Skip to main content
Log in

Dark matter direct search sensitivity of the PandaX-4T experiment

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The PandaX-4T experiment, a 4-ton scale dark matter direct detection experiment, is being planned at the China Jinping Un- derground Laboratory. In this paper we present a simulation study of the expected background in this experiment. In a 2.8-ton fiducial mass and the signal region between 1–10 keV electron equivalent energy, the total electron recoil background is found to be 4:9 × 10−5 kg−1d−1keV−1. The nuclear recoil background in the same region is 2:8 × 10−7 kg−1d−1keV−1. With an exposure of 5.6 ton-years, the sensitivity of PandaX-4T could reach a minimum spin-independent dark matter-nucleon cross section of 6 × 10−48 cm2 at a dark matter mass of 40 GeV/c2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. M. Faber, and J. S. Gallagher, Annu. Rev. Astron. Astrophys. 17, 135 (1979).

    Article  ADS  Google Scholar 

  2. G. R. Blumenthal, S. M. Faber, J. R. Primack, and M. J. Rees, Nature 311, 517 (1984).

    Article  ADS  Google Scholar 

  3. P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016), arXiv: 1502.01589.

    Article  Google Scholar 

  4. L. M. Widrow, B. Pym, and J. Dubinski, Astrophys. J. 679, 1239 (2008), arXiv: 0801.3414.

    Article  ADS  Google Scholar 

  5. G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005).

    Article  ADS  Google Scholar 

  6. P. Cushman, C. Galbiati, D. N. McKinsey, H. Robertson, T. M. P. Tait, D. Bauer, A. Borgland, B. Cabrera, F. Calaprice, J. Cooley, T. Empl, R. Essig, E. Figueroa-Feliciano, R. Gaitskell, S. Golwala, J. Hall, R. Hill, A. Hime, E. Hoppe, L. Hsu, E. Hungerford, R. Jacobsen, M. Kelsey, R. F. Lang, W. H. Lippincott, B. Loer, S. Luitz, V. Mandic, J. Mardon, J. Maricic, R. Maruyama, R. Mahapatra, H. Nelson, J. Orrell, K. Palladino, E. Pantic, R. Partridge, A. Ryd, T. Saab, B. Sadoulet, R. Schnee, W. Shepherd, A. Sonnenschein, P. Sorensen, M. Szydagis, T. Volansky, M. Witherell, D. Wright, and K. Zurek,, arXiv: 1310.8327.

  7. J. Liu, X. Chen, and X. Ji, Nat. Phys. 13, 212 (2017), arXiv: 1709.00688.

    Article  Google Scholar 

  8. D.S. Akerib, et al. (LUX Collaboration), Phys. Rev. Lett. 118, 021303 (2017), arXiv: 1608.07648.

    Article  ADS  Google Scholar 

  9. E. Aprile, et al. (XENON Collaboration), Phys. Rev. Lett. 119, 181301 (2017), arXiv: 1705.06655.

    Article  ADS  Google Scholar 

  10. A. D. Tan, et al. (PandaX-II Collaboration), Phys. Rev. Lett. 117, 121303 (2016), arXiv: 1607.07400.

    Article  ADS  Google Scholar 

  11. X. Y. Cui, et al. (PandaX-II Collaboration), Phys. Rev. Lett. 119, 181302 (2017).

    Article  ADS  Google Scholar 

  12. E. Aprile, et al. (XENON1T Collaboration), J. Cosmol. Astropart. Phys. 2016, 027 (2016), arXiv: 1512.07501.

    Article  Google Scholar 

  13. S. Agostinelli, et al. (GEANT4 Collaboration), Nucl. Instrum. Meth. A 506, 250 (2003).

    Article  ADS  Google Scholar 

  14. X. Du, K. Bailey, Z. T. Lu, P. Mueller, T. P. O’Connor, and L. Young, Rev. Sci. Instruments 75, 3224 (2004).

    Article  ADS  Google Scholar 

  15. M. Selvi, in Low radioactivity techniques 2013 (LRT 2013): Proceedings of the IV InternationalWorkshop in Low Radioactivity Techniques, vol. 1549 (AIP Publishing, 2013) pp. 213–218.

