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Puncture site decision method for venipuncture robot based on
near-infrared vision and multiobjective optimization
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Venipuncture robots have superior perception and stability to humans and are expected to replace manual venipuncture.
However, their use is greatly restricted because they cannot make decisions regarding the puncture sites. Thus, this study presents
a multi-information fusion method for determining puncture sites for venipuncture robots to improve their autonomy in the case
of limited resources. Here, numerous images have been gathered and processed to establish an image dataset of human forearms
for training the U-Net with the soft attention mechanism (SAU-Net) for vein segmentation. Then, the veins are segmented from
the images, feature information is extracted based on near-infrared vision, and a multiobjective optimization model for puncture
site decision is provided by considering the depth, diameter, curvature, and length of the vein to determine the optimal puncture
site. Experiments demonstrate that the method achieves a segmentation accuracy of 91.2% and a vein extraction rate of 86.7%
while achieving the Pareto solution set (average time: 1.458 s) and optimal results for each vessel. Finally, a near-infrared camera
is applied to the venipuncture robot to segment veins and determine puncture sites in real time, with the results transmitted back
to the robot for an attitude adjustment. Consequently, this method can enhance the autonomy of venipuncture robots if im-
plemented dramatically.
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1 Introduction

Venipuncture is vital in medical procedures, such as drug
delivery, blood collection, and physiological status mon-
itoring [1]. Failed or delayed venipuncture may increase
morbidity and death rates [2]. The success rate of veni-
puncture depends on the physiological characteristics of the
patient and the expertise and competence of the clinical staff.
Statistically, ~20% of venipunctures fail, which is serious for
patients with difficult-to-identify veins, hairy or dark com-
plexion, and other medical conditions [3,4]. Owing to the
increasing demand for venipuncture, it is challenging to
serve numerous patients promptly with limited medical re-

sources [5].
With the advancements in medical robotics, it is antici-

pated that robots can perform venipuncture successfully.
This ability is beneficial for decreasing venipuncture de-
pendency on the expertise and skill of the clinical staff, as
well as increasing the success rate. Meanwhile, such robots
may also alleviate the strain on medical resources and reduce
cross-infection when COVID-19 is still rampant. Although
venipuncture robots are still mainly being developed, in-
vestigations have proved their superior vein detection ca-
pacities [6–8], motion planning abilities [7,9], and high
success rates. To further improve the autonomy of the ve-
nipuncture robot under limited medical resources, it is cri-
tical to ensure that the robot can determine the puncture site.
Furthermore, decisions regarding the venipuncture site are

based on the feature information of venous blood vessels;

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 tech.scichina.com link.springer.com

SCIENCE CHINA
Technological Sciences

†These authors contributed equally to this work.
*Corresponding author (email: jiangli01@hit.edu.cn)

https://doi.org/10.1007/s11431-022-2232-5
https://doi.org/10.1007/s11431-022-2232-5
http://tech.scichina.com
http://link.springer.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s11431-022-2232-5&amp;domain=pdf&amp;date_stamp=2022-11-22


hence, venous blood vessels must be segmented and ex-
tracted first from images. Deep-learning-based image seg-
mentation achieves superior segmentation accuracy and
generalization performance than traditional digital image
processing techniques. However, this method is currently
understudied for vein vascular segmentation. Chen et al.
[8,10] initially used the recurrent fully convolutional net-
work (Rec-FCN) for forearm venous vessel segmentation
and obtained an accuracy of 84.3%. However, the results
obtained were blurry and insensitive to the image details
because the Rec-FCN network uses the sum of correspond-
ing points when performing feature fusion [11]. Ji et al. [12]
proposed a novel neural network (Mixer-UNet) for auto-
mated vein segmentation and recognition and achieved a
segmentation accuracy of 93.07%. Also, these studies ske-
letonized the vessels when extracting veins, considered only
their position information, and ignored the geometric in-
formation features of the vessels [13,14]. Incomplete vas-
cular feature information cannot meet the needs of puncture
site decision-making.
There are very few related studies on autonomous deci-

