

• News & Views • Editor's Focus February 2020 Vol. 63 No. 2: 221064 https://doi.org/10.1007/s11433-019-1480-x

LHCb gets closer to discovering the second doubly charmed baryon

Marek Karliner^{1*}, and Jonathan L. Rosner^{2*}

¹School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel;
²Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA

Received October 22, 2019; accepted November 20, 2019; published online December 20, 2019

Citation: M. Karliner and J. L. Rosner, LHCb gets closer to discovering the second doubly charmed baryon, Sci. China-Phys. Mech. Astron. 63, 221064 (2020), https://doi.org/10.1007/s11433-019-1480-x

Recently the LHCb Collaboration [1] published the results of a search for the doubly charmed baryon Ξ_{cc}^+ . No significant signal is seen in the mass range from 3.4 to 3.8 GeV. To put this result in context, the Ξ_{cc}^{++} baryon was seen by LHCb in decay modes $\Lambda_c K^- \pi^+ \pi^+$ [2] (2017) and $\Xi_c^+ \pi^+$ [3] (2018). The weighted average of the Ξ_{cc}^{++} mass is 3621.24 ± 0.65 (stat.) ± 0.31 (syst.) MeV [3].

The Ξ_{cc}^{++} and Ξ_{cc}^{+} have the quark content *ccu* and *ccd*, respectively. Under the isospin symmetry of the strong interactions they form an isodoublet, like the proton and the neutron. Isospin breaking in hadron masses is a very small effect [4]. Consequently we have firm reasons to expect that the $\Xi_{cc}^{++} - \Xi_{cc}^{+}$ mass difference is quite small, O(1.5) MeV [5]. The production rates of Ξ_{cc}^{++} and Ξ_{cc}^{+} should be similar, as the bottleneck—the production of the *cc* diquark—is the same in both cases. Consequently we *know* Ξ_{cc}^{+} exists in the vicinity of 3620 MeV. A claimed Ξ_{cc}^{+} at (3518.7±1.7) MeV [6,7] is unlikely to be the isospin partner of the established Ξ_{cc}^{++} , and has not been confirmed by any other experiment.

The search was a "blind analysis", i.e., it was performed with the whole procedure defined before inspecting the data in the 3400 to 3800 MeV mass range. A search for a Ξ_{cc}^+ signal was performed and the significance of the signal as a function of the Ξ_{cc}^+ mass was evaluated. If the global significance, after considering the look-elsewhere effect, was found to be above 3σ , the Ξ_{cc}^+ mass was measured; otherwise, up-

*Corresponding authors (Marek Karliner, email: marek@tauex.tau.ac.il; Jonathan L. Rosner, email: rosner@hep.uchicago.edu)

per limits were set on the production rates for different CM energies.

As can be seen from Figure 2 in ref. [1], the data exhibit several peaks, but the most significant one occurs just where it is expected. The largest local significance, corresponding to 3.1σ (2.7 σ after considering systematic uncertainties), occurs around 3620 MeV. However, the look-elsewhere effect [8], intrinsic to the LHCb search procedure, reduces this to 1.7σ . We believe that in this case the look-elsewhere effect may be overstated, because the peak shows up nearly (but not precisely) where expected. The result of a fit, as given in the Supplementary Material of ref. [1], is $M(\Xi_{cc}^+) = (3623.4\pm 1.7)$ MeV, a bit *larger* than $M(\Xi_{cc}^{++})$, in contrast to the prediction of ref. [5] and nearly all the others quoted there which find $M(\Xi_{cc}^{++})$ less than but within a few MeV of $M(\Xi_{cc}^{++})$.

The upper limit on Ξ_{cc}^+ production (or the significance of a signal) increases with shorter assumed lifetime, as seen in Table 6 and Figure 6 of ref. [1]. As a result of the internal $cd \rightarrow su$ process in the decay of Ξ_{cc}^+ , its lifetime is several times shorter than that of Ξ_{cc}^{++} : for example, ref. [9] finds $\tau(\Xi_{cc}^+) = 53$ fs, and $\tau(\Xi_{cc}^{++}) = 185$ fs. (The latter was measured by LHCb to be $256^{+24}_{-22} \pm 14$ fs [10].)

The validity of the prediction of $M(\Xi_{cc}^{++})$ [9] and the signal of its isospin partner not far from *its* predicted mass [5] lend credence to an estimate of the mass of the $cc\bar{u}\bar{d}$ tetraquark using similar methods, which finds this state to have a mass of (3882±12) MeV [11] and hence unstable with respect to strong decay. The cross section for $cc\bar{u}\bar{d}$ tetraquark

production is expected [11] to be somewhat, but not much, smaller than the cross section for production of Ξ_{cc}^{++} and Ξ_{cc}^{+} baryons. Thus the new LHCb results provide additional motivation for continuing the search for the $cc\bar{u}d$ tetraquark.

In summary, the data contain a 2.7σ hint of the Ξ_{cc}^+ signal at a mass consistent with predictions based on the measured Ξ_{cc}^{++} mass and isospin symmetry. More data are needed to exclude the possibility that this is a statistical fluctuation.

- R. Aaij, et al. (LHCb Collaboration), Sci. China-Phys. Mech. Astron. 63, 221062 (2020), arXiv: 1909.12273 hep-ex.
- 2 R. Aaij, et al. (LHCb Collaboration), Phys. Rev. Lett. 119, 112001

(2017).

- 3 R. Aaij, et al. (LHCb Collaboration), Phys. Rev. Lett. 121, 162002 (2018).
- 4 M. Karliner, and J. L. Rosner, Phys. Rev. D 100, 073006 (2019).
- 5 M. Karliner, and J. L. Rosner, Phys. Rev. D 96, 033004 (2017).
- 6 M. Mattson, et al. (SELEX Collaboration), Phys. Rev. Lett. 89, 112001 (2002).
- 7 A. Ocherashvili, et al. (SELEX Collaboration), Phys. Lett. B 628, 18 (2005).
- 8 E. Gross, and O. Vitells, Eur. Phys. J. C 70, 525 (2010).
- 9 M. Karliner, and J. L. Rosner, Phys. Rev. D 90, 094007 (2014).
- 10 R. Aaij, et al. (LHCb Collaboration), Phys. Rev. Lett. **121**, 052002 (2018).
- M. Karliner, and J. L. Rosner, Phys. Rev. Lett. **119**, 202001 (2017);
 E. J. Eichten, and C. Quigg, Phys. Rev. Lett. **119**, 202002 (2017).