
. Article .

SCIENCE CHINA
Physics, Mechanics & Astronomy

August 2016 Vol. 59 No. 8: 680011
doi: 10.1007/s11433-016-0076-y

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 phys.scichina.com link.springer.com

Superballistic wavepacket spreading in double kicked rotors†

Ping Fang, and Jiao Wang*

Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005, China

Received February 23, 2016; accepted March 21, 2016; published online May 16, 2016

We investigate possible ways in which a quantum wavepacket spreads. We show that in a general class of double kicked rotor
system, a wavepacket may undergo superballistic spreading; i.e., its variance increases as the cubic of time. The conditions for
the observed superballistic spreading and two related characteristic time scales are studied. Our results suggest that the symmetry
of the studied model and whether it is a Kolmogorov-Arnold-Moser system are crucial to its wavepacket spreading behavior. Our
study also sheds new light on the exponential wavepacket spreading phenomenon previously observed in the double kicked rotor
system.
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1 Introduction

In a quantum system, a wavepacket usually spreads follow-
ing a power law of time, i.e., its variance increases in time as
∼ tγ, with γ being a constant and 0 � γ � 2. For γ = 0, the
wavepacket will be localized, while for γ = 2, the wavepacket
will spread ballistically. The case of γ = 1 is referred to as
“normal diffusion”, in contrast to two “anomalous diffusion”
cases, i.e., subdiffusion for 0 < γ < 1 and superdiffusion
for 1 < γ < 2. It is found that under certain conditions the
exponent γ can be related to the fractal dimension of the sys-
tem’s spectrum [1-3]. For example, for the two special cases
of localization (γ = 0) and ballistic spreading (γ = 2), the
spectrum is discrete and absolutely continuous, respectively.

In recent years, investigations of the possible ways in
which a quantum wavepacket spreads have led to some
important findings. An interesting example is that [4], if
a segment of a one-dimensional (1D) homogenous lattice
is replaced by a segment of disordered structure, then a
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wavepacket that initially resides on the implanted segment
may spread “superballistically” with 2 < γ � 3, until a cer-
tain characteristic time T that depends on the length of the
implanted segment: The longer the latter is, the longer T is.
When the time exceeds T , the wavepacket tends to converge
asymptotically to the ballistic spreading. In a more recent
study [5], it was found that for a 1D tight-binding lattice with-
out on-site potential, if one implants a segment of lattice with
on-site potential, then a wavepacket initially prepared on the
latter may not only spread superballistically, but also hyper-
diffusively, i.e., γ can be as large as 3 < γ < 5.

More interestingly, power laws are not the only ways
in which a wavepacket spreads. It has been found that a
wavepacket can spread in time even exponentially [6]. Simi-
lar to the two cases [4,5] mentioned above, the time for which
the exponential spreading lasts depends on the system’s pa-
rameters, which is finite but in principle can be infinite as the
system’s parameters are tuned. This finding unveils a new
type of quantum motion.

The model system in which the exponential spreading was
found is a variant of the quantum kicked rotor (QKR) [7]. De-
spite its seeming simplicity in constructure, the QKR exhibits
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very rich dynamics and has played a central role in quantum
chaos studies. Up to now a wide spectrum of wavepacket
spreading ways, from power laws with 0 � γ � 2 to exponen-
tial laws, has been found in the QKR as well as its variants,
but superballistic and hyperdiffusive spreading for γ � 3 has
not been reported yet.

In this work we show that the superballistic spreading with
γ = 3 is also possible in a class of kicked rotor systems. This
result implies that the superballistic spreading exists in very
general systems, not only restricted in the lattices with hy-
brid structures [4, 5]. In addition, it suggests a new type of
quantum motion in the QKR, evidencing again the dynam-
ics wealth of this paradigmatic quantum chaos model. As
various QKR systems have been realized with atom-optics
setup [8,9], our result also suggests a possible way to experi-
mental studies of the superballistic spreading.