sion-making in venipuncture robots. In robotic venipuncture,
the vascular puncture events can be detected using force,
tactile, impedance, and ultrasound methods, but the puncture
site must still be selected manually [15–18]. After the venous
imaging, all existing robots rely on inputs from the clinical
staff to select the puncture location, after which the robots
perform the puncture. Although Chen et al. [8] suggested an
approach for selecting puncture locations in 2013, they did
not specify the implementation method of the strategy. Fur-
thermore, the puncture sites were still selected manually in
all their subsequent studies. Zhao et al. [19] proposed a
puncture point decision algorithm based on connected do-
main identification, which selects the barycenter of the
connected domain corresponding to the straight line inter-
secting the most connected domain sets as the target puncture
point. However, this method only considers the curvature of
the vessel and cannot fully meet the selection requirements
of the puncture site.
Decisions regarding the puncture site must be evaluated

using multiple interdependent criteria. First, the curvature of
the vessel must be considered. An overly curved vessel
causes difficulties in inserting the needle tip into the vessel
entirely and can easily damage the vessel, leading to severe
repercussions, such as tissue injury and drug penetration.
Meanwhile, the cross-sectional size of the vessel must also
be considered, and the cross-sectional change should be as
small as possible along the length of the puncture needle
entry. Additionally, the insertion angle of the needle sig-
nificantly affects the puncture site. For instance, higher in-
sertion angles have stricter requirements for the minimum
diameter of the puncture site. In contrast, lower insertion
angles have stricter requirements for the maximum length of

the needle entry that the vessel can accommodate. Conse-
quently, selecting the puncture site necessitates thoroughly
evaluating the interactions between multiple parameters.
This study introduces a multi-information fusion method

based on near-infrared (NIR) vision and multiobjective op-
timization to identify the optimal puncture site for a veni-
puncture robot. The method comprehensively considers the
characteristic information of blood vessels. Primarily, an
NIR imaging system is used to obtain the distribution image
of the venous blood vessels, and the veins are segmented
using a deep-learning model to ensure that the decision input
data are accurate and reliable. In our previous study, we
created a dataset for arm vein segmentation and segmented
the vessels using SAU-Net [20]. Herein, this dataset is
augmented from the previous research to improve the mod-
el’s generalization performance, and we extract vascular
features after vein segmentation. Additionally, the method is
based on multiobjective optimization and employs image
data segmented by deep learning as the input to determine
the optimal puncture site for each vessel. Meanwhile, the
puncture sites of multiple vessels in the same arm are filtered
based on the interindividual dominance relationship to de-
termine the optimal puncture site globally.
The remainder of this paper is structured as follows:

Section 2 provides an overview of the method. Sections 3
and 4 introduce the methods for preliminary vessel selection
and the optimal puncture site determination of the veni-
puncture, respectively. Sections 5 and 6 describe the ex-
periments and outcomes, as well as their discussions. Finally,
Section 7 concludes the study.

2 Methods

A self-designed venipuncture robot was used for vein de-
tection, puncture status sensing, and target position move-
ment. The robot recognizes blood vessels using a NIR
camera and judges the punctured state based on the force
between the needle and the tissue. The robot’s six degrees of
freedom permit positioning in the required workspace while
altering the needle’s attitude based on vein information. In
the workflow of the venipuncture robot, autonomous de-
termination of the puncture site is crucial for increasing the
autonomy of the robot.
The method proposed herein to determine the puncture site

is based on the vessel imaging data. Since the NIR light can
improve the contrast between vessels and other tissues, it is
advantageous for the robot to identify veins using the NIR
light. Therefore, the NIR camera and light source image the
veins to improve their visibility. Then, the veins are seg-
mented with the SAU-Net model comprising the soft atten-
tion mechanism. The geometric features of each vein are
extracted, including the location, curvature, and cross-sec-
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tional size. Because the circle can adequately approximate
the cross-section of the vessel, the cross-sectional informa-
tion is reduced to the diameter. When determining the
puncture site, it must be acknowledged that several criteria
are not independent. For example, within a particular length
of the vessel, the cross-sectional size may satisfy the veni-
puncture requirement, but the curvature of the vessel may be
excessive, or the cross-sectional size may fluctuate sig-
nificantly. Consequently, a multiobjective optimization
model is presented to determine the puncture site, and the
NSGA-II algorithm is applied to determine the ideal punc-
ture site based on the vessel data.
As depicted in Figure 1, the site determination approach

for the venipuncture robot introduced here comprises three
steps: (1) vein segmentation, which entails preprocessing and
segmenting the vein images acquired by the NIR imaging
system; (2) feature extraction, which entails extracting and
calculating the location information, curvatures, and dia-
meters of the vessels for preliminary vessel selection for
puncture; (3) optimization decision, which entails using the
multiobjective optimization to calculate the solution set of
puncture sites for each vessel and to choose the best puncture
site globally.

3 Preliminary selection of venous vessels based
on NIR vision

First, suitable vessels are selected for venipuncture. The
veins are imaged using the NIR camera and light source, and
their position is established by identifying oxyhemoglobin
and deoxyhemoglobin contents. Owing to light scattering
and attenuation, vessels with relatively large quantities of
hemoglobin are recognized. Vessels with larger cross-sec-
tions closer to the surface are ideal for superficial veni-
puncture. Additionally, shorter vessels are filtered out during
information extraction, providing a filter for vessels accep-
table for venipuncture.

3.1 Vein segmentation

Figure 2 demonstrates the SAU-Net model with the soft at-
tention mechanism applied to segment the veins. The en-
coder extracts the feature using convolutional down-
sampling, whereas the decoder accomplishes same-scale
fusion using deconvolutional up-sampling to restore the
image details and spatial dimensions gradually. During up-
sampling restoration, the features propagated by skip con-
nections after soft attention processing are added to the
classical U-Net [6,21]. This addition helps the model assign
weights to each part of the input image, extract critical in-
formation, suppress other useless information, and achieve
multiscale feature recognition to improve the segmented

edge accuracy. This reduces the training and image seg-
mentation times of the model and improves the vein seg-
mentation performance in real time [22,23]. Our earlier study
[20] describes this model comprehensively.
Labeled training data are required for learning supervised

algorithms. Unfortunately, there is no publicly available
dataset for arm vein images, so the digital arm images for
vein segmentation dataset was established [20]. This dataset
was expanded herein to enhance the number and quality of
images. The enlarged dataset uses four NIR cameras (two
cameras of GS3-U3-41C6NIR-C, FLIR systems, Alabama,
United States, and two cameras of 1800 U-501m mono NIR
S-Mount, Allied Vision, Stadtroda, Germany) to acquire arm
vein images of volunteers under various lighting conditions
(natural light, NIR filtering, and 850-nm NIR light) to
strengthen the flexibility of the model for different popula-
tions and environments. Ground truth images of the arm
veins were then obtained by expert annotation of the dataset
images (Figure 3).

3.2 Vein feature extraction

Location, diameter, and curvature are some of the properties
of the vessel. Since the forearm has several intersecting
vessels, these vessels must be isolated first. The algorithm
for vessel extraction is shown in Algorithm 1. When ex-
tracting blood vessels, the skeleton of the vessels is com-
puted first. Next, the image is normalized, and the pixels are
assigned values 0 (background) and 1 (veins). As shown in
Figure 4(a), the attributes of each point are identified by
calculating the sum of the eight neighbors of each pixel.
Once a judgment is rendered, each point is revised to a
background point to prevent repeated judgment. For ex-
ample, if the sum of the neighbors is 2, the point represents
the vessel’s center. If the sum of the neighbors exceeds 2, the
point represents the vessel’s intersection. Furthermore, if the
sum of the neighbors is 0, the point represents the vessel’s

Figure 1 (Color online) Puncture site decision process.
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termination or an isolated point. Finally, the set of vessel
location points is obtained.
The curvature and diameter of the vessel are computed

after extracting the position. The curvature of the vessel is
defined as the degree to which its angle varies throughout a
given length. The vessel’s angle is defined as the acute angle
of a line between two neighboring points rotated in the
vertical direction, with the counterclockwise and clockwise
directions being positive and negative, respectively (Figure 4
(b)). The computed diameter of the vessel is not the actual

diameter but rather the number of pixels in the radial di-
rection.

4 Multiobjective-optimization-based puncture
location decision method

4.1 Optimization variables and objective functions

The puncture site decision is a multiobjective optimization
problem with a model comprising three components: opti-

Figure 2 (Color online) Deep-learning-based vein segmentation model SAU-Net.

Figure 3 Some samples of the dataset. (a) Arm images under (a) natural light, (b) NIR filtering, and (c) 850-nm NIR light enhancement.
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mization variables, objective function, and constraints. In
this approach, the optimal puncture site within the vein is the
decision goal. Therefore, the optimization variable for this
problem is the vessel’s point. The optimization variable is
given as follows:
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where Pi is the vein information at the ith point, (xi, yi) is the
ith point position, and di and ai are the vein diameter and
angle at the ith point, respectively.
First, the radial requirements of the puncture site are

considered. The diameter of the vessel must allow a fixed
length of the needle to enter—besides, the thicker the vessel,
the lower the danger of puncture. Also, the vessel will be
distorted by force because of the elasticity of soft tissues, and

the vessel deformation should be minimal in the radial di-
rection. The radial deformation of the vessel in the elastic
force range is inversely proportional to its cross-sectional
area. Consequently, the radial objective function is given as
follows:
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In the axial direction of the vessel, the changes in the
vessel diameter and curvature within a specified distance of
the target position must be considered. To avoid abrupt
changes in the cross-sectional dimensions of the vessel, the
vessel diameter should be uniform over its length. Similarly,
the vessel curvature should be as slight as feasible, i.e., the
straighter the vessel, the more suitable it is for venipuncture
to minimize the risk of puncturing the vessel and damaging
the surrounding tissues. Therefore, the axial objective
function is given as follows:
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where j is the vein point index, and j n N= 1, 2, ..., . Also,
a1, a2, b1, and b2 are the weighting factors. = [0 0 0]i

is the decision variable associated with the vessel diameter,
and = [0 0 0 ]i is the decision variable from the vas-
cular perspective. When point i is selected in the range
i i N[ , + ), = 1 and = 1, otherwise = 0 and = 0, such that
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N is the length of the vessel to be considered for the target
points in the image, i.e., the number of pixels:
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4.2 Constraints

Imaging the human elbow revealed that the veins are pri-
marily dispersed along the axial direction of the arm. At the
intersection of the two vessels, there may be an almost radial

Figure 4 (Color online) (a) Eight neighbors of a pixel and (b) angle of the vessel.

Algorithm 1 Extracting veins from the image

1: Input: Vein skeleton image I

2: Initialize: num=0, k=0

3: IN =normalize(I)

4: while sum(IN[0:m, 0:n])>0 do

5: [i,j]←argmax (IN[0:m, 0:n])

6: p0←[i,j]

7: IN[p0]←0

8: vein[k]←p0
9: k←k+1

10: compute p[1,2,…,8] of p0
11: if sum(IN[p1,p2,…,p8]=1) then

12: p0← argmax IN[p1,p2,…,p8]

13: else

14: veins[num]←vein

15: num←num+1

16: k←0

17: end if

18: end while

19: Output: positions of all veins in the image
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connection. Additionally, this portion of the vessel is either
too bent or narrow in diameter to permit venipuncture.
Consequently, to reduce the optimization decision time, the
range of the average angle of the vessels within the target
length is set to [ 45° , 45°], i.e.,

tan ( ) 1. (6)2

Since the specific length of the needle must enter the
vessel, features within the target length of the puncture site
must be considered. This length range depends on the di-
mensional characteristics of the needle and the insertion
angle. During the puncture, a smaller insertion angle requires
a more significant vessel length L to prevent the needle from
puncturing the vessel axially. Conversely, a larger insertion
angle requires a larger vessel diameter C to prevent the
needle from puncturing the distal vessel wall.
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Also, it is necessary to consider the minimum value of the
vessel diameter within the target length of the puncture point,
i.e.,
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where L and C are functions related to the needle length
lneedle, diameter dneedle, and feed angle α. Thus, the optimi-
zation model of the puncture site decision for the robot is

( )

( )

( )

( )
( )

F a
N

a
N

F b

b

s t

N L g l

C g d

P P

P P

P P

P

max = + ,

min = ( )

+ ( ) ,

. . tan > 1,

> = , ,

> = , .

(9)

R
i j

j N
i i

i j

j N
i i

A
i j

j N

i i i

i j

j N

i i i

i i

1
=

+ 1 T

2
=

+ 1 T 2

1
=

+ 1

+1
T 2

2
=

+ 1

+1
T 2

2
¨D

1 needle
T

2 needle

4.3 Optimization method

The proposed procedure for multiobjective optimization
coordinates the relationship between each objective function
and discovers the solution set that maximizes the optimal
value of each objective function. However, the objectives are
mutually restricted. Consequently, a target may be enhanced
at the expense of others, and there is no ideal solution that
maximizes the performance of all objectives. Consequently,
the solution to the multiobjective optimization problem is
typically a collection of noninferior options, also known as
the Pareto solution set.
Two objective functions were applied to the radial and

axial demands of the vessel in the model for puncture loca-
tion. Therefore, the genetic algorithm for undominated
ranking with an elite strategy (NSGA-II) was employed [24–
26]. This method mixes the parent and offspring populations
to build the next-generation population through competition
while preserving the best individuals by storing them hier-
archically. This approach ensures that the best individuals are
not lost to evolution and can rapidly increase the population
level, thereby boosting the precision of the optimization
outcome. Meanwhile, to facilitate this solution, the max-
imization problem is transformed into a minimization pro-
blem in the optimization. Additionally, considering that the
venipuncture site is equally critical for axial and radial re-
quirements, the two objective functions are assigned the
same weights.

5 Experimental methods and results

5.1 Vein segmentation and feature extraction

During model training, the dataset was augmented. Because
medical photos entail personal privacy and are costly, the
dataset is limited. To prevent model underfitting caused by
minimal data, the dataset was augmented to 1376 sets via
size expansion, random cropping, and random flipping be-
fore model training. The training and test sets were divided
into a 7:3 ratio. The initial learning rate was set to 0.001 and
decreased by 0.2 when the reference evaluation measure
ceased to improve or the model failed to develop for five
consecutive epochs.
The model segmentation accuracy was 91.2%, sensitivity

was 92.3%, and the area under the receiver operating char-
acteristic (ROC) curve was 0.945%. Figure 5 depicts the
ROC and precision-recall (PR) curves. Compared to expert
segmentation findings for the left and right arms of 10 stu-
dents (n=20), the SAU-Net model detected 86.3% (101/117)
of the veins. Additionally, the dice score (mean value=0.865
±0.512) for each picture model segmentation exceeds 0.8.
The position, diameter, and curvature of each vein were

derived from the segmented vein images. Also, the segmen-
tation results were filtered for veins with short lengths and
small diameters. The number of venous vessels extracted by
the model and the actual number of vessels in Figure 6(a) are
5/7, 4/6, 5/6, and 4/5. These results are presented in Figure 6
(b) and (c).

5.2 Puncture site decision

The extracted vessel information was used as the decision for
each vessel in the optimization model for puncture site de-
cision. Meanwhile, the NSGA-II was used to calculate the
optimization. Binary coding was used because of the discrete
nature of the variables, and genetic operations are simple to
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execute. Furthermore, the number of population members
was fixed at 30. The crossover and variation probability

values were set to 0.7 and 1/20, and the maximum number of
evolutionary generations was set to 300. Also, the type,

Figure 5 (Color online) ROC curve (a) and PR curve (b).

Figure 6 (Color online) Puncture decision results. (a) Original image; (b) vein segmentation; (c) vein extraction; (d) puncture site decision; (e) global
optimal result.
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diameter dneedle, and length lneedle of the standard needle used
in venipuncture were counted. Considering the range of the
needle entry angles from 10° to 30° for venipuncture, the
estimated safe diameter C=3dneedle, and safe insertion length
L=0.7lneedle for different models of needles are presented in
Table 1. To enhance the safety of the decision site, the safe
diameter and insertion length were calculated using an ap-
proach angle of 30° and 10°, respectively.
Since multiple vessels exist in each image, the decision

result for each vessel (average decision time=1.458 s) has the
best set of solutions. The best solution for each vessel was
filtered by considering two objective functions for the de-
cision results of all vessels in a balanced manner.
Each vessel has a different number of Pareto solution sets

(Figure 6(d)). Some vessels have several puncture decision
sites, whereas others lack a puncture decision site that fits the
criteria. For an individual’s vessel puncture solution sets, the
F1‒F2 plot for each solution was drawn (with the values F1
and F2 of objective functions one and two as the horizontal
and vertical coordinates, respectively). The final puncture
decision results were obtained by considering the dominant
relationships between the solution sets (Figure 6(e)). After
collecting the coordinates of the vein whose length exceeded
L according to the final result, the slope at the puncture site
was fitted.
Considering that the most common venipuncture needle

size for humans is 22G, all trials in this investigation were
conducted for this parameter. The average diameters of the
four choice results displayed in Figure 6(e) over the length
range L are 2.854, 3.195, 2.982, and 3.586 mm, with the
standard deviation of the diameter being < 0.050 mm.

5.3 Robot position and attitude adjustment based on
puncture site decision

Experiments on the puncture site determination were con-
ducted using the self-developed six-degrees-of-freedom ve-
nipuncture robot to modify the needle position and attitude.

The ranges of motion of the robot are 70, 80, and 40 mm in
the x, y, and z directions in a three-dimensional (3D) space,
respectively. The positioning accuracy values are 0.08, 0.05,
and 0.07 mm, and the repeatability values are 0.03, 0.02, and
0.02 mm, respectively. The yaw, pitch, and inj axes have
ranges of motion from −45° to 45°, 0° to 30°, and 0 to
16 mm, and the repeatability values are 0.03°, 0.06°, and
0.03 mm, respectively. The end effector of the robot can
retain the needle tip at the intersection of the yaw and pitch
axes before puncturing (Figures 7(a) and (b)). Therefore, the
needle tip position remains unchanged when the needle
posture is adjusted. Also, both the end effector and camera
(1800 U-501m mono NIR S-Mount, Allied Vision) are in-
stalled on the robotic-positioning arm (Figure 7(a)). The
positions are relatively fixed, and the calibration is com-
pleted [27,28], so the needle tip position in the image re-
mains unchanged during movement. The software system of
the robot is written in Python and QT to realize the vein
image processing, puncture decision, and robot motion
control.
In this experiment, the NIR camera captured real-time

images of the arm veins to determine the optimal puncture
site. The final result of the puncture decision includes the
pixel coordinates of the puncture site and vein angle. The site
information was transformed to the robot’s coordinate sys-
tem position, and the robot moved to the puncture site ac-
cordingly. The robot simultaneously adjusts its yaw angle
(i.e., the angle between the needle and numerical direction)
following the vessel angle such that the needle is parallel to
the vessel at the puncture site (Figure 7(c)).

Table 1 Parameters of the puncture needles

Type 24G 23G 22G 21G 20G

dneedle (mm) 0.55 0.60 0.70 0.80 0.90

lneedle (mm) 20 24 25 26 27

C (mm) 1.5 1.8 2.1 2.4 2.7

L (mm) 14 17 18 19 19

Figure 7 (Color online) Experimental platform. (a) Venipuncture robot; (b) yaw and pitch axes of the robot; (c) process of robot positioning and attitude
adjustments based on the puncture site decision.
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The errors in the robot’s movement to the puncture posi-
tion in the x and y directions are <0.100 and 0.050 mm,
respectively, and the yaw angle error is < 0.050°. The ex-
perimental results are illustrated in Figure 8. The location of
the puncture point is (186.049, 189.666), and the angle is
10.930° (Figure 8(a)). The robot’s initial position and yaw
angle are (149.867, 159.634) and 29.885°, respectively
(Figure 8(b)). When the robot reaches the puncture point, the
needle tip is located at (185.998, 189.676), with a yaw angle
of 10.958°. The errors relative to the target position are 0.052
and 0.010 mm in the x and y directions, respectively, and
0.028° along the yaw axis. Figure 8(c) shows the relative
positional changes of the needle and puncture point during
the experiment, with the red rectangle and bright yellow dot
indicating the needle’s position and the target location, re-
spectively. During movement, the location and attitude are
simultaneously modified.

6 Discussion

This study presents a method for autonomous puncture site
decision-making for the venipuncture robot based on the
SAU-Net model and multiobjective optimization. The results
demonstrate that deep-learning-based vein segmentation and
feature extraction can efficiently extract veins and that the
multiobjective-optimization-based puncture site decision
model can determine the optimal puncture site on the vein.
Furthermore, the proposed method was applied to the veni-
puncture robot to adjust its position and attitude based on the
ideal puncture site. This enables achieving more autonomous
venipuncture under the supervision of clinical staff.
Initially, vessels with the most suitable depth, length, and

diameter were screened using the NIR imaging system and
vessel extraction algorithm. Because hemoglobin absorbs
NIR light more strongly than other tissues, the NIR vision-
based vein identification method can acquire more precise
vessel positions. Concurrently, fuzzy, thin, and short vessels
are filtered when vein segmentation and feature extraction
are performed. Besides, only those vessels suitable for
puncture location determination are screened. This elim-
inates decision interference, improves decision efficiency,
and ensures the safety of the puncture site.
This study utilized the deep-learning-based approach for

vein segmentation and feature extraction because puncture
site decisions depend on the accuracy of vein information.
Although studies have been conducted on retinal vessel
segmentation [29,30] and vein segmentation based on the
Rec-FCN [6], a dataset for training the segmented forearm
vein model has not been developed. Therefore, this study
presents a dataset for segmenting human forearm veins as a
pioneering work. This dataset considers the impact of the
equipment and environment on imaging. Besides, the images
were obtained using four cameras in three circumstances to
reduce the environmental interference on vein segmentation.
During making the puncture site decision, at least one vein

suitable for robotic venipuncture should be extracted for a
given patient, and the optimal puncture location can be cal-
culated. During the experiments, the approach proposed
herein can extract approximately four veins (86.3%), which
exceeds the results of the manual evaluation (73.9%) and
Rec-FCN detection (78.8%) [6].
Additionally, the multiobjective-optimization-based

puncture site decision method fully considers the effects of
the insertion angle, vessel size, degree of curvature, and
needle size. The method optimizes decision-making sites for

Figure 8 (Color online) Puncture site decision experiment with the robot. (a) Puncture decision results; (b) the robot adjusts the position and attitude of the
needle according to the puncture site; (c) puncture site and relative position of the needle during robot movement.
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each vessel and finally filters the optimal venous puncture
location from multiple Pareto solution sets based on the
value of the objective function. The information on the
vessel’s angle at the puncture position for the desired length
is also provided, thus eliminating the manual selection of the
puncture location by the clinical staff.
This work proposes an autonomous decision-making

method for a venipuncture robot with multi-information fu-
sion. It has been reported that most venipuncture robots re-
quire a manual selection of puncture sites by the clinical staff
[6,9,31–33], which does not relieve the staff of venipuncture
duties. In the experiments, the error between the target
puncture point and the needle tip of the venipuncture robot
was <0.100 mm. Moreover, the angle error between the
needle and blood vessel was <0.050°, demonstrating that the
method yields superior results to the venipuncture robot.
Thus, the proposed method improves the autonomy of the
venipuncture robot and enables the robot to accomplish tasks
with less monitoring. However, it reduces the probability of
puncture failure due to variations in the axes of the puncture
needle and the vein.

7 Conclusion

This study presents a puncture site decision-making method
with multi-information fusion for the automated veni-
puncture robot by utilizing vein images after SAU-Net net-
work segmentation and feature extraction as the input
information for optimal puncture site selection. In this work,
vein segmentation and feature extraction experiments were
conducted on ten humans, with an accuracy of 91.2% for
segmentation and an extraction rate of 86.3% for the veins.
The experiments indicated that multiple Pareto solution sets
and an optimal puncture site could be calculated using the
extracted venous information as the input to a multiobjective
optimization model following the preliminary selection of
vessels using NIR vision. Additionally, the approach viably
provided the position and attitude data to the venipuncture
robot. Furthermore, the results indicate that the proposed
technology can be employed in clinical applications and has
a high potential for automatic puncture site decision-making,
along with providing the basis for improving the autonomy
of other medical robots.
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