Skip to main content
Log in

Carrier behavior in the vicinity of pit defects in GaN characterized by ultraviolet light-assisted Kelvin probe force microscopy

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Surface potentials in the vicinity of V-pits (cone bottom) and U-pits (blunt bottom) on epitaxial GaN surface have been systematically studied using ultraviolet (UV) light-assisted Kelvin probe force microscopy (KPFM). The band structure models are established to understand variation of the surface potentials at the pits and planar surface with and without UV light. The photo-generated carrier behavior at the pit defects is studied. According to the surface potential results, it can be deduced that the carrier distributions around the V- and U-pits are uneven. In dark, the electron concentration at the bottom of V-pit (30n0) and Upit (15n0) are higher than that at planar surface (n0). Under UV light, for V-pit, the electron concentration at the cone bottom (4.93×1011n0) is lower than that at the surrounding planar surface (5.68×1013n0). For U-pit, the electron concentration at the blunt bottom is 1.35×1012n0, which is lower than that at the surrounding planar surface (6.13×1013n0). The non-equilibrium electron concentrations at different locations are calculated. Based on the non-equilibrium electron concentration, it can be concluded that the carrier recombination rate at pit defects is higher than that at planar surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Li, K. Jiang, X. Sun, and C. Guo, Adv. Opt. Photon. 10, 43 (2018).

    Article  Google Scholar 

  2. S. H. Lim, Y. H. Ko, C. Rodriguez, S. H. Gong, and Y. H. Cho, Light Sci. Appl. 5, e16030 (2016).

    Article  Google Scholar 

  3. E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, Light Sci. Appl. 1, e22 (2012).

    Article  Google Scholar 

  4. L. X. Zhao, S. C. Zhu, C. H. Wu, C. Yang, Z. G. Yu, H. Yang, and L. Liu, Sci. China-Phys. Mech. Astron. 59, 107301 (2016).

    Article  Google Scholar 

  5. Y. Huang, P. X. Li, Z. Yang, Y. Hao, and X. B. Wang, Sci. China-Phys. Mech. Astron. 57, 887 (2014).

    Article  ADS  Google Scholar 

  6. H. Takahashi, A. Ito, T. Tanaka, A. Watanabe, H. Ota, and K. Chikuma, Jpn. J. Appl. Phys. 39, L569 (2000).

    Article  ADS  Google Scholar 

  7. I. A. Ajia, P. R. Edwards, Y. Pak, E. Belekov, M. A. Roldan, N. Wei, Z. Liu, R. W. Martin, and I. S. Roqan, ACS Photon. 5, 820 (2018).

    Article  Google Scholar 

  8. J. Kim, J. Kim, Y. Tak, S. Chae, J. Y. Kim, and Y. Park, IEEE Electron. Device Lett. 34, 1409 (2013).

    Article  ADS  Google Scholar 

  9. A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze, Phys. Rev. Lett. 95, 127402 (2005).

    Article  ADS  Google Scholar 

  10. M. K. Kim, S. Choi, J. H. Lee, C. H. Park, T. H. Chung, J. H. Baek, and Y. H. Cho, Sci. Rep. 7, 42221 (2017).

    Article  ADS  Google Scholar 

  11. D. Han, S. Ma, Z. Jia, W. Jia, P. Liu, H. Dong, L. Shang, A. Zhang, G. Zhai, X. Li, X. Liu, and B. Xu, J. Phys. D-Appl. Phys. 50, 475103 (2017).

    Article  ADS  Google Scholar 

  12. K. Sugimoto, N. Okada, S. Kurai, Y. Yamada, and K. Tadatomo, Jpn. J. Appl. Phys. 57, 062101 (2018).

    Article  ADS  Google Scholar 

  13. S. W. Chen, H. Li, C. J. Chang, and T. C. Lu, Materials 10, 113 (2017).

    Article  ADS  Google Scholar 

  14. X. Li, G. Le Gac, S. Bouchoule, Y. El Gmili, G. Patriarche, S. Sundaram, P. Disseix, F. Réveret, J. Leymarie, J. Streque, F. Genty, J. P. Salvestrini, R. D. Dupuis, X. H. Li, P. L. Voss, and A. Ougazzaden, J. Cryst. Growth 432, 37 (2015).