Based on our understanding of the mechanism for the ex-
ponential spreading [6,10], our strategy here is to design vari-
ant QKR systems such that the superballistic diffusion can
happen in the pseudoclassical limit [11]. Then we show and
study the superballistic wavepacket spreading in the original
systems, in particular its conditions and characteristics. This
method involves the concepts of quantum resonance [12],
quantum antiresonance [12, 13], pseudoclassical limit the-
ory [11], Kolmogorov-Arnold-Moser (KAM) systems [14],
etc. For recent progress in revealing the general wave prop-
agation properties in quantum mechanics and the roles non-
linearities may play in matter wavepacket dynamics, we refer
the reader to refs. [15-17]. In the following we will first de-
scribe the models to be focused on in sect. 2, then show their
quantum wavepacket spreading in sect. 3 and discuss their
pseudoclassical systems, the mechanism and the rate of the
observed superballistic spreading in sect. 4. Two character-
istic time scales will be analyzed in sect. 5. Finally, we will
make extended discussions and conclude in sect. 6.

2 Models

The 1D kicked rotor system [18] is composed of a point par-
ticle confined to move on a circle. The motion of the particle
is subjected to a series of sudden kicks imposed periodically,
otherwise its motion on the circle is free. Assuming that the
inertial moment of the particle and the radius of the circle are
unitary, the Hamiltonian of the system is

H =
p2

2
+ KV(θ)

∑
n∈Z

δ(t − nτ). (1)

Here p and θ ∈ [−π,π) are the angular momentum and the
angular position of the particle, respectively, V(θ) is the ex-
ternal field of period 2π, i.e., V(θ) = V(θ + 2π), and K is a
parameter that controls the amplitude of the kicks turned on
instantaneously at multiples of τ. In the standard kicked rotor
model the potential is VS(θ) = cos(θ), which is both nonde-
generate and sufficiently smooth. Hence the classical stan-
dard kicked rotor is a KAM system [14], so that for Kτ < κC

(where κC ≈ 1 is a critical value) the motion of the system in
the angular momentum space is confined by the Cantori and
is localized, but for Kτ > κC the motion becomes unbounded
due to the breaking of all the Cantori, and on average its en-
ergy increases linearly in time [18], i.e, E(t) = p2/2 ∼ K2t.
In sharp contrast, the motion of the quantum standard kicked
rotor depends on wether �τ is an irrational multiple of π (here
� is the effective Planck constant of the system). If yes, then
the energy of the system will eventually saturate, known as
the dynamical localization [7, 18]. Otherwise the so-called
quantum resonance occurs, i.e., the energy increases quadrat-
ically in time, unless �τ is an odd integer multiple of 2π, at
which the state of the system goes back to itself after every
two kicks and the energy keeps to oscillate periodically. This
special case is known as the quantum antiresonance [12, 13].

An important variant of the kicked rotor is the double
kicked rotor which was first proposed by Li et al. [19] to study
the chaos controlling problem in Hamiltonian system. In this
model, during a time of τ the rotor is kicked twice separated
by a time interval Δτ < τ. The Hamiltonian is

H =
p2

2
+KV(θ)

∑
n∈Z

δ(t− nτ)+KV(θ)
∑
n∈Z

δ(t− nτ+Δτ). (2)

Note that the two kicks can be different in general, but in this
work we assume they are the same. Quantum mechanically, if
we denote the state of the system at the time just before t = nτ
as |ψ(n)〉, and after a time τ it evolves into |ψ(n+ 1)〉, then the
latter can be obtained from the former as |ψ(n+1)〉 = U |ψ(n)〉,
with the evolution operator

U = e−i(τ−Δτ)
p2

2� e−i
K
�
V(θ)e−iΔτ

p2

2� e−i
K
�
V(θ). (3)

The second and the forth factors result from kicks and the first
and the third term represent the free motion between kicks. In
general, the quantum double kicked rotor (QDKR) with po-
tential VS exhibits dynamical localization: The wavepacket
eventually displays exponentially decaying tails in the angu-
lar momentum space and the localization length depends on
� in a power law with a fractional number exponent [20, 21].
The most striking phenomenon of the QDKR appear when
the main quantum resonance condition, i.e., �τ = 4π, is sat-
isfied, under which the evolution operator reduces to the fol-
lowing more symmetric form:

U = ei p2

2� e−i
K
�
V(θ)e−i

p2

2� e−i
K
�
V(θ). (4)

Without loss of generality we set Δτ= 1. This is apparent in

view of the fact that exp(−iτ p2

2� )| j〉 = | j〉 for �τ = 4π, where
{| j〉} represent the eigenstates of the angular momentum p,
i.e.,

p| j〉 = j�| j〉, 〈θ| j〉 = 1√
2π

ei jθ, j ∈ Z. (5)

In the following, we will restrict ourselves on the QDKR
defined by the evolution operator given by eq. (4). It has been
found that when potential VS is taken, this system has the
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same spectrum as the kicked Harper model due to the ad-
ditional symmetry [22, 23]; Moreover, if � satisfies further
the condition � ≈ 2πM/N, where M and N are odd co-
prime integers1), a quantum wavepacket that can be readily
prepared initially may spread in time exponentially [6, 10].
As we will show in the following, the exponential spread-
ing is possible thanks to two properties of VS, i.e., its KAM
nature and the symmetry of VS(θ) = −VS(θ + π). This poten-
tial also has the reflecting symmetry of VS(θ) = VS(−θ) but
this symmetry is irrelevant to the exponential spreading. In
order to show this and to explore the superballistic spread-
ing, in this work we consider the QDKR (defined by eq. (4))
with potentials of non-KAM nature and various symmetries.
For simulations, we consider three linear piecewise potential
functions, denoted as VA, VB, and VC, that are schematically
plotted in Figure 1. All of them are non-analytic and therefore
non-KAM. In particular, VA has two symmetries as VS does,
i.e., VA(θ) = −VA(θ + π) and VA(θ) = VA(−θ), but VB and VC

have only the former and the latter, respectively. Our aim is to
compare the wavepacket dynamics of the QDKR for these po-
tentials to figure out the key factors for the superballistic and
exponential spreading. Our study has clarified that the de-
tails of the potential are irrelevant, but the simulation results
presented in the following are for the three concrete potential
functions with common turning points of (θ, p) = (−π,−1)
and (0, 1), and extra turning points of (θ, p) = (−π/2, g) and
(π/2,−g) for VB but (θ, p) = (−π/2, g) and (π/2, g) instead
for VC. Here g is a parameter that we assume to be g = 0.5;
if g = 0 then both VB and VC reduce to VA. Throughout the
paper the kicking strength parameter is fixed to be K = 5 at

which the classical limit of the three systems are all chaotic.

3 Quantum superballistic wavepacket spread-
ing

For a pure state of the QDKR, the kinetic energy of the sys-

tem E(t) = 〈ψ(t)| p2

2 |ψ(t)〉 also represents the variance of the
wavepacket in the angular momentum space. We therefore
investigate the time dependence of the kinetic energy of our
QDKR models. The initial state is set to be |ψ(0)〉 = |0〉, i.e.,
the eigenstate of p with a zero angular momentum. Numeri-
cally, we invoke the fast Fourier transform algorithm to simu-
late the evolution of the system and to calculate E(t) with the
obtained |ψ(t)〉.

We have found that if � is close to a value of 2πM/N,
where M and N are odd coprime integers, for the QDKR with
potential VA and VB the wavepacket undergoes the superbal-
listic spreading. This is the main result of this work. Ex-
amples for the case of � ≈ 2π and � ≈ 2π/3 are shown in
Figures 2(a), (b) and see one example in sect. 6, respectively.
Generally, E(t) displays three stages, and the two character-
istic time scales are denoted as tc and ts (indicated by the ar-
rows in Figures 2(a) and (b)), respectively. At the first stage
for t < tc, the wavepacket spreads ballistically, E(t) ∼ t2; At
the second stage for tc < t < ts, it spreads superballistically,
E(t) ∼ t3. Finally, for t > ts, the superballistic spreading is
suppressed and E(t) begins to oscillate around a certain value
denoted as Es. For potential VC the intermediate superballis-
tic stage is missing; there are only two stages left: the ballistic
stage is followed by the oscillating one.
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Figure 1 Three linear piecewise potential functions of the 1D double kicked rotor studied in this work. Potential VB and VC have the symmetry of
VB(θ) = −VB(θ + π) and VC(θ) = VC(−θ), respectively, while potential VA have both.
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Figure 2 (Color online) Time dependence of the energy of both the QDKR (red solid bullets) and its pseudoclassical system (blue open squares) for three
potential functions, (a) VA; (b) VB; and (c) VC, respectively. In each panel, the time scaling ∼ t2 and ∼ t3 are indicated by the dotted and the dashed line,
respectively, for reference. In all the cases � = 2π + �̃ and �̃ = 10−3.

1) As �τ = 4π, Δτ = 1 and τ > Δτ, the condition � ≈ 2πM/N can be satisfied by adjusting the parameter τ so that τ ≈ 2N/M > 1. This implies that 2N > M,
which is assumed in the following.
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Denote the deviation of � from 2πM/N as �̃, i.e., � =
2πM/N + �̃, our numerical analysis has established the fol-
lowing scaling2) :

tc ∼ 1/
√
�̃, ts ∼ 1/�̃, Es ∼ 1/�̃2. (6)

It implies that though the superballistic stage is finite, it can
be arbitrarily long by decreasing the parameter �̃. In the fol-
lowing sections we will discuss further these relations and
why for potential VC the superballistic spreading does not oc-
cur.

4 Pseudoclassical limit at � ≈ 2π
For both the QKR and the DQKR with potential VS, the spe-
cial case of � = 2π+�̃ (|�̃| 	 1) is of special interest because it
allows one to analyze the system by a classical method [6,11].
This is known as the pseudoclassical limit theory [11], which
maps the system onto a virtual classical system by assuming
�̃ as a virtual Planck constant and taking the virtual classical
limit of �̃ → 0. We find that the pseudoclassical limit theory
is also valid in dealing with our DQKR models of non-KAM
potentials. In this section we use this method to explore the
mechanism and the properties of the superballistic spreading.
Let

θ̃ = θ, p̃ = p�̃/�, K̃ = K�̃/�, (7)

the operator U defined by eq. (4) can be rewritten as:

Ũ = e
i
�̃

(
p̃2

2 +π p̃
)
e−i

K̃
�̃
V(θ̃)e

− i
�̃

(
p̃2

2 +π p̃
)
e−i

K̃
�̃
V(θ̃). (8)

This implies a rotor that is described by the conjugate pair
(θ̃, p̃) and is subjected to the external field K̃V(θ̃). In the
pseudoclassical limit of �̃ → 0, this rotor undergoes a free
rotation with the angular velocity dθ̃/dt = p̃ + π or −( p̃ + π)
alternatively between two consequential kicks, and the corre-
sponding classical motion within a single step is given by the
map M : (θ̃n, p̃n)→ (θ̃n+1, p̃n+1),

M :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ = p̃n + K̃ f (θ̃n),

o = θ̃n + ρ + π,

p̃n+1 = ρ + K̃ f (o),

θ̃n+1 = o − p̃n+1 + π,

(9)

where f (θ) ≡ −dV(θ)/dθ (ρ and o are two intermediate vari-
ables). This defines the classical kicked rotor system in the
pseudoclassical limit, which, in the following we refer to as
the pseudoclassical system of the QDKR. We are interested
in the “energy” of this pseudoclassical system Ẽ ≡ 〈p̃2/2〉,
where the average is taken over an ensemble of initial con-
ditions. In order to compare the results with those of the
QDKR, we assume the rescaled energy, denoted by E(t) as
well without confusion, that E(t) ≡ Ẽ(t)�2/�̃2. We also as-
sume the initial conditions (θ̃0, p̃0) that match the initial quan-
tum state |0〉; i.e., p̃0 = 0 and θ̃0 distributes uniformly in

[−π,π). In our simulations, an ensemble of 104 initial condi-
tions is adopted.

