Skip to main content
Log in

MoS2 core-shell nanoparticles prepared through liquid-phase ablation and light exfoliation of femtosecond laser for chemical sensing

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2)-based nanostructures are highly desirable for applications such as chemical and biological sensing, photo/electrochemical catalysis, and energy storage due to their unique physical and chemical properties. In this work, MoS2 core-shell nanoparticles were first prepared through the liquid-phase processing of bulk MoS2 by a femtosecond laser. The core of prepared nanoparticles was incompletely and weakly crystalline MoS2; the shell of prepared nanoparticles was highly crystalline MoS2, which wrapped around the core layer by layer. The femtosecond laser simultaneously achieved liquid-phase ablation and light exfoliation. The formation mechanism of the core-shell nanoparticles is to prepare the nanonuclei first by laser liquid-phase ablation and then the nanosheets by light exfoliation; the nanosheets will wrap the nanonuclei layer by layer through van der Waals forces to form core-shell nanoparticles. The MoS2 core-shell nanoparticles, because of Mo−S bond breakage and recombination, have high chemical activity for chemical catalysis. Afterward, the nanoparticles were used as a reducing agent to directly prepare three-dimensional (3D) Au-MoS2 micro/nanostructures, which were applied as surface-enhanced Raman spectroscopy (SERS) substrates to explore chemical sensing activity. The ultrahigh enhancement factor (1.06×1011), ultralow detection limit (10−13 M), and good SERS adaptability demonstrate highly sensitive SERS activity, great ability of ultralow concentration detection, and ability to detect diverse analytes, respectively. This work reveals the tremendous potential of 3D Au-MoS2 composite structures as excellent SERS substrates for chemical and biological sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun Y, Wang Y, Chen J Y C, et al. Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures. Nat Chem, 2020, 12: 284–293

    Article  Google Scholar 

  2. Wu F, Tian H, Shen Y, et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature, 2022, 603: 259–264

    Article  Google Scholar 

  3. Aubrey M L, Saldivar Valdes A, Filip M R, et al. Directed assembly of layered perovskite heterostructures as single crystals. Nature, 2021, 597: 355–359

    Article  Google Scholar 

  4. He Y, Tang P, Hu Z, et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat Commun, 2020, 11: 57

    Article  Google Scholar 

  5. Qu J, Li Y, Li F, et al. Direct thermal enhancement of hydrogen evolution reaction of on-chip monolayer MoS2. ACS Nano, 2022, 16: 2921–2927

    Article  Google Scholar 

  6. Quirós-Ovies R, Vázquez Sulleiro M, Vera-Hidalgo M, et al. Controlled covalent functionalization of 2 H-MoS2 with molecular or polymeric adlayers. Chem Eur J, 2020, 26: 6629–6634

    Article  Google Scholar 

  7. Ding Y M, Li N W, Yuan S, et al. Surface and interface engineering strategies for MoS2 towards electrochemical hydrogen evolution. Chem—An Asian J, 2022, 17

  8. Zuo P, Jiang L, Li X, et al. Phase-reversed MoS2 nanosheets prepared through femtosecond laser exfoliation and chemical doping. J Phys Chem C, 2021, 125: 8304–8313

    Article  Google Scholar 

  9. Jia Y, Yin G, Lin Y, et al. Recent progress on hierarchical MoS2 nanostructures for electrochemical energy storage. CrystEngComm, 2022, 24: 2314–2326

    Article  Google Scholar 

  10. Qiu H, Wang M, Zhang L, et al. Wrinkled 2H-phase MoS2 sheet decorated with graphene-microflowers for ultrasensitive molecular sensing by plasmon-free SERS enhancement. Sens Actuat B-Chem, 2020, 320: 128445

    Article  Google Scholar 

  11. Xu L, Zhang X, Wang Z, et al. Low dimensional materials for glucose sensing. Nanoscale, 2021, 13: 11017–11040

    Article  Google Scholar 

  12. Ménard-Moyon C, Bianco A, Kalantar-Zadeh K. Two-dimensional material-based biosensors for virus detection. ACS Sens, 2020, 5: 3739–3769

