Skip to main content
Log in

The CST bounce universe model — A parametric study

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A bounce universe model with a scale-invariant and stable spectrum of primordial density perturbations was constructed using a consistent truncation of the D-brane dynamics from Type IIB string theory. A coupling was introduced between the tachyon field and the adjoint Higgs field on the D3-branes to lock the tachyon at the top of its potential hill and to model the bounce process, which is known as the Coupled Scalar and Tachyon Bounce (CSTB) Universe. The CSTB model has been shown to be ghost free, and it fulfils the null energy condition; in addition, it can also solve the Big Bang cosmic singularity problem. In this paper we conduct an extensive follow-up study of the parameter space of the CSTB model. In particular we are interested in the parameter values that can produce a single bounce to arrive at a radiation-dominated universe. We further establish that the CSTB universe is a viable alternative to inflation, as it can naturally produce a sufficient number of e-foldings in the locked inflation epoch and in the post-bounce expansion to overcome the four fundamental limitations of the Big Bang cosmology, which are flatness, horizon, homogeneity and singularity, resulting in a universe of the current size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Guth, Phys. Rev. D 23, 347 (1981).

    Article  ADS  Google Scholar 

  2. A. H. Guth, D. I. Kaiser, and Y. Nomura, Phys. Lett. B 733, 112 (2014), arXiv: 1312.7619

    Article  ADS  Google Scholar 

  3. A. Linde, arXiv: 1402.0526.

  4. G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, J. Dunkley, M. R. Nolta, M. Halpern, R. S. Hill, N. Odegard, L. Page, K. M. Smith, J. L. Weiland, B. Gold, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, E. Wollack, and E. L. Wright, Astrophys. J. Suppl. Ser. 208, 19 (2013), arXiv: 1212.5226

    Article  ADS  Google Scholar 

  5. P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 594, A16 (2016), arXiv: 1506.07135.

    Article  Google Scholar 

  6. V. F. Mukhanov, and G. V. Chibisov, JETP Lett. 33, 532 (1981); Sov. Phys. JETP 56, 2585 (1982).

    ADS  Google Scholar 

  7. A. Borde, and A. Vilenkin, Phys. Rev. Lett. 72, 3305 (1994).

    Article  ADS  Google Scholar 

  8. M. Trodden, V. F. Mukhanov, and R. H. Brandenberger, Phys. Lett. B 316, 483 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Gasperini, and G. Veneziano, Phys. Rep. 373, 1 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Linde, Fortschr. Phys. 57, 418 (2009).

    Article  MathSciNet  Google Scholar 

  11. S.-H. H. Tye, in String Theory and Fundamental Interactions. Lecture Notes in Physics, vol 737, edited by M. Gasperini, and J. Maharana, (Springer, Berlin, Heidelberg, 2008).

  12. S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Phys. Rep. 692, 1 (2017), arXiv: 1705.11098

    Article  MathSciNet  ADS  Google Scholar 

  13. R. Brandenberger, and P. Peter, arXiv: 1603.05834

  14. D. Battefeld, and P. Peter, Phys. Rep. 571, 1 (2015), arXiv: 1406.2790

    Article  MathSciNet  ADS  Google Scholar 

  15. E. Wilson-Ewing, J. Cosmol. Astropart. Phys. 2013, 026 (2013), arXiv: 1211.6269

    Article  MathSciNet  Google Scholar 

  16. M. Novello, and S. Bergliaffa, Phys. Rep. 463, 127 (2008), arXiv: 0802.1634

    Article  MathSciNet  ADS  Google Scholar 

  17. Y. F. Cai, D. A. Easson, and R. Brandenberger, J. Cosmol. Astropart. Phys. 2012, 020 (2012), arXiv: 1206.2382.

    Article  Google Scholar 

  18. P. J. Steinhardt, Science 296, 1436 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Wands, Phys. Rev. D 60, 023507 (1999).

    Article  ADS  Google Scholar 

  20. F. Finelli, and R. Brandenberger, Phys. Rev. D 65, 103522 (2002), arXiv: hep-th/0112249.

    Article  ADS  Google Scholar 

  21. C. Lin, R. H. Brandenberger, and L. P. Levasseur, J. Cosmol. Astropart. Phys. 2011, 019 (2011), arXiv: 1007.2654

    Article  Google Scholar 

  22. R. H. Brandenberger, arXiv: 1206.4196.

  23. R. Brandenberger, Phys. Rev. D 80, 043516 (2009), arXiv: 0904.2835.

    Article  MathSciNet  ADS  Google Scholar 

  24. T. Qiu, and K. C. Yang, J. Cosmol. Astropart. Phys. 2010, 012 (2010), arXiv: 1007.2571.

    Article  Google Scholar 

  25. Y. F. Cai, S. H. Chen, J. B. Dent, S. Dutta, and E. N. Saridakis, Class. Quantum Grav. 28, 215011 (2011), arXiv: 1104.4349.