The results of E(t) for the pseudoclassical systems with
the three linear piecewise potentials are shown in Figure 2 for
� = 2π+ �̃ and �̃ = 10−3. It can be seen that for potentials VA

and VB, E(t) increases with the cubic of time all the way until
t = ts. In addition, the agreement between the QDKR sys-
tems and their pseudoclassical systems is perfect for t > tc.
For potential VC, the pseudoclassical system also undergoes
ballistic motion, and the agreement with the QDKR is perfect
as well. These results suggest that the pseudoclassical limit
theory works well for our models despite of their non-KAM
nature, and the ballistic spreading of the QDKR with VA and
VB is a pure quantum effect.

In order to understand the mechanism of the observed su-
perballistic (for VA and VB) and ballistic (for VC) motions, we
plot the phase portraits of the three pseudoclassical systems
in Figure 3. It shows that for VA and VB there is a common
feature that is absent for VC: There is a horizontal phase line
along the θ̃ axis. For VA (see Figure 3(a)), checking further
the motion of the phase points one may find that a phase point
on the positive half of θ̃-axis moves to the right at a constant
speed until it reaches θ̃ = π, then the point moves up towards
the point (θ̃, p̃) = (0, 2π), also at a constant speed. The mo-
tion of the points on the negative half of θ̃-axis is the same but
along the opposite direction. This observation explains why
Ẽ(t) ∼ t3. In fact, Ẽ(t) ∼ Pp̃�0(t)t2, where Pp̃�0(t) stands for
the potion of phase points in the average ensemble that have
left θ̃-axis at time t, which increases as ∼ t, and t2 stands for
the contributions of these points to the averaged energy be-
cause their momentum increases linearly; i.e., p̃(t) ∼ t. This
mechanism is the same in spirit as that outlined in ref. [4].
For VB this explanation still works, despite of the fact that the
motion of phase points on θ̃-axis takes two different constant
speeds instead because |∂VB(θ)/∂θ| has two different values.
For VC after one step of evolution all the phase points in the
average ensemble will leave θ̃-axis and begin to move ballis-
tically, hence we have Pp̃�0(t) = 1 for t > 0 and Ẽ(t) ∼ t2.

It is important to note that the phase space structure has a
period 2π in p̃ direction. Consequently, the superballistic (for
VA and VB) and the ballistic (for VC) diffusion does not last
forever. When the phase points reach | p̃| ≈ 2π their motion
directions may change, and therefore the energy increasing
slows down. For the cases shown in Figure 2, Es can then be
estimated to be Ẽs�

2/�̃2 ≈ 8 × 108, which agrees very well
with the simulation results (see Figure 2).

With the help of the classical motion equation given by
map M, we can further determine the prefactor of the super-
ballistic and the ballistic diffusion. As an example here we
consider the case with potential VA, but the calculations can
be extended to other two cases straightforwardly. Based on
eq. (9), after one step of iteration a given initial condition
(θ̃0, p̃0) ( p̃0 = 0) is mapped to

2) We assume �̃ � 0 throughout but �̃ can be negative (see ref. [11]) and all the results presented in this work can be extended to �̃ < 0 straightforwardly.
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Figure 3 The phase space structure of the system in the pseudoclassical limit of the QDKR with potential given by VA (a), VB (b), and VC (c), respectively.
The arrows in (a) and (b) indicate the moving direction of phase points on the negative and positive half of θ̃-axis. All the parameters are the same as in Figure 2.

(θ̃1, p̃1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̃0 − Δ, 2Δ), for π − Δ � θ̃0 < π,

(θ̃0 + Δ, 0), for 0 � θ̃0 < π − Δ,
(θ̃0 − Δ, 0), for Δ − π � θ̃0 < 0,

(θ̃0 + Δ, 2Δ), for − π � θ̃0 < Δ − π,

(10)

where Δ ≡ 2K̃/π. It shows that after one step of iteration, a
portion of Δ/π phase points in the initial condition ensemble
increases by an amount of 2Δ2 in their energy. Repeating this
calculation, one finds that after n steps of iteration, n portions
of initial conditions have, respectively, energy 2Δ2, 4Δ2, · · · ,
2n2Δ2, before the momentum of the portion with the largest
energy 2n2Δ2 reaches | p̃| ≈ 2π. It follows that in the time
range t < ts with

ts ≈ π

Δ
=

π2
�

2K�̃
, (11)

the ensemble averaged energy increases as:

Ẽ(t) =
Δ3

3π
t(t + 1)(2t + 1) ≈ 2Δ3

3π
t3, (12)

or in terms of E(t), that

E(t) = Ẽ(t)
�

2

�̃2
≈ 16K3

�̃

3π4�
t3. (13)

These results have been fully corroborated by the simula-
tions.