    Article  Google Scholar 

  13. Shafiee A, Rabiee N, Ahmadi S, et al. Core-shell nanophotocatalysts: Review of materials and applications. ACS Appl Nano Mater, 2022, 5: 55–86

    Article  Google Scholar 

  14. Hinamoto T, Lee Y S, Dereshgi S A, et al. Resonance couplings in Si@MoS2 core-shell architectures. Small, 2022, 18: 2200413

    Article  Google Scholar 

  15. Adhikari S, Murmu M, Kim D H. Core-shell engineered WO3 architectures: Recent advances from design to applications. Small, 2022, 18: 2202654

    Article  Google Scholar 

  16. Wang T, Wang S, Cheng Z, et al. Emerging core-shell nanostructures for surface-enhanced Raman scattering (SERS) detection of pesticide residues. Chem Eng J, 2021, 424: 130323

    Article  Google Scholar 

  17. Luo K, Wang K, Lim M C, et al. Synthesis of starch-based plasmonic core-shell microparticles for SERS applications. ACS Sustain Chem Eng, 2022, 10: 10268–10274

    Article  Google Scholar 

  18. Echeverria C A, Tang J, Cao Z, et al. Ag-Ga bimetallic nanostructures ultrasonically prepared from silver-liquid gallium core-shell systems engineered for catalytic applications. ACS Appl Nano Mater, 2022, 5: 6820–6831

    Article  Google Scholar 

  19. Zhao D H, Tian Z L, Liu H, et al. Realizing an omega-shaped gate MoS2 field-effect transistor based on a SiO2/MoS2 core-shell heterostructure. ACS Appl Mater Interfaces, 2020, 12: 14308–14314

    Article  Google Scholar 

  20. Mawlong L P L, Paul K K, Giri P K. Exciton-plasmon coupling and giant photoluminescence enhancement in monolayer MoS2 through hierarchically designed TiO2/Au/MoS2 ternary core-shell heterostructure. Nanotechnology, 2021, 32: 215201

    Article  Google Scholar 

  21. Withanage S S, Charles V, Chamlagain B, et al. Synthesis of highly dense MoO2/MoS2 core-shell nanoparticles via chemical vapor deposition. Nanotechnology, 2020, 32: 055605

    Article  Google Scholar 

  22. Shan S, Zhu S, Pan Z, et al. Heteroepitaxial growth of 1T MoS2 nanosheets on SnO2 with synergetic improvement on photocatalytic activity. Cryst Res Tech, 2021, 56: 2000091

    Article  Google Scholar 

  23. Jiang T, Li L, Li L, et al. Ultra-thin shelled Cu2−xS/MoS2 quantum dots for enhanced electrocatalytic nitrogen reduction. Chem Eng J, 2021, 426: 130650

    Article  Google Scholar 

  24. Bai Y L, Wu X Y, Liu Y S, et al. Dandelion-clock-inspired preparation of core-shell TiO2@MoS2 composites for high performance sodium ion storage. J Alloys Compd, 2020, 815: 152386

    Article  Google Scholar 

  25. Wang J, Wang X, Yang J, et al. Core-shell CuS@MoS2 cathodes for high-performance hybrid Mg-Li ion batteries. J Electrochem Soc, 2022, 169: 073502

    Article  Google Scholar 

  26. Wang Y, Di X, Fu Y, et al. Facile synthesis of the three-dimensional flower-like ZnFe2O4@MoS2 composite with heterogeneous interfaces as a high-efficiency absorber. J Colloid Interface Sci, 2021, 587: 561–573

    Article  Google Scholar 

  27. Yang K, Cui Y, Liu Z, et al. Design of core-shell structure NC@MoS2 hierarchical nanotubes as high-performance electromagnetic wave absorber. Chem Eng J, 2021, 426: 131308

    Article  Google Scholar 

  28. Zhang K, Meng W, Wang S, et al. One-step synthesis of ZnS@MoS2 core-shell nanostructure for high efficiency photocatalytic degradation of tetracycline. New J Chem, 2020, 44: 472–477

    Article  Google Scholar 

  29. Wan L, Liu J, Li X, et al. Fabrication of core-shell NiMoO4@MoS2 nanorods for high-performance asymmetric hybrid supercapacitors. Int J Hydrogen Energy, 2020, 45: 4521–4533