    Article  ADS  Google Scholar 

  26. S. D. Odintsov, and V. K. Oikonomou, Phys. Rev. D 90, 124083 (2014), arXiv: 1410.8183.

    Article  ADS  Google Scholar 

  27. M. Koehn, J. L. Lehners, and B. A. Ovrut, Phys. Rev. D 90, 025005 (2014), arXiv: 1310.7577.

    Article  ADS  Google Scholar 

  28. T. Qiu, and Y. T. Wang, J. High Energ. Phys. 2015, 130 (2015), arXiv: 1501.03568.

    Article  Google Scholar 

  29. K. Bhattacharya, Y. F. Cai, and S. Das, Phys. Rev. D 87, 083511 (2013), arXiv: 1301.0661

    Article  ADS  Google Scholar 

  30. Y. F. Cai, T. Qiu, R. Brandenberger, and X. Zhang, Phys. Rev. D 80, 023511 (2009), arXiv: 0810.4677.

    Article  ADS  Google Scholar 

  31. Y. F. Cai, T. Qiu, R. Brandenberger, and X. Zhang, Phys. Rev. D 80, 023511 (2009), arXiv: 0810.4677.

    Article  ADS  Google Scholar 

  32. Y. F. Cai, T. Qiu, X. Zhang, Y. S. Piao, and M. Li, J. High Energy Phys. 2007, 071 (2007), arXiv: 0704.1090.

    Article  Google Scholar 

  33. Y. F. Cai, and X. Zhang, J. Cosmol. Astropart. Phys. 2009, 003 (2009), arXiv: 0808.2551.

    Article  Google Scholar 

  34. J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, Phys. Rev. D 64, 123522 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  35. D. H. Lyth, Phys. Lett. B 524, 1 (2002)

    Article  ADS  Google Scholar 

  36. R. Brandenberger, and F. Finelli, J. High Energy Phys. 2001, 056 (2001).

    Article  Google Scholar 

  37. S. Carloni, P. K. S. Dunsby, and D. Solomons, Class. Quantum Grav. 23, 1913 (2006).

    Article  ADS  Google Scholar 

  38. A. Sen, J. High Energy Phys. 2002, 048 (2002).

    Article  Google Scholar 

  39. A. Sen, J. High Energy Phys. 2002, 065 (2002).

    Article  Google Scholar 

  40. G. W. Gibbons, Phys. Lett. B 537, 1 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  41. C. Li, L. Wang, and Y. K. E. Cheung, Phys. Dark Universe 3, 18 (2014), arXiv: 1101.0202.

    Article  ADS  Google Scholar 

  42. C. Li, and Y. K. E. Cheung, arXiv: 1211.1610.

  43. C. Li, and Y. K. E. Cheung, J. Cosmol. Astropart. Phys. 2014, 008 (2014), arXiv: 1401.0094.

    Article  Google Scholar 

  44. C. Li, R. H. Brandenberger, and Y. K. E. Cheung, Phys. Rev. D 90, 123535 (2014), arXiv: 1403.5625.

    Article  ADS  Google Scholar 

  45. Y. K. E. Cheung, J. U. Kang, and C. Li, J. Cosmol. Astropart. Phys. 2014, 001 (2014), arXiv: 1408.4387.

    Article  Google Scholar 

  46. Y. K. E. Cheung, and J. D. Vergados, J. Cosmol. Astropart. Phys. 2015, 014 (2015), arXiv: 1410.5710.

    Article  Google Scholar 

  47. Y. K. Cheung, C. Li, and J. Vergados, Symmetry 8, 136 (2016), arXiv: 1611.04027.

    Article  Google Scholar 

  48. J. D. Vergados, C. C. Moustakidis, Y. K. E. Cheung, H. Ejiri, Y. Kim, and J. Y. Lee, Adv. High Energy Phys. 2018, 1 (2018), arXiv: 1605.05413.

    Article  Google Scholar 

  49. G. Dvali, and S. H. H. Tye, Phys. Lett. B 450, 72 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  50. C. Molina-París, and M. Visser, Phys. Lett. B 455, 90 (1999), arXiv: gr-qc/9810023.

