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Abstract We present an overview of quantum-safe cryptography (QSC) with a focus on post-quantum

cryptography (PQC) and information-theoretic security. From a cryptographic point of view, lattice and

code-based schemes are among the most promising PQC solutions. Both approaches are based on the

hardness of decoding problems of linear codes with different metrics. From an information-theoretic point of

view, lattices and linear codes can be constructed to achieve certain secrecy quantities for wiretap channels

as is intrinsically classical- and quantum-safe. Historically, coding theory and cryptography are intimately

connected since Shannon’s pioneering studies but have somehow diverged later. QSC offers an opportunity

to rebuild the synergy of the two areas, hopefully leading to further development beyond the NIST PQC

standardization process. In this paper, we provide a survey of lattice and code designs that are believed to

be quantum-safe in the area of cryptography or coding theory. The interplay and similarities between the

two areas are discussed. We also conclude our understandings and prospects of future research after NIST

PQC standardisation.
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1 Introduction

Cryptography is a subject area of long history, playing a crucial role in human society ever since the
dawn of civilization. Claude Shannon’s 1945 paper “A mathematical theory of cryptography” is widely
regarded as the beginning of modern cryptography, as a new science. In 1949, Shannon published another
landmark paper “A mathematical theory of communication”, founding the area of information theory. As
noted by Shannon himself, cryptography and information theory are very close together. Cryptography is
the science of concealing information, while information theory is primarily concerned with transmitting
information. Thus the two subjects can benefit from each other. In fact, the insights Shannon obtained
from the study of cryptography were key to his development of information theory.

The two subjects share many common concepts and formulations, and it seemed they were to live
happily ever after — until the rise of public-key cryptography. In 1976, Diffie and Hellman published
a famous paper “New directions in cryptography” in IEEE Transactions on Information Theory. Iron-
ically, this paper triggered the decline of the influence of information theory on cryptography, whereas
cryptography as a stand-alone subject has grown tremendously in the past few decades. This is because
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modern cryptography is mostly based on computational security, rather than information-theoretic secu-
rity conceived by Shannon, even though the latter still plays a (relatively minor) role in cryptography.
One could say that information theory and cryptography are now separate, if not divorced. Fortunately,
quantum-safe cryptography offers an opportunity to bring them back together.

Current public-key cryptographic schemes based on integer factoring and discrete logarithm would
collapse under quantum computing attacks using Shor’s algorithm. This is a serious concern to our
modern data-driven society, which has been scrutinized by governments, companies, and research in-
stitutions. Standardisation bodies such as the National Institute of Standards and Technology (NIST),
European Telecommunications Standards Institute (ETSI), and International Organization for Standard-
ization (ISO) are in the process of developing standards of post-quantum cryptography. In particular,
the NIST process of post-quantum cryptography has attracted broad attention and research throughout
the world. Among the prospective methods which are expected to be standardized for post-quantum
cryptography, lattice and code-based cryptography emerge as the most promising approaches.

Historically, there is a close connection between code and lattice-based cryptography, since both can
be viewed as linear codes. The first code-based public-key cryptosystem is the well-known McEliece
cryptosystem, published in 1978. The main drawback of McEliece-type cryptosystems is the large public
key size. Lattice-based cryptography (LBC) can be viewed as a renaissance of code-based cryptography,
using the Euclidean metric rather than the Hamming metric. In fact, developments in lattice and code-
based cryptography often inspire each other.

At a high level, both code and lattice-based cryptography are often based on a fundamental problem
of coding theory, i.e., maximum-likelihood decoding: upon receiving vector

y = Ax+ e,

where A is a (public) matrix, x is a vector and e is noise, the problem is to recover x. This is also
known as learning with errors (LWE) in lattice-based cryptography. Since maximum-likelihood decoding
is computationally hard for random A, y is pseudorandom and can be used to hide a message m.
Therefore, the ciphertext is given by

y′ = Ax+ e+ Enc(m),

where Enc(·) represents an error-correcting code to cope with noise, and informally, x can be thought
of as a secret key. A legitimate user with access to the key will be able to decode the message m after
subtracting out Ax from y′, but an adversary without access to the key cannot distinguish the ciphertext
y′ from a random string. Note the two-fold role of noise here: it is added to hide the message, but it
also causes decoding errors, prompting the usage of error correction coding. Another popular problem
in code and lattice-based cryptography is syndrome decoding: upon receiving vector y, computing the
syndrome

s = Ay,

the problem is to find a low-weight vector x satisfying the above syndrome equation, i.e., Ax = s. This
is also known as the inhomogeneous short integer solution (ISIS) problem in lattice-based cryptography.
Clearly, LWE and ISIS are inspired by their counterparts in coding theory.

In this paper, we present a coherent view of cryptography and coding theory in the context of quantum-
safe cryptography, and the bridge is built by lattices and codes. Quantum-safe cryptographic primitives
and channel coding schemes are reviewed and standard designs are described. Especially for post-quantum
cryptography (PQC) which has developed rapidly in the last decade, we give our understanding of the
interdisciplinary “genes” of cryptography (especially the lattice and code-based primitives) and coding
theory. We also conclude what can be projected into future research from the reintegration of the two
areas.

Roadmap. This rest of the paper is organized as follows. In Section 2, an overview of the NIST
standardization process is given. In Section 3, public-key encryption/key encapsulation mechanisms and
signature schemes based on hard lattice problems are introduced; a key technique of lattice cryptography,
lattice Gaussian sampling, is also reviewed. Section 4 presents a review of code-based cryptography. An
interplay between lattices and codes can be found in Section 5. Section 6 presents information-theoretic
security which will also remain secure in the post-quantum age and Section 7 summarizes the paper.
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Table 1 NIST third round finalists and alternate candidates

Thrid-round finalists Public-key encryption/KEM Digital signatures

Lattice-based
CRYSTALS-KYBER

NTRU, SABER

CRYSTALS-DILITHIUM

FALCON

Code-based Classic McEliece –

Others – Rainbow

Alternate candidates Public-key encryption/KEM Digital signatures

Lattice-based FrodoKEM, NTRU Prime –

Code-based BIKE, HQC –

Others SIKE GeMSS, Picnic, SPHINCS+

2 Overview of NIST standardization

It is complicated and controversial to answer when a full-fledged quantum computer will be available
because current quantum machines operating on a few dozen quantum bits are far from doing anything
dazzling. As the world’s tech giants (Intel, Google, IBM, etc.) are continuing hitting new milestones
in the field of quantum computing and some governments are supporting the research strategically and
financially, the reality is that the quantum revolution is happening right now and we must stay ahead
of the curve in light of the approaching quantum era. One area of urging importance is the migration
to post-quantum cryptography. In the past few years, industry and standard organizations have started
their own activities in this field.

In December 2016 the NIST (USA) announced a call for proposals for quantum-resistant algorithms in-
cluding public-key encryption (PKE)/key encapsulation mechanism (KEM) and digital signatures. While
symmetric cryptography (e.g., advanced encryption standard (AES), secure Hash algorithm 2 (SHA-2)) is
regarded as quantum-safe as the impact of quantum attack can be effectively mitigated by increasing the
key size, the severe impact is mainly on asymmetric cryptography like RSA (Rivest-Shamir-Adleman),
Diffie-Hellman, and elliptic curve. The focus of NIST PQC standardization is on public-key solutions
including digital signatures and public-key encryption/key establishment.

Cryptographic researchers and practitioners from over 25 countries actively contributed to NIST’s
standardization process. By December of 2017, NIST received 69 valid submissions for the first round
evaluation. These submissions use techniques from a number of different mathematical families, including
lattices, error-correcting codes, multivariate equations, hash functions, elliptic curves, and others. In
January 2019 the field was cut to 26 candidates for the second round, and in July 2020 the program
proceeded to the third round (and apparently final) announcing a short list of 15 candidate proposals
with 7 finalists and another 8 as optional candidates. Identified by their underlying hard problems, 7
schemes are built on lattice cryptography, 3 on code-based cryptography, 2 on multivariate methods, 1
on hash functions, and 1 on isogenies of elliptic curves1). As shown in Table 1, the vast majority of these
successful candidates (10 out of 15) are based on lattices (7) and codes (3).