Now it is in order to explain why for VA and VB there
is the crucial phase space structure along θ̃-axis but for VC

there is not. For an initial phase point (θ̃0, p̃0) on θ̃-axis,
i.e., p̃0 = 0, it can be obtained from eq. (9) that p̃1 =

K̃[ f (θ̃0) + f (θ̃0 + K̃ f (θ̃0) + π)]; Considering that K̃ = �̃K/�
can be much smaller than one due to �̃ 	 1, it implies
that in general p̃1 ≈ K̃[ f (θ̃0) + f (θ̃0 + π)]. So after one
step of iteration a typical initial phase point will leave θ̃-
axis. However, if the potential has the symmetry V(θ̃) =
−V(θ̃ + π), then f (θ̃) has the same symmetry and as a re-
sult p̃1 = K̃[ f (θ̃0) − f (θ̃0 + K̃ f (θ̃0))] = O(K̃2) if V is smooth
enough. Therefore, up to the first order of K̃ we have p̃1 = 0
(In fact, for VA and VB, we can prove that p1 = 0 exactly if
θ̃0 and θ̃0 + K̃ f (θ̃0) are on the same line segment of the po-
tential function). This argument works not only for VA and
VB, but also for other non-KAM potentials (see one example

presented in the sect. 6) and KAM potentials (such as VS)
of the same symmetry. For a KAM system, the difference is
that there are hyperbolic fixed points on θ̃-axis; they make
the nearby phase points approach and leave them exponen-
tially and thus induce the exponential wavepacket spreading
instead [6, 10].

5 Two characteristic time scales

Now let us come back to the QDKR models. As their pseudo-
classical systems mimic their motions closely, we are able to
explore their motions via the latter. In this section we discuss
the times tc and ts that characterize the quantum superballis-
tic spreading. For the sake of convenience let us first consider
the case of potential VA and � = 2π+ �̃ (�̃	 1). For this case
we have obtained ts in the pseudoclassical system and found
that it applies to the QDKR system equally. However, as the
pseudoclassical system does not show the ballistic motion in
the initial stage for t < tc, we can not probe the clues of the
time tc from it.

In fact, the initial ballistic spreading of the considered
QDKR is a result of the quantum antiresonance. To show

this let us assume �̃ = 0 and � = 2π so that exp
(
±i p2

2�

)
|k〉 =

(−1)k|k〉. Taking this into account, we can write the matrix
elements of operator U (eq. (4)) as:

〈 j|U |k〉 = (−1) j+k

2π

∫ π

−π
dθei(k− j)θe−i

K
�
[V(θ)+V(θ+π)]. (14)

It follows that for VA, which satisfies VA(θ) = −VA(θ + π),
U reduces to the identity operator [13]. We have the same
property for VB but not for VC. Now, if �̃ is slightly changed,
we find that locally U remains close to the identity, i.e., for
| j|, |k| < 1/

√
�̃,

〈 j|U |k〉 ≈
{

1 − O(�̃), for j = k,
O(�̃3/2), for j � k.

(15)

This gives 〈 j|Ut|k〉 ≈ t〈 j|U |k〉 ( j � k) and

E(t) =
�

2

2

∑
j

j2|〈 j|Ut|k〉|2 ≈ Dt2 (16)

for the initial state |0〉 with

D =
�

2

2

∑
j

j2|〈 j|U |0〉|2. (17)
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This explains why E(t) increases ballistically at the initial
stage for the QDKR with potential VA and VB. Numerically,
we can further determine D up to a numerical prefactor, i.e.,

D ∼ K2
√
�̃. (18)

For the QDKR with potential VA, if we identify its superbal-
listic spreading process with that of its pseudoclassical sys-
tem, then by combining eqs. (13) and (18), we find

tc ∼ 1

K
√
�̃

. (19)

We put eqs. (19) and (11) into numerical tests and show the
results are in Figure 4(b). It can be seen that the simulation re-
sults fit them very well. Numerically, tc and ts are determined
by best fitting E(t) with ∼ t2 and ∼ t3 respectively in the bal-
listic and superballistic stage and extrapolating the two best
fitting lines: Their intersection point gives tc and the time at
which E(t) begins to deviate from the extrapolated best fitting
line over the superballistic stage gives ts (see Figure 4(a)).

For other cases in this study where the superballistic
spreading is observed, the numerical factors of tc and ts ob-
tained via this special example are different, but their depen-
dence on �̃, i.e., tc ∼ 1/�̃0.5 and ts ∼ 1/�̃, still holds, as con-
firmed by extensive simulations. Hence the scaling relations
given by eq. (6) are expected to be valid generally for the
superballistic spreading in non-KAM QDKR systems.

6 Discussions and summary

In the last two sections we have mainly studied the special
case of VA and � = 2π + �̃ (�̃ 	 1). In fact the superballis-
tic wavepacket spreading have been found to generally occur
in the QDKR with other non-KAM potentials of symmetry
V(θ) = −V(θ + π) and other � values close to 2πM/N. For
example, in Figure 4(c) we present the simulation results of
E(t) for potential VA but at � ≈ 2π/3, from which the char-
acteristics of the superballistic spreading similar to the case
of � ≈ 2π can be clearly seen. In addition, it has also been
found that tc, ts, and Es in this case follows eq. (6) closely
(data not shown). Another example is shown in Figure 5 for
a more general non-KAM potential:

VD(θ) =

{
1 − 2(θ/π)2, for − π � θ < 0,
2(θ/π − 1)2 − 1, for 0 � θ < π.

(20)

This is a piecewise quadratic potential “randomly” designed
with the only requirement of symmetry VD(θ) = −VD(θ + π).
It has been seen that the superballistic spreading occurs again
with the same characteristics.

It is interesting to notice that the symmetry of potential
V(θ) = −V(θ + π) plays an important role for both the super-
ballistic spreading observed in this work and the exponential
spreading observed in ref. [6] with VS(θ) = cos(θ). Indeed,
we find that if we replace VS with V(θ) = cos(mθ) where m is
instead an even integer, which is a KAM-type potential but
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loses the symmetry of V(θ) = −V(θ + π), then the exponen-
tial spreading no longer happens; rather, it is replaced by
the ballistic spreading. For V(θ) = cos(mθ) with even m,
we find that the phase space structure of the corresponding
pseudoclassical system at � ≈ 2π is similar to Figure 3(c):
The key structure along the θ̃ axis in the case of VS, i.e., the
stable and unstable manifolds of the hyperbolic fixed points
(θ̃, p̃) = (−π, 0) and (0, 0) that are essential to the exponen-
tial spreading [6], vanishes. Therefore, the role the symmetry
V(θ) = −V(θ + π) plays, is to create a special structure along
the θ̃ axis which in turn is taken full advantage by the initial
conditions around the θ̃ axis (see the discussion at the end of
sect. 4). In our non-KAM QDKR, the profound difference in
quantum dynamics lies in the phase space structure (of the
pseudoclassical system) along the θ̃ axis: Due to the non-
KAM nature of the potential, the hyperbolicity of the fixed
points is destroyed and the phase points on the θ̃ axis do not
move exponentially.

To summarize, we have shown that the superballistic
wavepacket spreading can happen in a class of QDKR sys-
tems provides, (i) � ≈ 2πM/N where M and N are odd co-
prime integers; (ii) the system is non-KAM; and (iii) the po-
tential has the symmetry V(θ) = −V(θ + π). The wavepacket
spreading will become exponential if the system is KAM-
type or ballistic if the potential loses the required symmetry.
Our study evidences the effectiveness of the pseudoclassical
limit theory and the rich dynamics of the QKR. An interesting
question is whether the hyperdiffusive wavepacket spreading
(γ > 3) is possible in the QKR and its variants, which we
leave for future studies.
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