    Google Scholar 

  16. O. A. Ponkratenko, V. I. Tretyak, and Y. G. Zdesenko, Phys. Atom. Nuclei 63, 1282 (2000).

    Article  ADS  Google Scholar 

  17. J. Kotila, and F. Iachello, Phys. Rev. C 85, 034316 (2012), arXiv: 1209.5722.

    Article  ADS  Google Scholar 

  18. X. Chen, C. B. Fu, J. Galan, K. Giboni, F. Giuliani, L. H. Gu, K. Han, X. D. Ji, H. Lin, J. L. Liu, K. X. Ni, H. Kusano, X. X. Ren, S. B. Wang, Y. Yang, D. Zhang, T. Zhang, L. Zhao, X. M. Sun, S. Y. Hu, S. Y. Jian, X. L. Li, X. M. Li, H. Liang, H. Q. Zhang, M. R. Zhao, J. Zhou, Y. J. Mao, H. Qiao, S. G. Wang, Y. Yuan, M. Wang, A. N. Khan, N. Raper, J. Tang, W. Wang, J. N. Dong, C. Q. Feng, C. Li, J. B. Liu, S. B. Liu, X. L. Wang, D. Y. Zhu, J. F. Castel, S. Cebrián, T. Dafni, J. G. Garza, I. G. Irastorza, F. J. Iguaz, G. Luzón, H. Mirallas, S. Aune, E. Berthoumieux, Y. Bedfer, D. Calvet, N. d’Hose, A. Delbart, M. Diakaki, E. Ferrer-Ribas, A. Ferrero, F. Kunne, D. Neyret, T. Papaevangelou, F. Sabatié, M. Vanderbroucke, A. D. Tan, W. Haxton, Y. Mei, C. Kobdaj, and Y. P. Yan, Sci. China-Phys. Mech. Astron. 60, 061011 (2017), arXiv: 1610.08883.

    Article  ADS  Google Scholar 

  19. W. Wlison, SOURCES-4A, Technical Report LA-13639-MS (Los Almos, 1999).

  20. S. Shaw, Dark Matter Searches with the LUX and LZ Experiments, Dissertation for the Doctoral Degree (University College London, London, 2016).

    Google Scholar 

  21. J. Lindhard, V. Nielsen, M. Scharff, and P. V. Thomsen, Mat. Fys. Medd. Dan. Vid. Selsk. 33, 10 (1963).

    Google Scholar 

  22. D. Akimov, et al. (COHERENT Collaboration), Science 357, 1123 (2017).

    Article  ADS  Google Scholar 

  23. A. L. Read, J. Phys. G-Nucl. Part. Phys. 28, 2693 (2002).

    Article  ADS  Google Scholar 

  24. D. S. Akerib, et al. (LUX Collaboration), Phys. Rev. Lett. 116, 161302 (2016), arXiv: 1602.03489.

    Article  ADS  Google Scholar 

  25. E. Aprile, et al. (XENON100 Collaboration), Phys. Rev. D 94, 122001 (2016), arXiv: 1609.06154.

    Article  ADS  Google Scholar 

  26. C. Fu, et al. (PandaX Collaboration), Phys. Rev. Lett. 118, 071301 (2017), arXiv: 1611.06553.

    Article  ADS  Google Scholar 

  27. A. M. Sirunyan, et al. (CMS Collaboration), Phys. Rev. D 97, 092005 (2018), arXiv: 1712.02345.

    Article  ADS  Google Scholar 

  28. M. Aaboud, et al. (ATLAS Collaboration), J. High Energ. Phys. 2018, 126 (2018).

    Article  Google Scholar 

  29. C. Amole, et al. (PICO Collaboration), Phys. Rev. D 93, 061101 (2016), arXiv: 1601.03729.

    Article  ADS  Google Scholar 

  30. C. Amole, et al. (PICO Collaboration), Phys. Rev. D 93, 052014 (2016), arXiv: 1510.07754.

    Article  ADS  Google Scholar 

  31. M. G. Aartsen, et al. (IceCube Collaboration), J. Cosmol. Astropart. Phys. 2016, 022 (2016), arXiv: 1601.00653.

    Article  Google Scholar 

  32. K. Choi, et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 114, 141301 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiangDong Ji or Ning Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Abdukerim, A., Chen, W. et al. Dark matter direct search sensitivity of the PandaX-4T experiment. Sci. China Phys. Mech. Astron. 62, 31011 (2019). https://doi.org/10.1007/s11433-018-9259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9259-0

Keywords

Navigation