Making decisions on which proposal to adopt and standardize is sophisticated when every proposal has
its pros and cons. For every submission, NIST investigates and assesses its security strength from both
theoretical and practical aspects. In the context of public-key encryption/key encapsulation mechanism,
NIST intends to standardize schemes that can achieve IND-CCA2 (indistinguishability under adaptive
chosen ciphertext attack) security. But if ephemeral-only PKE/KEM is considered, security guarantee
under chosen plaintext attack (i.e., IND-CPA security) suffices. In the case of digital signature schemes,
proposals should enable existentially unforgeability with respect to adaptive chosen message attacks (i.e.,
EUF-CMA security). NIST categorizes 5 security levels from I to V each of which defines a security
threshold. To break a proposed primitive of a certain security level is supposed to consume at least
comparable computational resource to an existing NIST standard in symmetric cryptography. The com-
putational resource is deemed to be a variety of different metrics (e.g., the number of classical elementary
operations, quantum circuit size, etc.). Additional security factors NIST will consider include resistance
to side-channel attacks, perfect forward secrecy, and resistance to multi-key attacks.

While the security of a PQC proposal is obviously the factor referees care about the most, NIST’s
competition also scopes out their complexity and compatibility. Tradeoffs have to be made between

1) Picnic is a signature scheme in none of the above categories because it does not rely on number theoretic or structured

hardness assumptions. Instead, it is designed using zero-knowledge proof and symmetric primitives.
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Parameters are m,n, q; error distribution χ on Zm

Alice Bob

A
$←− Zm×n

q

s
$←− Znq

e← χ x
$←− {0, 1}m

b := As+ e mod q
(A,b)−−−→ One bit message µ ∈ {0, 1}

c1 := ATx mod q

y := c2 − 〈c1, s〉
= µ⌊ q2⌋+ eTx

(c1,c2)←−−−− c2 := bTx+ µ⌊ q2⌋ mod q

Figure 1 An example of LWE-based public-key encryption.

security, performance, and complexity after a comprehensive study of every submission. As indicated
in NIST’s document on submission requirement and evaluation criteria, NIST’s PQC standardization is
exactly but should not be treated as a competition. It is admitted that different schemes may work with
different scenarios and different platforms. Rather than drawing the conclusion one scheme is better than
another, NIST’s competition aims to encourage discussion and evaluation on proposals which forms the
decision for NIST’s standardization.

3 Lattice-based cryptography

3.1 PKE/KEM

3.1.1 An overview

A large family of lattice-based PKE/KEM is constructed with the LWE problem [1] and its variants
including ring learning with errors (ring-LWE or RLWE), module-LWE (MLWE), and learning with
rounding (LWR).

Definition 1 (LWE sample and LWE distribution). An LWE sample is defined as (A,As+ e mod q)
where the A is uniform in Zm×n

q , the secret s is uniform in Znq and the error term e is drawn from some
distribution ψ over Zn. The LWE sample satisfies an LWE distribution As,ψ.

Observing arbitrarily many (A,As + e), the search-LWE problem is to find the secret vector s while
the decision-LWE is to distinguish As,ψ from a uniform distribution with non-negligible advantage. The
hardness of LWE problems relies on the worst-case approximate shortest independent vectors problem
(SIVPγ) and the decisional approximate shortest vector problem (GapSVPγ). If we look into LWE from
a coding perspective, an LWE sample (A, b = As+e) can be viewed as a random lattice code with some
additive errors. The search version of LWE problem is to find s observing (A,As + e). The vector b is
relatively close to a point in the LWE lattice defined as

L = {As : s ∈ Znq }+ qZm.

So the search-LWE problem can be viewed as bounded distance decoding (BDD) of lattice L in the
average case.

A typical LWE-based public-key encryption is given in Figure 1. As the decryption step on Alice’s
side, the residue error is small enough by choosing appropriate ψ so that the plaintext can be recovered
almost surely. The computational complexity of encrypting a single bit in a typical LWE-based PKE
requires O(n2) scalar operations and the sizes of the public key and the ciphertext are O(n2) and O(n),
respectively. The security of LWE-based PKE schemes (e.g., Frodo and Lizard) relies upon the worst-case
hardness of the approximate SIVP. These schemes provide good resilience against quantum attacks but
suffer from large key sizes and high computational complexity.

The first step towards facilitating LWE using structured lattice is the ring learning with errors problem,
as described in Definition 2. Observing arbitrarily many RLWE samples, the search RLWE problem
is to recover s and its decision version is to distinguish an RLWE distribution from a uniform one.
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Parameters are R, n, q; error distribution χ on Rq := R/qR

Alice Bob

a
$←− Rq

s, e← χ t, e′, e′′ ← χ

b := a · s+ e ∈ Rq
(a,b)−−−→ n-bit secret µ ∈ {0, 1}n

c1 := a · t+ e′ ∈ Rq
shared secret= hash(µ)

y := c2 − c1 · s
= µ⌊ q2⌋+ e · t− e′ · s+ e′′

(c1,c2)←−−−− c2 := b · t+ e′′ + µ⌊ q2⌋ ∈ Rq

shared secret= hash(µ)

Figure 2 An example of RLWE-based public-key KEM.

The cyclotomic ring admits quite fast and elegant ring operations using an FFT-like technique, i.e.,
number theoretic transform (NTT), and consequentially enhances the efficiency and compactness in the
application.

Definition 2 (RLWE sample and RLWE distribution). Define a cyclotomic ring R := Z[x]
1+xn and denote

by Rq = R/qR a quotient ring with an integer prime modulus q ≡ 1 mod 2n. Let · be polynomial
multiplication. For a secret s ∈ Rq and some error distribution ψ over R, we derive a RLWE sample
(a, a · s + e) ∈ Rq × Rq by drawing a from Rq uniformly at random and drawing e from ψ. A RLWE
sample follows the RLWE distribution As,ψ.

Compared with Definition 2, a more rigorous definition of RLWE is given in [2] elaborating a RLWE
sample as (a, a · s + e mod qR∨) where a is uniformly drawn from the ring of integers R modulo q,
s is drawn from the dual ring R∨

q and e adheres to some distribution ψ over KR (K is the cyclotomic
number field associated with the ring R and KR is the tensor product of K and R). Compact and efficient
public-key cryptosystems based on RLWE are designed in [3] though they are a bit far from real-world
protocols due to the choice of ψ and the usages of fractional ideal R∨ (unless in the 2-power cyclotomic
setting where R∨ = 1

n
R is a scaling of R). Peikert took one more step to develop these cryptosystems

into “drop-in” components as Internet protocols [4]. In his work, the R∨ is translated to R cautiously
without distorting the canonical geometry and a reconciliation method is employed for key agreement. A
consensus technique similar to reconciliation can be found in another PQC candidate key consensus from
lattice (KCL). Other NIST candidates, e.g., NewHope, HILA5, and lattice-based cryptography (LAC),
adopt error-correcting codes for key agreement/encryption.

A RLWE-based KEM scheme is given in Figure 2 where the hash(·) function yields an n-bit shared
secret given an n-bit secret µ as input. To encrypt an n-bit message or to share an n-bit secret, the
public key and ciphertext size is as large as O(n). Moreover, the polynomial multiplication (a · s) in the
ring setting can be performed in O(n log n) scalar operations using NTT. Although none of the RLWE-
based PKE/KEMs are selected as NIST’s third round finalists in the fierce competition, we cannot deny
their great potential in future research and standardization due to their attractive features especially the
efficiency.

3.1.2 Error correction coding

Since we expect to give some flavor of coding in PQC, it is worthwhile revisiting the error correction
problem in lattice based PKE/KEM. We found error-correction codes in some PKE/KEM proposals,
e.g., repetition codes in NewHope, BCH codes in LAC, and another polynomial codes named XEf in
Round5. This “unusual design”, remarked in NIST’s report, is employed to fix the decryption failures
as a result of a minor residue error term after decryption. Some attacks using the decryption failure
rate (DFR) put some schemes under threat because the residue error term might be related to some
ciphertexts and even some specific secret terms. Once the underlying relation is learned by attackers, the
security will be impacted. There are already attacks of this type. For example, the “failure boosting”
and “directional failure boosting”, proposed by D’Anvers et al. [5,6] can be used to find some ciphertexts
which are more likely to trigger decryption failures. They also verified these attacks on some basic
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versions of ring/module-LWE/LWR PKE/KEMs with comparable parameterization to NIST candidates,
e.g., NTRUEncrypt, KYBER, SABER. The security is impacted assuming unlimited decryption queries
are allowed. Another attack proposed by Guo et al. [7] also exploits the relation between some “weak”
ciphertexts and some secret keys of certain Hamming weight pattern.

Besides the error-correction codes used in NIST submissions, some academic researches [8] can be
found to apply modern error correcting codes and its soft-decision decoding to lattice cryptography, e.g.,
low-density parity-check (LDPC) codes. Normally, soft-decision decoding algorithms give much better
error-correcting capability, and to the best of our knowledge, they assume independent channel models.
It is common in communication systems whereas in RLWE-based cryptography it is not the case. As in
Figure 2, the residue error term e·t−e′ ·s+e′′ has correlated coordinates due to polynomial multiplications
over Rq. As in Figure 2, the ring structure introduces dependency between the coordinates of the residue
error. It becomes obvious if we present the residue error term e · t− e′ · s+ e′′ in vector format, i.e.,















e −en−1 · · · −e1
e1 e0 · · · −e2
...

...
. . .

...

en−1 en−2 · · · e0















t−















s0 −sn−1 · · · −s1
s1 s0 · · · −s2
...

...
. . .

...

sn−1 sn−2 · · · s0















e′ + e′′.

In [8], this dependency is assumed to be negligible. However, the impact of the dependency is analyzed
by D’Anvers et al. [9] showing that the DFR will be underestimated (the security will be overestimated
consequently) when error-correcting codes are used. They also proposed a relaxed independence assump-
tion by which they gave a new DFR estimation for LAC. A drawback of this relaxed assumption is that
it works with schemes like LAC which draws secret terms and error terms from centered binomial over
{−1, 0, 1}. In the case when a genuine discrete Gaussian is used or when the binomial distribution is
wide, their method becomes computationally infeasible.

In [10], polar codes are employed for error correction in RLWE-based PKE. They address the error
dependency issue using canonical embedding. To be specific, the polynomial multiplication of the ring
elements is converted to coordinate-wise multiplication of vectors under canonical bedding, leaving the
residue error term with identically independent coordinates. Moreover, some knowledge about the residue
error is actually known by the decoder in RLWE-based PKE. By analogy with channel coding, they
name this knowledge as channel state information (CSI) which can be exploited to improve decoding
performance. Compared with the BCH code and LDPC code, polar code is more friendly to constant-
time implementation because both encoding and decoding can be realized by a butterfly circuit with
quasi-linear complexity O(N logN).

3.2 Signatures

In the early stage of lattice-based cryptography, signature schemes following the Goldreich-Goldwasser-
Halevi (GGH) strategy suffer certain vulnerability that each signature leaks information on the signer’s
secret key (i.e., the signer’s secret lattice basis), and this property has been exploited in Nguyen and
Regev’s attack of “learning the parallelotope”. Specifically, the shape of the parallelotope defined by the
secret basis can be learned by using a number of signature samples to perform blind source separation. The
NIST digital signature schemes based on LBC fall into two categories: (a) Gentry-Peikert-Vaikuntanathan
(GPV) framework with trapdoor sampling and (b) signatures using Fiat-Shamir transform.

Gentry et al. [11] first constructed a type of “trapdoor” cryptographic tools based on the (inhomo-
geneous) short integer solution (SIS) which can be reduced to the standard worst-case lattice problems.
Such trapdoor construction immediately finds its applications in cryptography including digital signa-
tures. Before giving an instantiation of GPV signature using SIS, we first review the SIS as described in
Definition 3.

Definition 3 (SIS). Given a uniformly random matrix A ∈ Zn×mq , find a nonzero integer vector z ∈ Zm

of norm ‖z‖ 6 β such that
fA(z) := Az = 0 ∈ Znq .

For m = poly(n), β > 0 and q > β · poly(n), solving the above SIS problem is as hard as GapSVPγ
and SIVPγ . Assuming the hardness of SIS, function fA(z) is collision resistant (or one-way) because the
equation fA(z′) = fA(z′′) for distinct z′ and z′′ implies a solution to SIS.
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Parameters are m,n, q, s; η(L): smoothing parameter of L⊥(A)

Signer Verifier

Public key: A
$←− Zn×mq .

Secret key: S ∈ Zm×m be a good basis of L⊥(A)

s.t. AS = 0 mod q.

Message: m

u := hash(m)

Signature: y ← DL⊥
u
(A),s for s > η(L)

s.t. ‖y‖ 6 s
√
m.

(A,y)−−−−→ If Ay = u and ‖y‖ 6 s
√
m, then accept;

otherwise, invalid signature.

Figure 3 A GPV instantiation using SIS.

Then we define a q-array m-dimensional integer lattice and its coset as

L⊥(A) :=
{

z ∈ Zm : Az = 0 ∈ Znq
}

,

and
L⊥u (A) :=

{

z ∈ Zm : Az = u ∈ Znq
}

, respectively.

A concrete instantiation of GPV signature using q-array integer lattice and preimage sampling is given
in Figure 3.
• At key generation step, a signer has a uniformly random public matrix A ∈ Zn×mq and a secret

matrix S ∈ Zm×m
q such that AS = 0 mod q. The secret S is said to be a good basis of a lattice L⊥(A)

with small coefficients and good orthogonality. A specific way to construct A, S called “Gadget” can be
found in [12].
• The signer hash the message m into a vector u ∈ Znq . A not necessarily short solution x to Ax = u

can be derived using Gaussian elimination. Using the good basis S, the signer derives the signature y

by sampling from a lattice Gaussian distribution (LGD) DL⊥
u
(A),s over a coset L⊥u (A) of L⊥(A) with

standard deviation s larger than the smoothing parameter η(L). The signer accepts the signature y if
‖y‖ 6 s

√
m.

• At the verifier’s side, a signature y is considered to be valid if Ay = u and ‖y‖ 6 s
√
m. Otherwise,

y is invalid.
The above hash-and-sign signature is unforgeable because an adversary who only knows A and u

cannot recover a valid y assuming the hardness of SIS. It is notable that in the above GPV framework, a
trapdoor sampler that can yield a smaller standard deviation enables stronger security while Klein’s and
Peikert’s algorithms do not work with arbitrarily small standard deviations. Another lattice sampling
algorithm using Monte Carlo Markov Chain supports arbitrary standard deviations, therefore, enjoys
higher security at the cost of longer running time [13, 14].

Falcon adapts NTRU lattice to the GPV framework while another third-round signature candidate
CRYSTALS-DILITHIUM employs the Fiat-Shamir transform and rejection sampling. Its security relies
on the hardness of MLWE and module-SIS. Digital signatures using Fiat-Shamir’s technique was first
proposed by Lyubashevsky [15] and the rejection sampling was later adapted and improved in [16] and
the signature scheme BLISS [17]. As a high-level description, the signer has a secret key S ∈ Zm×n

q with
small coefficients and a public key consists of A ∈ Zn×mq and the other matrix T = AS. The signer
firstly picks a short vector y from a normal distribution N (0, σ2Im×m), calculates c = Ay and then
computes z = Sc + y which adheres to N (Sc, σ2Im×m). A rejection sampling is applied to shape the
distribution of z by a shift of −Sc. In this manner, the signature is statistically independent of the secret
S, therefore, leaks almost no information about S. The singer outputs (z, c) as the signature and the
verification is done by checking if the norm of z is short and if Ay = Az − Tc.

Remark 1. For some lattice-based cryptosystems (and some code-based ones in the sequel), we observe
some links between encryption and channel coding, signature and source coding, identity-based encryption
(IBE) and joint source-channel coding.
• Taking LWE for example, encryption is to map the plaintext to a codeword of a random linear code

disrupted by the noise of a certain distribution. The search-LWE problem is similar to the maximum-
likelihood decoding problem in the Euclidean metric. Another example is that the ISIS problem can be



Wang J B, et al. Sci China Inf Sci January 2022 Vol. 65 111301:8

High probability

Low probability

D
Z

2
,σ
 (
λ
)

λ
2

λ
1

Figure 4 (Color online) Lattice Gaussian distribution.

seen as syndrome decoding. Similar links can be found in code-based encryption schemes in Hamming
or rank metric in the sequel.

• For lattice-based digital signatures, the signature is either drawn from a certain distribution (e.g.,
discrete Gaussian over a lattice coset) or randomized to hide the secret (e.g., Lyubashevsky’s scheme
without trapdoor). We can consider it as producing an unbiased distribution while source coding is on
the contrary to remove the randomness of a certain unbiased distribution. This relation can be reflected
by the Knuth-Yao sampling and Huffman source coding techniques both of which employ a binary tree
but for opposite purposes.

• In some sense, we can found a link between IBE from GPV [11] and joint source-channel coding.
The GPV IBE can be seen as the “dual” version of Regev’s LWE cryptosystem. The master public key
of the authority is a matrix A and its trapdoor is the master secret key. The public key of a user is a
concatenation of A and a hash u of its unique identity (e.g., email address). The user secret key x is
a preimage of u = Ax. As introduced earlier in this section, vector x is derived by trapdoor sampling
from distribution DL⊥

u
(A),s which can be seen as the “reverse process” of source coding. What follows is

the standard encryption and decryption of an LWE-based scheme as is analogous to the channel coding
problem.

3.3 Lattice Gaussian sampling

Definition 4 (LGD). Let Λ be an n-dimensional lattice in Rn and let ρc,s(x) = exp(−π‖x−c‖2/s2) be
a spherical Gaussian function centered at x = c with Gaussian parameter s. The Gaussian distribution
over a lattice Λ is defined as

∀x ∈ Λ, DΛ,c,s(x) = ρc,s(x)/ρc,s(Λ),

where ρc,s(Λ) =
∑

z∈Λ ρc,s(z). We can use DΛ,s(x) for abbreviation if c = 0.

Lattice Gaussian sampling (LGS) has become a fundamental tool in LBC. Typically, the task of LGS
is to draw vectors from LGD, which is a discretized Gaussian distribution over a lattice. In LGD, every
lattice point in the lattice is assigned with a probability, and the lattice point closer to the center of the
distribution naturally corresponds to a larger sampling probability. Intuitively, the probabilities of lattice
points are controlled by the standard deviation of a LGD, where a small standard deviation accounts for
a sharp distribution and vice-versa. An example of a LGD over a Z2-lattice is illustrated in Figure 4.

LGD is frequently used in lattice cryptosystems especially lattice signatures. A special case of LGS is
integer Gaussian sampling which is deemed as the fundamental building block of LBC. However, inap-
propriate LGS sometimes accounts for some efficiency and security issues. Many lattice-based proposals
managed to avoid the lattice/integer Gaussian sampling operations, e.g., CRYSTALS-DILITHIUM uses
uniform distribution instead, and SABER and KYBER use binomial distribution instead. Nonetheless,
LGS, especially integer Gaussian sampling, cannot be completely avoided.
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Well-studied LGS algorithms include Klein’s sampler which is a randomized version of Babai’s nearest
plane algorithm and Peikert’s parallelizable sampler [18]. Falcon, a NIST’ third round finalist, employs
a fast Fourier orthogonalization method [19] to construct a trapdoor sampler for NTRU lattices which
combines the quality of Klein’s sampler and the efficiency of Peikert’s. A “Gadget”-based trapdoor was
devised in [12] which enables efficient trapdoor sampling using “Gadget”.

Another line of research focuses on integer Gaussian sampling though it is indeed an aged topic.
Traditional solutions include the cumulative distribution table (CDT) sampler, the Knuth-Yao sampler,
and the discrete Ziggurat sampler. Recent researches [20,21] suggested an integer Gaussian sampler works
in a two-phase manner: a base sampler (e.g., Knuth-Yao, CDT) produces and stores plenty of samples
from an integer Gaussian distribution of small parameters; the target distribution is shaped with the
stored samples by a constant-time convolution/expansion method.

Remark 2. From a coding perspective, Knuth-Yao sampler employs a binary searching tree analogous
to the Huffman coding tree where a parent node splits into two child nodes according to the occurrence
frequency. The difference between the two is that the binary tree constructed by Knuth-Yao is for
distribution generation while that for Huffman coding is for lossless data compression. This implies that
sampling can be viewed as a reverse of data compression and related work about sampling from the
integers using polar source coding was proposed in [22]. It is featured with asymptotically information-
theoretic optimality: to produce the desired distribution with the optimal randomness.

4 Code-based cryptography

Code-based cryptography employs coding theory and the hard decoding problems to build primitives
such as encryption schemes, one-way functions, digital signatures, key exchange2). Generally speaking,
code-based KEM requires more bandwidth and offers slower key generation in comparison with lattice-
based ones. Driven by the NIST process, code-based cryptography has overcome the limitation of the
classic McEliece cryptosystem and efficiency enhancements have been made to reduce the key size and to
accelerate the key generation using structured codes (e.g., cyclic codes). Moreover, a specialty of code-
based cryptography is the strong confidence in security. While lattice-based cryptography emerged in the
last decade, code-based cryptography originated from the scheme proposed by McEliece in 1978 [23] and
its “dual” version was proposed by Niederreiter in 1986 [24]. Efforts have been put into the cryptanalysis
of McElice cryptosystems with little if any significant and practical outcomes for over 40 years.

The idea of McEliece’s scheme is to use an apparently random generator matrix of an error-correcting
code (a random binary Goppa code) as a public key to encrypt a message, where t random bit errors
are also added to it. The code is chosen to be able to correct up to t errors. Thus, legitimate users who
know a fast decoding algorithm for the code as a private key can recover the plaintext. The security of
McEliece’s scheme relies on the following two computational assumptions:

• Decoding a random linear code in the fixed-error model is hard on average;

• The generator matrix (public key) is hard to distinguish from a random matrix.

The first problem is proved to be nondeterministic polynomial time (NP)-complete [25] and is believed
to be hard on average, while the second problem is more open. The McEliece encryption scheme is
described as follows in Figure 5.

Among NIST third-round finalists, classic McEliece is the only code-based scheme KEM. It is the dual
version of the original McEliece with moderate efficiency improvement but no security compromise. The
major changes include the migration to Niederreiter’s dual variant and some refinements of parameters
in order to keep up with the increased computing power. Due to its early invention, classic McEliece is
the most researched one among all NIST candidates and thus is better understood compared with other
schemes. Furthermore, classic McEliece enables efficient and straightforward conversion of one-way-CPA
PKE into IND-CCA2 KEM. Besides, it can be configured to match all five NIST security levels. The
main drawback is that it also has extremely large public key sizes, ranging from 250 KB for NIST security
level 1 up to 1.3 MB for NIST security level 5.

2) Linear codes are also used to construct secret sharing scheme (SSS), e.g., Massey’s scheme. Moreover, there is a natural

correspondence between linear codes and linear secure secret sharing which is the central building block for information-theoretically

secure cryptographic primitives such as multiparty computation (MPC). The details of SSS and MPC are beyond the scope of this

work.
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Parameters: k, n, t; Snt (F2) := {x ∈ Fn2 : wt(x) = t}; wt(·): Hamming weight.

Alice Bob

G ∈ Fk×n2 : generator matrix of code C
S ∈ Fk×k2 : a non-singular matrix

P ∈ Fn×n2 : a permutation matrix

A = SGP
A−→ m ∈ Fk2

e
$←− Snt (F2)

m′ = C.Decode(yPT)
(y)←−− y = mA+ e

m = m′S−1

Figure 5 Illustration of McEliece public-key encryption scheme.

4.1 Quasi-cyclic code-based public-key encryption/KEM

The main reason for the extremely large public key size of classic McEliece is that one has to store the
whole generator matrix of the code. To reduce the key size, one approach is to choose a proper code
family such that the generator matrix can be expressed more compactly. In [26], it was proposed to use
quasi-cyclic codes. A code spanned by a block-circulant matrix is called quasi-cyclic. A circulant matrix
is a square matrix in which all row vectors are composed of the same elements and each row vector is
rotated one element to the right relative to the preceding row vector. A block-circulant matrix is formed
of blocks of circulant square matrices. The generator matrix of a quasi-cyclic code is completely defined
by its first row, and thus, the public key size of quasi-cyclic code-based cryptographic schemes can be
greatly reduced. Similar to the original McEliece scheme, the security proof of the quasi-cyclic code-based
McEliece scheme relies on the following two computational assumptions:
• Generic decoding of a random quasi-cyclic code is hard;
• The generator matrix (public key) is hard to distinguish from a random block-circulant matrix.
Since quasi-cyclic codes are more structured, the code family must be chosen carefully, otherwise, some

types of attacks are possible.
Recently, quasi-cyclic moderate density parity-check (QC-MDPC) codes [27] have attracted research

interests in cryptography society. MDPC codes are variants of the well-known LDPC codes with mod-
erately sparse parity-check matrices. Specifically, the rows of the parity-check matrix of an MDPC code
have length n and Hamming weight of order

√
n. The denser parity-check matrices deteriorate the error-

correcting performance. However, in cryptography, we are not interested in correcting as many errors
as possible, but only a number that is enough for the schemes. The most important reason for consid-
ering moderately sparse parity-check matrices is to avoid certain types of attacks. When using LDPC
codes, low weight parity-check rows can be seen as dual codewords. If one searches for low-weight dual
codewords to build a sparse parity-check matrix, which is for sure easily decodable, the scheme may be
effectively attacked. It deserves to mention that Guo et al. [28] also presented an attack against the
QC-MDPC McEliece encryption scheme.

Among NIST third-round candidates, two quasi-cyclic code-based schemes are selected as alternates,
i.e., Hamming quasi-cyclic (HQC) and bit flipping key encapsulation (BIKE). HQC is based on BCH
code, while BIKE is based on QC-MDPC codes. Both schemes have parameters that target NIST levels
1, 3, and 5 with much smaller public key sizes compared with classic McEliece. The public-key encryption
algorithm of HQC is illustrated in Figure 6, where matrix G is public known, the public key is (h, s) and
the secret key is (x,y).

4.2 Rank metric-based public-key encryption/KEM

According to the underlying hard problems, lattice-based and code-based cryptography can be interpreted
as distance-based cryptography. The former is a Euclidean-based one while the latter is Hamming-based.
Different types of metrics have different properties, resulting in their respective advantages and drawbacks.
Rank metric codes are a special type of linear error-correcting codes that use the rank metric instead
of the Hamming metric. Loo-Keng Hua first introduced rank metric in 1951 and Delsarte introduced
the metric, rank distance, and constructed the optimal matrix codes in bilinear representation. In 1985,
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Parameters: k, n, w; Snw(F2) := {x ∈ Fn2 : wt(x) = w}; wt(·): Hamming weight;

a⊙ b: vector a multiplied by the circulant matrix generated by vector b.

Alice Bob

G ∈ Fk×n2 : generator matrix of code C
x,y

$←− Snw(F2)

h
$←− Fn2 , s = x+ h⊙ y

(G,h,s)−−−−−→ m ∈ Fk2

r1, r2
$←− Snw(F2), e

$←− Snw(F2)

u = r1 + h⊙ r2

m = C.Decode(v − u⊙ y)
(u,v)←−−− v = mG+ s⊙ r2 + e

Figure 6 Illustration of HQC PKE.

Parameters: n, k, m, w, and P ∈ Fq[X ]; Snw(Fqm) = {x ∈ Fnqm : rank(x) = w}; rank(·): rank weight;

a · b:= (
∑n

i=0 aiX
i)(

∑n

i=0 biX
i).

Alice Bob

G ∈ Fk×nqm : generator matrix of code C
(x,y)

$←− S2nw (Fqm)

h
$←− Fnqm , s = x+ h · y mod P

(g,h,s)−−−−→
(r1, r2, r3)

$←− S3nw (Fqm)

u = r1 + h · r2 mod P

m← C.Decode(v − u · y) (u,v)←−−− v = mG+ s · r2 + r3 mod P

Figure 7 Illustration of RQC PKE.

Gabidulin proposed vector-form rank codes as well as efficient encoding and decoding algorithms. Since
then, rank codes have been used in many applications, such as communication as well as cryptography.

Let u = {u1, . . . , un}, v = {v1, . . . , vn} ∈ Fnqm be two length-n vectors in the vector space of Fnqm ,
where q is a prime, Fqm is the finite field with qm elements and m is a positive integer. The rank
weight rank(u) of u is defined as the dimension of the Fq-subspace generated by {u1, . . . , un}. The rank
distance rd(u,v) between u and v is defined as rank(u− v). A [n, k] rank code C over Fqm is a subspace
of dimension k of Fnqm embedded with rank metric. When using rank codes in cryptography, the main
problem is the generalization of the generic decoding problem with Hamming distance in the case of rank
distance. Specifically, let H be an ((n− k)× n) matrix over Fqm with k 6 n, s ∈ Fnqm and r an integer.
The problem is to find x such that rank(x) = r and Hxt = s. This problem has been proved to be
NP-hard with a randomized reduction [29].

Rank quasi-cyclic (RQC), a NIST 2nd-round candidate, is based on Gabidulin codes, which has an
even shorter public key size compared with HQC and BIKE. Unlike McEliece whose security relies on
the hardness of syndrome decoding problem and Goppa code distinguishing problem, the security of
RQC relies solely on the decisional version of syndrome decoding of quasi-cyclic codes. Moreover, the
family of Gabidulin codes has zero probability of decoding failure when using deterministic decoding.
The main drawback of RQC is that the security analysis under algebraic attacks deserves more time to
mature [30]. Besides, the decoding complexity of Gabidulin codes, approximately O(n2), is much higher
than its Hamming metric-based counterparts. The public-key encryption algorithm of RQC is illustrated
in Figure 7 where G is the generator matrix of a Gabidulin code C and can be represented by the first
row g vector. The public key is (g,h, s) and the secret key is (x,y).

4.3 Code-based signatures

While code-based cryptography provides promising PKE/KEM solutions to be standardized in NIST
competition, code-based signatures are not in an advantageous position. Attempts to devise code-based
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signature schemes to meet the efficiency and security requirements were unsuccessful and none of the
existing code-based signatures in the literature is now under consideration for standardisation in the
NIST competition. Similar to lattice signatures, code-based signatures fall into two categories: hash-and-
sign paradigm using trapdoor and Fiat-Shamir paradigm.

By the first approach, one hashes the message to a syndrome and finds its preimage as the signature
subject to some limitations (e.g., Hamming distance, rank distance). Roughly speaking, a one-way
function is devised based on the hardness of syndrome decoding of random linear codes. The preimage
can be derived using the trapdoor but is hard to recover from the public key and signature due to the
one-wayness. Typical signatures of the first type include CFS [31], WAVE [32], and RankSign [33].
CFS exploits the decoding capability of high rate Goppa codes for which a non-negligible fraction of
the syndromes can be decoded to the nearest codeword. However, the CFS is unpractical in terms of
efficiency and security. One drawback of CFS is that the performance scales poorly with the security.
To be specific, achieving 128 bits of classical security requires a public key of several gigabytes and a
signature generation of several seconds. Besides, for high rate Goppa codes, the public key was found to
be distinguishable from random matrix [34]. Similar distinguisher also exists for the rank-based signature
RankSign [35]. The hidden structure as the trapdoor has its pros and cons. On the one hand, it enables
efficient preimage calculation, but on the other hand, there might exist unknown structural attacks to
recover the hidden structure and break the scheme.

The other signature paradigm using Fiat-Shamir transform and zero-knowledge identification proto-
col circumvents the above problem. It does not employ any hidden structure because the public key
is exactly the parity-check matrix of the underlying linear code and no syndrome decoding is involved.
Lattice signature schemes of this type proposed by Lyubashevsky are introduced in Subsection 3.2 where
the signature is randomized in Euclidean metric to hide the secret key. When this approach is adapted to
code-based schemes, randomizing the signatures in Hamming and rank metric is nontrivial because one has
to consider the whole codeword rather than independent coordinates of a lattice vector. Persichetti [36]
proposed a one-time signature. However, this scheme is afterward shown to suffer from statistical at-
tacks and the secret key can be recovered using a single signature [37]. Other signatures of this type
include NIST 1st-round candidate RaCoSS [38] and Durandal [39], whereas secret information leakage is
a common issue to solve.

5 The interplay between lattices and codes

In addition to the aforementioned KEM, coding theory has a lot to contribute to lattice cryptography.
For instance, Regev’s LWE problem [1], as an average-case hard problem of lattices, can be equivalently
presented as the problem of decoding random linear codes. Thus the complexity (security) reduction
from one side implies the security guarantees from the other side. In addition, the lattice-reduction-aided
cryptanalysis technique also benefits a lot by refining the algorithm from the perspective of structured
codes. This section inspects these two fronts with details.

5.1 On designing hard problems: LWE and random codes

Lattice problems have become popular in quantum resistant cryptographic schemes. The classic compu-
tational problems on lattices are the following.

• Shortest vector problem (SVP). Given a lattice Λ, find the shortest nonzero vector in Λ.

• Closest vector problem (CVP). Given a lattice Λ and a query point y, find the closest vector to y in
Λ.

• SIVP. Given a lattice Λ, find n linearly independent vectors such that the length of the longest vector
is minimized.

• BDD. Given a lattice Λ and a query point y, if the query point is not too far from the lattice, solve
the CVP problem.

The hardness of these lattice problems can be analyzed by using complexity theory while these problems
have been proved computationally intractable [40]. In the early ages of lattice-based cryptography,
cryptographic schemes are built directly from these hard problems and migrated to their approximate
versions afterwards. There exists a tight connection between the hardness of a problem and the security of
a cryptographic scheme. Nevertheless, modern lattice-based cryptographic schemes are mostly designed
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from average-case hard problems, rather than the above worst-case hard problems. On one hand, worst-
case hardness means that the worst-case instance of the problem is hard to solve. On the other hand,
average-case hardness means that given any random instances of the problem, it is computationally hard
to solve. While in the early ages many have believed that NP-hard problems would have been the perfect
basis to build cryptographic schemes, not all NP-hard problems can achieve average case hardness. Thus
it is crucial to design average-case hard problems which also feature proofs of worst-case hardness.

5.1.1 LWE

The randomly constructed LWE is a popular average-case problem. As introduced in Section 3, the
search-version LWE is to find s ∈ Znq given (A, b = As+ e mod q), where e ∈ Zm is the noise.

5.1.2 Construction A

In coding theory, construction A is a method for generating a lattice by “lifting” a linear code to the
Euclidean space. Let C = C[n, k] ⊆ Znq be a linear code with dimension k and length n, where q is a
prime number. A lattice Λ constructed from the code C based on construction A is defined by

Λ = qZn + φ(C), (1)

where φ : Znp → Rn is the embedding function which maps a vector in Znq to its real-valued version. Many
properties of construction A lattices can be related to the properties of their underlying codes.

LWE can be interpreted as the decoding over construction A lattices. As the public basis A defines a
random code C, As represents the codeword generated by message s. Thus the problem of recovering s

from the noisy observation b ∈ Zmq is in essence the decoding of a random linear code.

5.2 On the decoding of hard problems: lattice reduction and algebraic codes

Both algebraic and non-algebraic lattice problems are presumed hard classically and quantumly. For the
sake of evaluating the bit-level security of cryptographic schemes based on LWE, SIS, ring-LWE, ring-SIS,
module-LWE, and module-SIS, a major approach is to employ lattice reduction-based cryptanalysis [41].
Lattice reduction is to find a basis with short and nearly orthogonal vectors when given a basis as input.
Its applications include not only cryptanalysis but also information theory (e.g., designing the network
coding coefficients in compute-and-forward [42]) and wireless communications (e.g., lattice-reduction-
aided MIMO detection/precoding [43]).

This subsection will review the lattice reduction attacks in analyzing the actual complexity of non-
algebraic and algebraic lattice problems, in which the algebraic lattice reduction is examined from the
perspective of algebraic codes. Specifically, an essential question in the LBC community is whether the
algebraic lattices induced by ring-LWE, ring-SIS, module-LWE, and module-SIS, may downgrade the
security level of the associated cryptographic schemes. While the cryptanalytic state of the art about
lattice reduction is to unfold the ring/module to a large degree, the algebraic lattice coding theory shows
that small polynomial speed-ups can always be guaranteed.

5.2.1 Lattice reduction attacks

Lattice reduction has been well investigated for conventional Z-lattices. Some of the reduction algo-
rithms include: the celebrated Lenstra-Lenstra-Lovász (LLL) [44] and its variants [45–47], block-Korkine-
Zolotarev (BKZ) [48], Korkine-Zolotarev (KZ) [49], and Minkowski [50].

The LLL algorithm is polynomial time, but the first vector of the output basis is an approximation of
the shortest vector of the lattice with an exponential approximation bound. Block-wise generalisations
of LLL include the BKZ, whose complete analysis has been open until very recently [51], Schnorr’s
algorithm, the transference algorithm by Gama et al., and Gama-Nguyen’s slide algorithm (see [41] for
a survey containing the analysis of the latter three). With the help of a given subroutine for solving
SVP in lattices of dimension at most the block size, block-wise generalisations achieve better provable
approximation bounds than LLL. Moreover, the choice of the block size offers flexibility for fine-tuning
the algorithms catering to different application settings. When the block size β is logarithmic in the
dimension n of the lattice, these algorithms remain polynomial-time and the approximation bounds
remain exponential. For applications in cryptography, the block size is set to be linear in the dimension
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Figure 8 The tower decomposition of fields.

of the lattice, in which case these algorithms are only known to be the exponential time while the
approximation bounds are polynomial in the dimension of the lattice. Gama-Nguyen’s slide algorithm
has recently been revisited [52] with the following improved approximation bound:

γ = γ′ ·
(

γ′
√

β
)

2(n−β)
β−1

,

where γ′ denotes the approximation bound of the given subroutine that solves SVP of lattices of dimension
at most β.

5.2.2 Algebraic variants

To achieve lower storage and communication costs, many lattice-based cryptographic schemes rely on
using algebraic lattices, e.g., RingLWE, RingSIS. These types of lattices can be classified as OK-lattices,
also referred to as OK-modules, where OK denotes the ring of integers of a number field K.

Based on the tower decomposition of fields, as shown in Figure 8, the OK-lattices can be unfolded to
modules of different degrees. By transforming the OK-modules to Z-modules, conventional lattice reduc-
tion algorithms can be readily applied, but this treatment has failed to capture/employ the structures by
the algebraic lattices.

The second type of reduction algorithms is to transform the OK-modules to Z[ξ]-modules [53,54], where
Z[ξ] ∼= Z2 refers to the ring of integers of imaginary quadratic fields. These algorithms were actually
motivated by the requirements in coding theory and communications. Specifically, if signal constellations
and codes carved from Z[ξ] are used in the side of transmission [55–57], then the decoding tasks in the
side of receivers require performing algebraic lattice reduction over Z[ξ]-lattices. It has been shown that
the Z[ξ]-lattice reduction algorithms are approximately 2 times faster than their Z-lattice counterparts.

More advanced treatment is to transform theOK-modules to high-degree modules and design LLL/BKZ
reduction algorithms directly for these modules. This line of works include: Napias’s work [58] extends
LLL to lattices defined by Euclidean rings, Fieker and Pohst’s work [59] of LLL over Dedekind domains,
and Kim and Lee’s work [60] of LLL for arbitrary Euclidean domains.

This line of investigations have accumulated into the breakthrough studies on module lattice reduc-
tions [61,62], where the lattices are R-modulesM with a general extension ring R of Z (usually the ring
of integers of an extension field of Q). These results are developed with their cryptographic applications
in mind and are naturally comparable with the block-wise generalisations of LLL (in particular, when
the block size is linear in the dimension of the lattice). For module lattices the block-size β is always a
multiple of the degree d = [R : Z] for the obvious reason that a rank one sub-module (also called an ideal)
ofM is corresponding to a d-dimensional Z-lattice. The reduction uses an SVP solver for sub-modules
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Figure 9 (Color online) Illustration of the wiretap channel.

of rank β/d (β/d > 2) to solve an SVP in an R-module of rank n/d. The approximation bound achieved
is

γ = (γ′)2d ·
(

γ′
√

βd
)

2(n−β)
β−d

,

where γ′ denotes the approximation bound of the given subroutine that solves SVP of R-module lattices
of rank at most β/d. This shows that SVP solvers for R-module lattices of dimension β are almost as
good as SVP solvers for general lattices in R-module lattice reduction.

6 Information-theoretic security

In this section, we present information-theoretic security to establish secure networks and communica-
tion systems. Since information-theoretic security does not rely on computation hardness at all, it is
also quantum safe. The starting point of information-theoretic security is generally attributed to Shan-
non’s work on the so-called perfect secrecy. However, compared with the more mainstream encryption
algorithms, information-theoretic security was regarded as no more than a beautiful, yet unpractical,
theoretical construct, because such security is based on the characteristics of the communication channel
instead of mathematical operations that are assumed to be hard to compute. With the development of
capacity-approaching codes such as turbo codes, LDPC codes, and polar codes, information theorists are
now aware of more practical methods to resist the unpredictable disturbance over the communication
channel, gradually removing the shadow of cryptography. The potential of information-theoretic security
to strengthen the security of the physical layer becomes increasingly clear.

It is important to indicate the principle differences between classical cryptography and information-
theoretic security, which may help one select the appropriate method in practice. In general, the security
of classical cryptography such as public-key cryptography is based on the conjecture that several one-way
functions are hard to invert, meaning that the attackers cannot break the cryptographic system with
efficient algorithms and limited computational resource. The security-based on computational hardness
cannot be persistently guaranteed from a mathematical perspective, as the computing power continues
to increase at a very fast pace. A typical example is that some quantum algorithms that are able to
solve the prime factorization problem are now within reach. In addition, when it comes to compare the
strengths of different cipher systems, there are no precise metrics available. Whereas for information-
theoretic security, no computational restrictions are forced on the eavesdropper and very precise metrics
such as the information leakage to the eavesdropper can be evaluated to measure its strength of security.
Moreover, the system architecture for information-theoretic security is basically compatible to the one for
communication, making it possible to provide an additional layer of security to the existing communication
networks without any changes to their infrastructure.

In the following content, we will focus on the wiretap channel model and briefly show how lattices and
linear codes manage to achieve the secrecy capacity inherently associated with such a model under an
information-theoretic secrecy requirement. The design of secure channel codes for information-theoretic
security dates back to Wyner’s study on the wiretap channel model [63]. As shown in Figure 9, a wiretap
channel is a broadcast channel where one of the receivers is legitimate and the other is treated as an
adversary. The channel between the transmitter (Alice) and the legitimate receiver (Bob) is called the
main channel, and the one between Alice and the eavesdropper (Eve) is called the wiretapper’s channel.
For transmission, both the confidential message M and the auxiliary message M

′ are encoded to the
codeword X

n. The outputs of the main channel and the wiretapper’s channel are given by Y
n and Z

n,
respectively. The reliability requirement says that M should be recovered correctly on Bob’s side, and
the security requirement is related to the measure of information leakage. When the average information
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Figure 10 (Color online) An example: nested lattices.

leakage is asymptotically vanishing, i.e., 1
n
I(M;Zn) → 0, the notion is usually called the weak secrecy

condition [63]. A stronger condition directly requires the information leakage I(M;Zn) to be vanishing
as n increases, which is called the strong secrecy condition [64]. The secrecy capacity is defined as the
maximum rate of M when the reliability requirement and the security requirement are both satisfied. It is
also interesting that the secrecy capacity remains unchanged when the weak secrecy condition is replaced
by the strong secrecy condition [64].

When both the main channel and the wiretapper’s channel are symmetric, and the latter one is degraded
with respect to the former one, the secrecy capacity is given by Cb − Ce, where Cb and Ce denote the
capacities of the main channel and the wiretapper’s channel, respectively. In this case, it turns out
that the design of secure channel codes is highly related to that of capacity-achieving codes. One may
construct two capacity-achieving codes Cb and Ce for the main channel and the wiretapper’s channel,
respectively. To fulfill the reliability and the security conditions, Ce conveys all auxiliary message M′ and
the confidential message M is encoded to the quotient group Cb/Ce. Since both Cb and Ce are capacity-
achieving, their rates approach Cb and Ce, respectively. Therefore, the secrecy capacity Cb − Ce can be
achieved.

6.1 Lattices

Particularly, for the Gaussian wiretap channel, where both the main channel and the wiretapper’s channel
are AWGN (additive white Gaussian noise) channels, we can construct two capacity-achieving lattice
codes accordingly for the two channels. More explicitly, we construct two nested lattices Λb and Λe
for Bob and Eve respectively, where Λb is AWGN-good [65] and Λe is secrecy-good [66]. To satisfy
the power constraint, we then assign a Gaussian distribution to Λb and Λe simultaneously. As can be
seen from Figure 10, when the two lattices are nested, i.e., Λe is a sub-lattice of Λb, it is convenient to
shape the two lattices simultaneously because a Gaussian distribution defined over a sub-lattice is still
a LGD. It is worth noting that the lattice-based secure coding scheme can even achieve the so-called
semantic security [66], namely the scheme is secure for an arbitrarily distributed confidential message. A
polar-lattice based implementation of the scheme in [66] can be found in [67].

6.1.1 AWGN-good lattices

The AWGN-goodness of a lattice can be regarded as the maximum efficiency of the lattice volume when
resisting the Gaussian noise. Suppose W is an n-dimensional zero-mean white-Gaussian vector. The
probability density function of W depends only on the Euclidean norm ‖W ‖. By the law of large
numbers (LLN), the normalized squared norm 1

n
‖W ‖2 converges in probability to the Gaussian noise

variance σ2, which means that a zero-mean white-Gaussian vector tends to be uniformly distributed over
a spherical shell of radius

√
nσ2. For a high dimensional sphere, most of its volume is distributed on its

surface and the probability of escaping such sphere for W vanishes. Therefore, to guarantee a vanishing
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error probability, the volume of a lattice is only required to be barely larger than the volume of an n-
dimensional spherical shell of radius

√
nσ2, which is approximated by (2πeσ2)

n
2 . Let V (Λ) denote the

volume of a lattice Λ, the AWGN-goodness establishes a lower bound on the normalized volume of Λ as

V (Λ)
2
n

σ2
> 2πe, (2)

for any desirable error probability Pe → 0.
Loeliger has proven the existence of AWGN-goodness lattices in [68], using the random linear codes in

Fq. This construction method which directly lifts a q-ary non-binary linear code to the Euclidean space
is named as construction A as is introduced in Section 5. The decoding of such construction A lattices
is highly related to that of the embedded q-ary non-binary codes, which is relatively more complex than
decoding binary linear codes. For this reason, a more practical method of constructing AWGN-good
lattices attributes to Forney et al. [69], which utilizes a multi-level structure and a series of nested binary
linear codes. This method is referred to as construction D. Forney et al. showed that the construction D
lattices are AWGN-good, or equivalently sphere-bound-achieving when the underlying binary codes are
capacity-achieving for each level. Following this line, we can use capacity-achieving codes such as polar
codes [70] and LDPC codes [71] to construct such construction D lattices.

6.1.2 Secrecy-good lattices

Unlike the mentioned AWGN-good lattices, which are constructed to establish reliable transmissions,
the so-called secrecy-good lattices [66] are designed for preventing information leakage to adversarial
parties in a communication system. For secrecy-good lattices, the inequality (2) is reversed to make it
difficult to correctly decode the confidential message. This can be done by forcing the rate of binary codes
slightly exceeding the channel capacity at each level in the construction D, and making the resulted lattice
relatively denser such that V (Λ)/σ2 becomes smaller than 2πe. According to Shannon’s channel coding
theory, it is impossible to recover the correct lattice point from the received signal since the transmission
rate is above the channel capacity. A more rigorous proof in [66] shows that secrecy-good lattices are
capable of achieving strong secrecy.

6.2 Codes

6.2.1 LDPC codes for BEC wiretap channels

LDPC codes are famous for their capacity-approaching performance on many communication channels.
However, LDPC codes have been used to build wiretap codes only with limited success. When the main
channel V is noiseless and the wiretapper’s channelW is a binary erasure channel (BEC), LDPC codes for
this BEC wiretap channel were presented in [72, 73]. Especially in [73], the authors generalized the link
between capacity-approaching codes and weak secrecy capacity. The use of capacity-achieving codes for
the wiretapper’s channel is a sufficient condition for weak secrecy. This view point provided a clear code
construction method for secure communication across arbitrary wiretap channels. Then, they used this
idea to construct the first secrecy capacity-achieving LDPC codes for a wiretap channel with a noiseless
V and a BEC W under the belief propagation decoding (BP) in terms of weak secrecy. Later, Ref. [74]
proved that the same construction can be used to guarantee strong secrecy at lower rates. A similar
construction based on two-edge-type LDPC codes was proposed in [75] for the BEC wiretap channel (V
is no longer noiseless). Unfortunately, general LDPC codes do not have the capacity-achieving property
for binary memoryless symmetric channels (BMSCs) other than BECs. Therefore, the coset coding
scheme using general LDPC codes cannot achieve the secrecy capacity when the wiretapper’s channel is
not a BEC.

In this case, spatially coupled LDPC (SC-LDPC) codes, which are provable to achieve the capacity
of general BMSCs, provide us with a promising approach. In [76], a coset coding scheme based on
regular two-edge-type SC-LDPC codes is proposed for a BEC wiretap channel, where the main channel
is also a BEC. It is shown that the whole rate equivocation region of such BEC wiretap channel can
be achieved by using this scheme under weak secrecy condition. Since SC-LDPC codes are universally
capacity-achieving, it is also conjectured that this construction is optimal for the class of wiretap channel
where the main channel and wiretapper’s channel are BMSCs and the wiretapper’s channel is physically
degraded with respect to the main channel.
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6.2.2 Polar codes for degraded wiretap channels

Compared with LDPC codes, polar codes provide a more powerful approach to design wiretap codes, since
they are capacity-achieving for general BMS channels, not just for BECs. Recently there has been a lot
of interest in the design of wiretap codes based on polar codes. For example, polar codes are employed
to build secure schemes for the degraded wiretap setting with BMS channels in [77], but only weak
secrecy is guaranteed. In [78], it was shown that, with a minor modification of the original design, polar
codes achieve strong secrecy (and also semantic security) for degraded wiretap channels. Unfortunately,
they could not guarantee the reliability of the main channel in the non-degraded case. In [79], a multi-
block polar coding scheme was proposed to solve this reliability problem under the condition that the
number of blocks is sufficiently large. In the meantime, a similar multi-block coding scheme was discussed
in [80]. Their polar coding scheme also achieves the secrecy capacity under strong secrecy condition and
guarantees reliability for the legitimate receiver. However, Ref. [80] only proved the existence of this
coding scheme, and thus it might be computationally hard to find the explicit structure.

Now we briefly introduce the idea of polar wiretap coding. The construction of polar codes consists of
an information set I, which carries message bits to be transmitted, and a frozen set F , which is fixed with
some known value. When a channel W is degraded with respect to another channel V , their information
sets, IW and IV , satisfy IW ⊆ IV [81, Lemma 1.8]. Then, the indices 1, . . . , n can be divided into 3 sets:
IcV , IW , and IV \ IW . The wiretap coding scheme is to assign these three sets with frozen bits which are
known to both Bob and Eve prior to transmission, random bits in order to confuse the eavesdropper, and
message bits, respectively. Due to the capacity-achieving property of polar codes, the secrecy capacity is

achieved as limn→∞
|IV \IW |

n
= C(V )−C(W ). The reliability for Bob is also guaranteed by the standard

polar decoding. The weak secrecy can be proved using Fano’s inequality.
For strong secrecy and non-degraded wiretap channels, the above wiretap coding scheme needs to be

modified. In these cases, the inclusion relation of information sets in the degraded wiretap channel does
not hold, and we have to partition the index set {1, . . . , n} into four sets, one of which is unreliable for
Bob but reliable for Eve. This becomes problematic since bits in this set need to be known by Bob but
kept secret from Eve. Fortunately, this problem can be solved by a multi-block technique proposed in [79]
to achieve reliability and strong secrecy simultaneously. The idea is to allocate some reliable and secure
bits in the current block for the bits in the problematic set of the next block. Details of this scheme can
be found in [79].

6.2.3 Practical instances

The above coding techniques to achieve secrecy capacity for wiretap channels assume infinite block length.
In the context of real-world design, engineers prefer bit error rate (BER) as a measure of security, i.e., the
legitimate recipient on the main channel should have overwhelmingly smaller BER than the eavesdropper
on the wiretap channel to achieve secure transmission. The security gap, as a practical metric, is defined
by

Ssg = SNRth(P
B
e )− SNRth(P

E
e ),

where SNRth(P
B
e ) is the signal-to-noise ratio (SNR) threshold for Bob to reliably recover the message

at a BER of PBe and SNRth(P
E
e ) is the threshold for Eve to operate at a BER (approximate to 0.5)

not able to extract enough information about the message from the received signal. In other words,
the security gap defines the minimum SNR advantage the main channel has over the wiretap channel to
achieve reliable and secure transmission.

Considering a typical BER-SNR curve illustrating the decoding performance of certain codes, a sharper
falloff will render a smaller security gap. Theorists and practitioners have contributed to reducing the
security gap. An exploration towards that direction is the punctured LDPC codes in [82] for the Gaussian
wiretap channel where the punctured bits are used to transmit the secret information. As a result,
the BER of the eavesdropper deteriorates faster towards 0.5 as SNR decreases than it does without
puncturing. The security gap required to reach a certain level of security can be further reduced with
scrambling [83].

When the wiretap channel has a quality the same as or even better than the main channel, a feedback
mechanism, automatic repeat-request (ARQ) protocol, was used to achieve reliability and security [83].
Another secure transmission method using ARQ can be found in [84] where a code-hopping scheme [85]
is employed for encoding with a single-use parity-check matrix and ARQ is used for synchronization.
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7 Open problems

The NIST standardization process marks the beginning of a paradigm shift to PQC, not the end. We
offer a perspective into the future of this exciting area.
• What will post-NIST PQC look like, i.e., PQC beyond the NIST process? Traditionally, cryptog-

raphy is also known as secure communications. Can we merge communication and cryptography as
envisioned by Shannon himself? As cryptography plays an increasingly important role in secure com-
putation, can we develop a unified theory of communications, computation, and security? Compared to
information-theoretic security, information theory is of little use for computational security; can algo-
rithmic information theory make a difference? In data science and artificial intelligence, the privacy and
security of data become a central concern; thus PQC will find broad applications in these areas.
• In PQC, cryptosystems based on linear codes (e.g., LWE) seem to be the most successful. The

analogy of methods (e.g., construction A, ideal lattices) used in coding theory and cryptography is
especially striking; PQC would greatly benefit from the synergy of the two fields. Moving further, why
do we restrict ourselves to linear codes? Linear codes are arguably the simplest algebraic structure from
a mathematical point of view. What about nonlinear codes and more sophisticated algebraic structures
such as algebraic geometry?
• Decoding random linear codes, regardless of the metric, is believed to be hard even for quantum

computers. But the supporting evidence is not enough — people are merely unaware of devastating
quantum attacks to codes and lattices nowadays. More research on the quantum hardness of coding
problems is required.
• More interaction between coding theory and cryptography is needed. As discussed in Remark 1

encryption is analogous to channel coding, some lattice signatures can be deemed as the “reverse process”
of source coding, and we also find a link between IBE and joint source-channel coding. Lattice and code-
based cryptosystems, especially code-based ones, require powerful error-correction codes with extremely
low decoding error rates and high decoding speed. Intricate channel models of these cryptosystems invite
new methods to design good codes for error correction, as opposed to the standard i.i.d. model.
• So far, quantum computing is destructive to cryptography. Can we use quantum computers con-

structively in cryptography? That is, can we use the computational power of quantum computers to
design new cryptosystems that are also resilient to quantum attacks?
• Even classically, the security of PQC is not well understood. Problems of algebraic lattices, such as

lattice reduction, deserve a thorough investigation. Similar techniques for codes are needed as well.
• Crypto conferences are apparently dominated by a small number of countries. The community should

become more open and diverse, not only in terms of people but also in terms of disciplines. PQC is a
chance to attract people from different countries and different disciplines.
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