    Article  Google Scholar 

  30. Tiwari P, Janas D, Chandra R. Self-standing MoS2/CNT and MnO2/CNT one dimensional core shell heterostructures for asymmetric supercapacitor application. Carbon, 2021, 177: 291–303

    Article  Google Scholar 

  31. Guo L, Shinde P S, Ma Y, et al. Scalable core-shell MoS2/Sb2Se3 nanorod array photocathodes for enhanced photoelectrochemical water splitting. Sol RRL, 2020, 4: 1900442

    Article  Google Scholar 

  32. Wang Y, Mayyas M, Yang J, et al. Self-deposition of 2D molybdenum sulfides on liquid metals. Adv Funct Mater, 2021, 31: 2005866

    Article  Google Scholar 

  33. Taheri N S, Wang Y, Berean K, et al. Lithium intercalated molybdenum disulfide-coated cotton thread as a viable nerve tissue scaffold candidate. ACS Appl Nano Mater, 2019, 2: 2044–2053

    Article  Google Scholar 

  34. Amendola V, Amans D, Ishikawa Y, et al. Room-temperature laser synthesis in liquid of oxide, metal-oxide core-shells, and doped oxide nanoparticles. Chem Eur J, 2020, 26: 9206–9242

    Article  Google Scholar 

  35. Yuan Y, Jiang L, Li X, et al. Ultrafast shaped laser induced synthesis of MXene quantum dots/graphene for transparent supercapacitors. Adv Mater, 2022, 34: 2110013

    Article  Google Scholar 

  36. Yuan Y, Jiang L, Li X, et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat Commun, 2020, 11: 6185

    Article  Google Scholar 

  37. Jiang L, Wang A D, Li B, et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci Appl, 2018, 7: 17134

    Article  Google Scholar 

  38. Amendola V. Laser-assisted synthesis of non-equilibrium nanoalloys. ChemPhysChem, 2021, 22: 622–624

    Article  Google Scholar 

  39. Amendola V, Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys Chem Chem Phys, 2013, 15: 3027–3046

    Article  Google Scholar 

  40. Li X, Zhang G, Jiang L, et al. Production rate enhancement of size-tunable silicon nanoparticles by temporally shaping femtosecond laser pulses in ethanol. Opt Express, 2015, 23: 4226–4232

    Article  Google Scholar 

  41. Pan C, Jiang L, Sun J, et al. Ultrafast optical response and ablation mechanisms of molybdenum disulfide under intense femtosecond laser irradiation. Light Sci Appl, 2020, 9: 80

    Article  Google Scholar 

  42. Li B, Jiang L, Li X, et al. Preparation of monolayer MoS2 quantum dots using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water. Sci Rep, 2017, 7: 11182

    Article  Google Scholar 

  43. González R I, Valencia F J, Rogan J, et al. Bending energy of 2D materials: Graphene, MoS2 and imogolite. RSC Adv, 2018, 8: 4577–4583

    Article  Google Scholar 

  44. Zuo P, Jiang L, Li X, et al. Shape-controllable gold nanoparticle-MoS2 hybrids prepared by tuning edge-active sites and surface structures of MoS2 via temporally shaped femtosecond pulses. ACS Appl Mater Interfaces, 2017, 9: 7447–7455

    Article  Google Scholar 

  45. Zuo P, Jiang L, Li X, et al. Enhancing charge transfer with foreign molecules through femtosecond laser induced MoS2 defect sites for photoluminescence control and SERS enhancement. Nanoscale, 2019, 11: 485–494

    Article  Google Scholar 

  46. Castellanos-Gomez A, Barkelid M, Goossens A M, et al. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett, 2012, 12: 3187–3192

    Article  Google Scholar 

  47. Lee C, Yan H, Brus L E, et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano, 2010, 4: 2695–2700

    Article  Google Scholar 

  48. Su S, Zhang C, Yuwen L, et al. Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles. ACS Appl Mater Interfaces, 2014, 6: 18735–18741

    Article  Google Scholar 

  49. Kiriya D, Tosun M, Zhao P, et al. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J Am Chem Soc, 2014, 136: 7853–7856

