Skip to main content
Log in

Gaseous sorption and electrochemical properties of rare-earth hydrogen storage alloys and their representative applications: A review of recent progress

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The improvement of hydrogen storage materials is a key issue for storage and delivery of hydrogen energy before its potential can be realized. As hydrogen storage media, rare-earth hydrogen storage materials have been systematically studied in order to improve storage capacity, kinetics, thermodynamics and electrochemical performance. In this review, we focus on recent research progress of gaseous sorption and electrochemical hydrogen storage properties of rare-earth alloys and highlight their commercial applications including hydrogen storage tanks and nickel metal hydride batteries. Furthermore, development trend and prospective of rare-earth hydrogen storage materials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Züttel A, Borgschulte A, Schlapbach L. Hydrogen as a Future Energy Carrier. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. 5

    Book  Google Scholar 

  2. Ross D K. Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars. Vacuum, 2006, 80: 1084–1089

    Article  Google Scholar 

  3. Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature, 2001, 414: 353–358

    Article  Google Scholar 

  4. Van Vucht J H N, Kuijpers F A, Bruning H C A M. Reversible roomtemperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Res Repts, 1970, 25: 133–140

    Google Scholar 

  5. Züttel A. Materials for hydrogen storage. Mater Today, 2003, 6: 24–33

    Article  Google Scholar 

  6. Yu X, Zhang Q. The surface features of the poisoning of Lanthanum rich mixed rare earth-nickel hydrogen storage materials by CO, O2 and H2O. Acta Phys Sin, 1983, 32: 542–546

    Google Scholar 

  7. Aoyagi H, Aoki K, Masumoto T. Effect of ball milling on hydrogen absorption properties of FeTi, Mg2Ni and LaNi5. J Alloys Compd, 1995, 231: 804–809

    Article  Google Scholar 

  8. Asano K, Yamazaki Y, Iijima Y. Hydriding and dehydriding processes of LaNi5-xCox (x=0–2) alloys under hydrogen pressure of 1–5 MPa. Intermetallics, 2003, 11: 911–916

    Article  Google Scholar 

  9. Etiemble A, Bernard P, Idrissi H, et al. New insights into the pulverization of LaNi5-based alloys with different Co contents from electrochemical acoustic emission measurements. Electrochim Acta, 2015, 186: 112–116

    Article  Google Scholar 

  10. Liu J, Yang Y, Li Y, et al. Comparative study of LaNi4.7M0.3 (M=Ni, Co, Mn, Al) by powder microelectrode technique. Int J Hydrogen Energy, 2007, 32: 1905–1910

    Article  Google Scholar 

  11. Sakai T, Oguro K, Miyamura H, et al. Some factors affecting the cycle lives of LaNi5-based alloy electrodes of hydrogen batteries. J Less Common Met, 1990, 161: 193–202

    Article  Google Scholar 

  12. Notten P H L, Daams J L C, Einerhand R E F. On the nature of the electrochemical cycling stability of non-stoichiometric LaNi5-based hydride-forming compounds Part II. In situ X-ray diffractometry. J Alloys Compd, 1994, 210: 233–241

    Article  Google Scholar 

  13. Demircan A, Demiralp M, Kaplan Y, et al. Experimental and theoretical analysis of hydrogen absorption in LaNi5-H2 reactors. Int J Hydrogen Energy, 2005, 30: 1437–1446

    Article  Google Scholar 

  14. Mellouli S, Dhaou H, Askri F, et al. Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger. Int J Hydrogen Energy, 2009, 34: 9393–9401

    Article  Google Scholar 

  15. Bossi C, Del Corno A, Scagliotti M, et al. Characterisation of a 3 kW PEFC power system coupled with a metal hydride H2 storage. J Power Sources, 2007, 171: 122–129

    Article  Google Scholar 

  16. Mori D, Hirose K. Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int J Hydrogen Energy, 2009, 34: 4569–4574

    Article  Google Scholar 

  17. Liu J, Li K, Cheng H, et al. New insights into the hydrogen storage performance degradation and Al functioning mechanism of LaNi5-xAlx alloys. Int J Hydrogen Energy, 2017, 42: 24904–24914

    Article  Google Scholar 

  18. Karagiorgis G, Christodoulou C N, von Storch H, et al. Design, development, construction and operation of a novel metal hydride compressor. Int J Hydrogen Energy, 2017, 42: 12364–12374

    Article  Google Scholar 

  19. Spodaryk M, Shcherbakova L, Sameljuk A, et al. Description of the capacity degradation mechanism in LaNi5-based alloy electrodes. J Alloys Compd, 2015, 621: 225–231

    Article  Google Scholar 

  20. Long K. Applications of rare earth hydrogen storage material in Ni-MH cell. Rare Metal Mat Eng, 1992, 21: 8–13

    Google Scholar 

  21. Wang L, Young K, Meng T, et al. Partial substitution of cobalt for nickel in mixed rare earth metal based superlattice hydrogen absorbing alloy—Part 2 Battery performance and failure mechanism. J Alloys Compd, 2016, 664: 417–427

    Article  Google Scholar 

  22. Peng X, Liu B, Fan Y, et al. Microstructures and electrochemical characteristics of La0.7Ce0.3Ni4.2Mn0.9-xCu0.37(V0.81Fe0.19)x hydrogen storage alloys. Electrochim Acta, 2013, 93: 207–212

    Article  Google Scholar 

  23. Zhou W, Zhu D, Wang Q, et al. Effects of Al content on the electrochemical properties of La0.78Ce0.22Ni3.95-xCo0.65Mn0.3Si0.1Alx alloys at 20–80°C. Int J Hydrogen Energy, 2015, 40: 10200–10210

    Article  Google Scholar 

  24. Chao D, Zhong C, Ma Z, et al. Improvement in high-temperature performance of Co-free high-Fe AB5-type hydrogen storage alloys. Int J Hydrogen Energy, 2012, 37: 12375–12383

    Article  Google Scholar 

  25. Lin J, Cheng Y, Liang F, et al. High temperature performance of La0.6Ce0.4Ni3.45Co0.75Mn0.7Al0.1 hydrogen storage alloy for nickel/metal hydride batteries. Int J Hydrogen Energy, 2014, 39: 13231–13239

    Article  Google Scholar 

  26. Wang Q, Zhu D, Zhou W, et al. High-temperature electrochemical performance of low-cost La-Ni-Fe based hydrogen storage alloys with different preparation methods. Mater Res Bull, 2016, 76: 28–36

    Article  Google Scholar 

  27. Yao Q R, Zhou H Y, Wang Z M, et al. Electrochemical properties of the LaNi4.5Co0.25Al0.25 hydrogen storage alloy in wide temperature range. J Alloys Compd, 2014, 606: 81–85

    Article  Google Scholar 

  28. Zhou W, Tang Z, