang, J. Hu, and H. Chen, arXiv: 1911.00814.

  30. Q. Li, C. He, J. Si, X. Zhu, Y. Zhang, and H. H. Wen, arXiv: 1911.02420.

  31. Y. Fu, L. Wang, H. Cheng, S. Pei, X. Zhou, J. Chen, S. Wang, R. Zhao, W. Jiang, C. Liu, M. Huang, X. Wang, Y. Zhao, D. Yu, F. Ye, S. Wang, and J. W. Mei, arXiv: 1911.03177.

  32. X. R. Zhou, Z. X. Feng, P. X. Qin, H. Yan, S. Hu, H. X. Guo, X. N. Wang, H. J. Wu, X. Zhang, H. Y. Chen, X. P. Qiu, and Z. Q. Liu, Rare Met. 39, 368 (2020).

    Google Scholar 

  33. L. Si, W. Xiao, J. Kaufmann, J. M. Tomczak, Y. Lu, Z. Zhong, and K. Held, Phys. Rev. Lett. 124, 166402 (2020), arXiv: 1911.06917.

    ADS  Google Scholar 

  34. F. Lechermann, Phys. Rev. B 101, 081110 (2020), arXiv: 1911.11521.

    ADS  Google Scholar 

  35. J. Chang, J. Zhao, and Y. Ding, arXiv: 1911.12731.

  36. Z. Liu, Z. Ren, W. Zhu, Z. F. Wang, and J. Yang, npj Quantum Mater. 5, 31 (2020).

    ADS  Google Scholar 

  37. E. F. Talantsev, Results Phys. 17, 103118 (2020), arXiv: 1912.06099.

    Google Scholar 

  38. J. Rossat-Mignod, L. P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, J. Y. Henry, and G. Lapertot, Physica C 185-189, 86 (1991).

    ADS  Google Scholar 

  39. J. M. Tranquada, P. M. Gehring, G. Shirane, S. Shamoto, and M. Sato, Phys. Rev. B 46, 5561 (1992).

    ADS  Google Scholar 

  40. H. A. Mook, P. Dai, S. M. Hayden, G. Aeppli, T. G. Perring, and F. Doğan, Nature 395, 580 (1998).

    ADS  Google Scholar 

  41. S. M. Hayden, H. A. Mook, P. Dai, T. G. Perring, and F. Dogan, Nature 429, 531 (2004).

    ADS  Google Scholar 

  42. P. Bourges, Y. Sidis, H. F. Fong, L. P. Regnault, J. Bossy, A. Ivanov, and B. Keimer, Science 288, 1234 (2000), arXiv: cond-mat/0006086.

    ADS  Google Scholar 

  43. S. Pailhés, Y. Sidis, P. Bourges, V. Hinkov, A. Ivanov, C. Ulrich, L. P. Regnault, and B. Keimer, Phys. Rev. Lett. 93, 167001 (2004), arXiv: cond-mat/0403609.

    ADS  Google Scholar 

  44. L. Chen, C. Bourbonnais, T. Li, and A. M. Tremblay, Phys. Rev. Lett. 66, 369 (1991).

    ADS  Google Scholar 

  45. N. Bulut, and D. J. Scalapino, Phys. Rev. B 47, 3419 (1993).

    ADS  Google Scholar 

  46. N. Bulut, D. J. Scalapino, and S. R. White, Phys. Rev. B 47, 2742 (1993).

    ADS  Google Scholar 

  47. T. Tanamoto, H. Kohno, and H. Fukuyama, J. Phys. Soc. Jpn. 63, 2739 (1994).

    ADS  Google Scholar 

  48. G. Stemmann, C. Pepin, and M. Lavagna, Phys. Rev. B 50, 4075 (1994).

    ADS  Google Scholar 

  49. D. Z. Liu, Y. Zha, and K. Levin, Phys. Rev. Lett. 75, 4130 (1995), arXiv: cond-mat/9504095.

    ADS  Google Scholar 

  50. N. Bulut, and D. J. Scalapino, Phys. Rev. B 53, 5149 (1996).

    ADS  Google Scholar 

  51. J. Brinckmann, and P. A. Lee, Phys. Rev. Lett. 82, 2915 (1999), arXiv: cond-mat/9811038.

    ADS  Google Scholar 

  52. J. X. Li, C. Y. Mou, and T. K. Lee, Phys. Rev. B 62, 640 (2000), arXiv: cond-mat/9912488.

    ADS  Google Scholar 

  53. D. Manske, I. Eremin, and K. H. Bennemann, Phys. Rev. B 63, 054517 (2001), arXiv: cond-mat/0007083.

    ADS  Google Scholar 

  54. T. Zhou, and Z. D. Wang, Phys. Rev. B 76, 094510 (2007), arXiv: 0704.1016.

    ADS  Google Scholar 

  55. T. Zhou, and J. X. Li, Phys. Rev. B 69, 224514 (2004).

    ADS  Google Scholar 

  56. T. Zhou, and J. X. Li, Phys. Rev. B 72, 134512 (2005), arXiv: condmat/0505545.

    ADS  Google Scholar 

  57. K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, Phys. Rev. Lett. 101, 087004 (2008), arXiv: 0803.3325.

    ADS  Google Scholar 

  58. T. A. Maier, S. Graser, D. J. Scalapino, and P. Hirschfeld, Phys. Rev. B 79, 134520 (2009), arXiv: 0903.0008.

    ADS  Google Scholar 

  59. A. F. Kemper, T. A. Maier, S. Graser, H. P. Cheng, P. J. Hirschfeld, and D. J. Scalapino, New J. Phys. 12, 073030 (2010), arXiv: 1003.2777.

    ADS  Google Scholar 

  60. Y. Gao, T. Zhou, C. S. Ting, and W. P. Su, Phys. Rev. B 82, 104520 (2010), arXiv: 1003.2609.

    ADS  Google Scholar 

  61. Y. Gao, Y. Yu, T. Zhou, H. Huang, and Q. H. Wang, Phys. Rev. B 96, 014515 (2017), arXiv: 1704.07509.

    ADS  Google Scholar 

  62. J. X. Li, and Z. D. Wang, Phys. Rev. B 70, 212512 (2004).

    ADS  Google Scholar 

  63. A. V. Chubukov, and L. P. Gor’kov, Phys. Rev. Lett. 101, 147004 (2008).

    ADS  Google Scholar 

  64. B. Vignolle, S. M. Hayden, D. F. McMorrow, H. M. Rønnow, B. Lake, C. D. Frost, and T. G. Perring, Nat. Phys. 3, 163 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Zhou or ZiDan Wang.

Additional information

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301800), the General Research Fund (GRF) (Grant Nos. HKU 173309/16P, and HKU173057/17P), and the Collaborative Research Fund (CRF) (Grant No. C6005-17G) of Hong Kong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Gao, Y. & Wang, Z. Spin excitations in nickelate superconductors. Sci. China Phys. Mech. Astron. 63, 287412 (2020). https://doi.org/10.1007/s11433-020-1578-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1578-3

Navigation