    Article  Google Scholar 

  50. Shi Y, Wang J, Wang C, et al. Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J Am Chem Soc, 2015, 137: 7365–7370

    Article  Google Scholar 

  51. Sreeprasad T S, Nguyen P, Kim N, et al. Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: Electrical, thermal, and structural properties. Nano Lett, 2013, 13: 4434–4441

    Article  Google Scholar 

  52. Gaur A P S, Zhang B, Lui Y H, et al. Morphologically tailored nanostructured MoS2 catalysts via introduction of Ni and Co ions for enhanced HER activity. Appl Surf Sci, 2020, 516: 146094

    Article  Google Scholar 

  53. de Jong A M, Borg H J, van IJzendoorn L J, et al. Sulfidation mechanism by molybdenum catalysts supported on silica/silicon(100) model support studied by surface spectroscopy. J Phys Chem, 1993, 97: 6477–6483

    Article  Google Scholar 

  54. Xu X, Oh W S, Goodman D W. Interfacial reactions between oxide films and refractory metal substrates. Langmuir, 1996, 12: 4877–4881

    Article  Google Scholar 

  55. Lu J, Lu J H, Liu H, et al. Improved photoelectrical properties of MoS2 films after laser micromachining. ACS Nano, 2014, 8: 6334–6343

    Article  Google Scholar 

  56. Benoist L, Gonbeau D, Pfister-Guillouzo G, et al. X-ray photoelectron spectroscopy characterization of amorphous molybdenum oxysulfide thin films. Thin Solid Films, 1995, 258: 110–114

    Article  Google Scholar 

  57. Lindberg B J, Hamrin K, Johansson G, et al. Molecular spectroscopy by means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure. Phys Scr, 1970, 1: 286–298

    Article  Google Scholar 

  58. Yokoyama T, Imanishi A, Terada S, et al. Electronic properties of SO2 adsorbed on Ni(100) studied by UPS and O K-edge NEXAFS. Surf Sci, 1995, 334: 88–94

    Article  Google Scholar 

  59. Amendola V, Fortunati I, Marega C, et al. High-purity hybrid organolead halide perovskite nanoparticles obtained by pulsed-laser irradiation in liquid. ChemPhysChem, 2017, 18: 1047–1054

    Article  Google Scholar 

  60. Niyuki R, Fujiwara H, Nakamura T, et al. Double threshold behavior in a resonance-controlled ZnO random laser. APL Photonics, 2017, 2: 036101

    Article  Google Scholar 

  61. Nakamura T, Yuan Z, Watanabe K, et al. Bright and multicolor luminescent colloidal Si nanocrystals prepared by pulsed laser irradiation in liquid. Appl Phys Lett, 2016, 108: 023105

    Article  Google Scholar 

  62. Firdaus K, Nakamura T, Adachi S. Improved lasing characteristics of ZnO/organic-dye random laser. Appl Phys Lett, 2012, 100: 171101

    Article  Google Scholar 

  63. Fujiwara H, Kawaguchi S, Yonekawa D, et al. Development of magnetic responsive random lasers fabricated by a laser-induced surface roughness. Appl Phys Lett, 2021, 119: 041105

    Article  Google Scholar 

  64. Fujiwara H, Sasaki K. Amplified spontaneous emission from a surface-modified GaN film fabricated under pulsed intense UV laser irradiation. Appl Phys Lett, 2018, 113: 171606

    Article  Google Scholar 

  65. Dai R, Zhang A, Pan Z, et al. Epitaxial growth of lattice-mismatched core-shell TiO2@MoS2 for enhanced lithium-ion storage. Small, 2016, 12: 2792–2799

    Article  Google Scholar 

  66. Kumar S, Malik T, Sharma D, et al. NaNbO3/MoS2 and NaNbO3/BiVO4 core-shell nanostructures for photoelectrochemical hydrogen generation. ACS Appl Nano Mater, 2019, 2: 2651–2662

    Article  Google Scholar 

  67. Xie D, Zhang M, Cheng F, et al. Hierarchical MoS2@Polypyrrole core-shell microspheres with enhanced electrochemical performances for lithium storage. Electrochim Acta, 2018, 269: 632–639

    Article  Google Scholar 

  68. Lu J, Lu J H, Liu H, et al. Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing. Small, 2015, 11: 1792–1800

    Article  Google Scholar 

  69. Jasmin J P, Miserque F, Dumas E, et al. XPS and NRA investigations during the fabrication of gold nanostructured functionalized screen-printed sensors for the detection of metallic pollutants. Appl Surf Sci, 2017, 397: 159–166

    Article  Google Scholar 

  70. Passiu C, Rossi A, Weinert M, et al. Probing the outermost layer of thin gold films by XPS and density functional theory. Appl Surf Sci, 2020, 507: 145084

    Article  Google Scholar 

  71. Liu H L, Cao J, Hanif S, et al. Size-controllable gold nanopores with high SERS activity. Anal Chem, 2017, 89: 10407–10413

    Article  Google Scholar 

  72. Kye J, Shin M, Lim B, et al. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution. ACS Nano, 2013, 7: 6017–6023

    Article  Google Scholar 

  73. Wang Y, Carey B J, Zhang W, et al. Intercalated 2D MoS2 utilizing a simulated sun assisted process: Reducing the HER overpotential. J Phys Chem C, 2016, 120: 2447–2455

    Article  Google Scholar 

  74. Dreaden E C, Alkilany A M, Huang X, et al. The golden age: Gold nanoparticles for biomedicine. Chem Soc Rev, 2012, 41: 2740–2779

    Article  Google Scholar 

  75. Zhu S, Wang X, Cong Y, et al. Regulating the optical properties of gold nanoclusters for biological applications. ACS Omega, 2020, 5: 22702–22707

    Article  Google Scholar 

  76. Miao Z, Gao Z, Chen R, et al. Surface-bioengineered gold nanoparticles for biomedical applications. Curr Med Chem, 2018, 25: 1920–1944

    Article  Google Scholar 

  77. Kalantar-zadeh K, Ou J Z. Biosensors based on two-dimensional MoS2. ACS Sens, 2016, 1: 5–16

    Article  Google Scholar 

  78. Kalantar-zadeh K, Ou J Z, Daeneke T, et al. Two-dimensional transition metal dichalcogenides in biosystems. Adv Funct Mater, 2015, 25: 5086–5099

    Article  Google Scholar 

  79. Jiang J, Ou-Yang L, Zhu L, et al. Novel one-pot fabrication of lab-on-a-bubble@Ag substrate without coupling-agent for surface enhanced Raman scattering. Sci Rep, 2014, 4: 3942

    Article  Google Scholar 

  80. Ling X, Fang W, Lee Y H, et al. Raman enhancement effect on two-dimensional layered materials: Graphene, h-BN and MoS2. Nano Lett, 2014, 14: 3033–3040

    Article  Google Scholar 

  81. Jiang J, Zhu L, Zou J, et al. Micro/nano-structured graphitic carbon nitride-Ag nanoparticle hybrids as surface-enhanced Raman scattering substrates with much improved long-term stability. Carbon, 2015, 87: 193–205

    Article  Google Scholar 

  82. Sun L, Hu H, Zhan D, et al. Plasma modified MoS2 nanoflakes for surface enhanced Raman scattering. Small, 2014, 10: 1090–1095

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52105427, U2037205, 52005041, 51575053, and 51775047), Research Foundation from Ministry of Education of China (Grant No. 6141A02033123), Beijing Municipal Commission of Education (Grant No. KM201910005003), Knowledge Innovation Program of Wuhan-Basic Research (Grant No. 2022010801010349), and Scientific Research Project of Hubei Provincial Department of Education (Grant No. B2022055).

Supporting Information

The supporting information is available online at https://tech.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11431_2022_2270_MOESM1_ESM.doc

MoS2 core-shell nanoparticles prepared through liquid-phase ablation and light exfoliation of femtosecond laser for chemical sensing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, P., Jiang, L., Li, X. et al. MoS2 core-shell nanoparticles prepared through liquid-phase ablation and light exfoliation of femtosecond laser for chemical sensing. Sci. China Technol. Sci. 66, 853–862 (2023). https://doi.org/10.1007/s11431-022-2270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2270-9

Keywords

Navigation