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Quantum simulation meets quantum biology
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Quantum biology has attracted increasing interest in recent
years [1]. It is remarkable that quantum effect such as quan-
tum coherence and entanglement has been found existing in
several examples of biological processes, such as light har-
vesting and animal magnetoreception [2]. In quantum biol-
ogy, there are mainly two fundamental questions: (1) how
does quantum effect sustain in biological environment that
is generally complex, “hot” and noisy; (2) how does quan-
tum effect play its non-trivial role in these important biologi-
cal processes. The complexity of biological systems implies
the extreme difficulty on tackling these two open questions.
There are many unknown factors in biology that would af-
fect the relevant quantum dynamics, and it is not clear what
the most essential ingredients are. A new technique that can
provide a clean platform to help investigate various aspects

of quantum effect in biological processes would certainly be
valuable. Quantum simulation is one appealing candidate to
provide such a platform, which also has potential applications
for the study of condensed matter physics, material science,
and high-energy physics [3].
In the chemical compass model of animal magnetorecep-

tion, two unpaired electrons appear to be in entangled states.
The quantum nature of electron spin dynamics as governed by
the hyperfine interaction with the surrounding nuclei deter-
mines the functioning of a chemical compass [4]. However,
it is unknown what is the physiological basis of a chemical
compass if it is indeed responsible for animal magnetorecep-
tion. The fact that very weak electromagnetic noise of a broad
range of frequencies would disturb the orientation ability of
European robin remains mysterious [5].

Figure 1         (Color online) Quantum simulation of a simple chemical compass model using a nuclear magnetic resonance system (Reproduced from Pearson et
al. [6]).
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In ref. [6], Pearson et al. experimentally simulate the dy-
namics of a simple model chemical compass using a nuclear
resonance quantum information processor, see Figure 1. It
makes a first step towards the study of quantum biology us-
ing the technique of quantum simulation. The model chem-
ical compass that has been simulated is the simplest refer-
ence-and-probe model. In the next step, it will be more im-
portant to simulate chemical compass model with flexible hy-
perfine couplings. This task is quite challenging which is
however necessary to investigate the relation between the hy-
perfine couplings and the sensitivity of a chemical compass,
and thus may provide insights into the design principle of
a chemical compass. The other interesting open question is
how to simulate the effect of noise/decoherence on a chemical
compass by engineering environment in quantum simulation.

The better controllability of quantum simulation as compared
with complex biological environment would be helpful to re-
veal the complicate interplay between quantum coherent dy-
namics and noise in animal magnetoreception.
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