    Article  ADS  Google Scholar 

  15. J. Jeschke, M. Martens, A. Knauer, V. Kueller, U. Zeimer, C. Netzel, C. Kuhn, F. Krueger, C. Reich, T. Wernicke, M. Kneissl, and M. Weyers, IEEE Photon. Technol. Lett. 27, 1969 (2015).

    Article  ADS  Google Scholar 

  16. M. Zhang, D. Cai, Y. Zhang, X. Su, T. Zhou, M. Cui, C. Li, J. Wang, and K. Xu, Mater. Lett. 198, 12 (2017).

    Article  Google Scholar 

  17. T. Paskova, E. M. Goldys, and B. Monemar, J. Cryst. Growth 203, 1 (1999).

    Article  ADS  Google Scholar 

  18. A. Lochthofen, W. Mertin, G. Bacher, L. Hoeppel, S. Bader, J. Off, and B. Hahn, Appl. Phys. Lett. 93, 022107 (2008).

    Article  ADS  Google Scholar 

  19. W. Lee, H. J. Lee, S. H. Park, K. Watanabe, K. Kumagai, T. Yao, J. H. Chang, and T. Sekiguchi, J. Cryst. Growth 351, 83 (2012).

    Article  ADS  Google Scholar 

  20. E. Richter, U. Zeimer, F. Brunner, S. Hagedorn, M. Weyers, and G. Tränkle, Phys. Status Solidi C 7, 28 (2010).

    Article  ADS  Google Scholar 

  21. D. B. Li, X. J. Sun, Y. P. Jia, M. I. Stockman, H. P. Paudel, H. Song, H. Jiang, and Z. M. Li, Light Sci. Appl. 6, e17038 (2017).

    Article  Google Scholar 

  22. K. Watanabe, J. R. Yang, S. Y. Huang, K. Inoke, J. T. Hsu, R. C. Tu, T. Yamazaki, N. Nakanishi, and M. Shiojiri, Appl. Phys. Lett. 82, 718 (2003).

    Article  ADS  Google Scholar 

  23. K. S. Son, D. G. Kim, H. K. Cho, K. Lee, S. Kim, and K. Park, J. Cryst. Growth 261, 50 (2004).

    Article  ADS  Google Scholar 

  24. L. Chernyak, A. Osinsky, G. Nootz, A. Schulte, J. Jasinski, M. Benamara, Z. Liliental-Weber, D. C. Look, and R. J. Molnar, Appl. Phys. Lett. 77, 2695 (2000).

    Article  ADS  Google Scholar 

  25. A. Cavallini, L. Polenta, and A. Castaldini, Microelectron. Reliab. 50, 1398 (2010).

    Article  Google Scholar 

  26. Z. Liu, K. Xu, Y. Fan, G. Xu, Z. Huang, H. Zhong, J. Wang, and H. Yang, Appl. Phys. Lett. 101, 252107 (2012).

    Article  ADS  Google Scholar 

  27. N. A. Fichtenbaum, T. E. Mates, S. Keller, S. P. DenBaars, and U. K. Mishra, J. Cryst. Growth 310, 1124 (2008).

    Article  ADS  Google Scholar 

  28. D. Meister, M. Böhm, M. Topf, W. Kriegseis, W. Burkhardt, I. Dirnstorfer, S. Rösel, B. Farangis, B. K. Meyer, A. Hoffmann, H. Siegle, C. Thomsen, J. Christen, and F. Bertram, J. Appl. Phys. 88, 1811 (2000).

    Article  ADS  Google Scholar 

  29. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature 406, 865 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoJuan Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kai, C., Sun, X., Jia, Y. et al. Carrier behavior in the vicinity of pit defects in GaN characterized by ultraviolet light-assisted Kelvin probe force microscopy. Sci. China Phys. Mech. Astron. 62, 67311 (2019). https://doi.org/10.1007/s11433-018-9320-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9320-x

Keywords

Navigation