    Article  MathSciNet  ADS  Google Scholar 

  51. A. Sen, and B. Zwiebach, J. High Energy Phys. 2000, 002 (2000)

    Article  Google Scholar 

  52. N. Berkovits, A. Sen, and B. Zwiebach, Nucl. Phys. B 587, 147 (2000).

    Article  ADS  Google Scholar 

  53. N. Berkovits, A. Sen, and B. Zwiebach, Nucl. Phys. B 587, 147 (2000).

    Article  ADS  Google Scholar 

  54. M. Drewes, and J. U. Kang, J. High Energ. Phys. 2016, 51 (2016), arXiv: 1510.05646

    Article  Google Scholar 

  55. Y. K. E. Cheung, M. Drewes, J. U. Kang, and J. C. Kim, J. High Energ. Phys. 2015, 59 (2015), arXiv: 1504.04444.

    Article  Google Scholar 

  56. Y. F. Cai, Sci. China-Phys. Mech. Astron. 57, 1414 (2014), arXiv: 1405.1369.

    Article  ADS  Google Scholar 

  57. L. Ming, T. Zheng, and Y. K. E. Cheung, arXiv: 1701.04287.

  58. R. H. Brandenberger, E. G. M. Ferreira, I. A. Morrison, Y. F. Cai, S. R. Das, and Y. Wang, Phys. Rev. D 94, 083508 (2016), arXiv: 1601.00231.

    Article  MathSciNet  ADS  Google Scholar 

  59. S. P. Kumar, and V. Vaganov, arXiv: 1512.07184.

  60. A. Bzowski, T. Hertog, and M. Schillo, arXiv: 1512.05761.

  61. S. P. Kumar, and V. Vaganov, arXiv: 1510.03281.

  62. J. L. F. Barbon, and E. Rabinovici, arXiv: 1509.09291.

  63. N. Engelhardt, and G. T. Horowitz, arXiv: 1509.07509.

  64. N. Engelhardt, T. Hertog, and G. T. Horowitz, J. High Energ. Phys. 2015, 44 (2015), arXiv: 1503.08838.

    Article  Google Scholar 

  65. A. Enciso, and N. Kamran, Gen. Relativ. Gravit. 47, 147 (2015), arXiv: 1502.01622.

    Article  ADS  Google Scholar 

  66. S. Banerjee, S. Bhowmick, S. Chatterjee, and S. Mukherji, J. High Energ. Phys. 2015, 43 (2015), arXiv: 1501.06317.

    Article  Google Scholar 

  67. V. Balasubramanian, P. Kraus, A. Lawrence, and S. P. Trivedi, Phys. Rev. D 59, 104021 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  68. T. Hertog, and G. T. Horowitz, J. High Energy Phys. 2005, 005 (2005).

    Article  Google Scholar 

  69. A. Hamilton, D. Kabat, G. Lifschytz, and D. A. Lowe, Phys. Rev. D 73, 086003 (2006).

    Article  ADS  Google Scholar 

  70. C. S. Chu, and P. M. Ho, J. High Energy Phys. 2006, 013 (2006).

    Google Scholar 

  71. S. R. Das, J. Michelson, K. Narayan, and S. P. Trivedi, Phys. Rev. D 74, 026002 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  72. C. S. Chu, and P. M. Ho, J. High Energy Phys. 2008, 058 (2008), arXiv: 0710.2640.

    Article  ADS  Google Scholar 

  73. N. Turok, B. Craps, and T. Hertog, arXiv: 0711.1824.

  74. A. Awad, S. R. Das, K. Narayan, and S. P. Trivedi, Phys. Rev. D 77, 046008 (2008), arXiv: 0711.2994.

    Article  MathSciNet  ADS  Google Scholar 

  75. B. Craps, T. Hertog, and N. Turok, Phys. Rev. D 86, 043513 (2012), arXiv: 0712.4180.

    Article  ADS  Google Scholar 

  76. J. L. F. Barb´on, and E. Rabinovici, J. High Energ. Phys. 2011, 44 (2011), arXiv: 1102.3015.

    Article  Google Scholar 

  77. A. Enciso, and N. Kamran, Phys. Rev. D 85, 106016 (2012), arXiv: 1203.2743.

    Article  ADS  Google Scholar 

  78. N. Engelhardt, T. Hertog, and G. T. Horowitz, Phys. Rev. Lett. 113, 121602 (2014), arXiv: 1404.2309.

    Article  ADS  Google Scholar 

  79. L. Randall, and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  80. R. Brandenberger, and C. Vafa, Nucl. Phys. B 316, 391 (1989).

    Article  ADS  Google Scholar 

  81. C. Kounnas, H. Partouche, and N. Toumbas, Nucl. Phys. B 855, 280 (2012), arXiv: 1106.0946.

    Article  ADS  Google Scholar 

  82. A. Berndsen, and J. Cline, Int. J. Mod. Phys. A 19, 5311 (2004)[hepth/ 0408185].

    Article  ADS  Google Scholar 

  83. S. Watson, Phys. Rev. D 70, 066005 (2004)[hep-th/0404177].

    Article  ADS  Google Scholar 

  84. Y. K. E. Cheung, S. Watson, and R. Brandenberger, J. High Energy Phys. 2006, 025 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeuk-Kwan Edna Cheung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheung, YK.E., Song, X., Li, S. et al. The CST bounce universe model — A parametric study. Sci. China Phys. Mech. Astron. 62, 10011 (2019). https://doi.org/10.1007/s11433-018-9251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9251-0

Keywords

Navigation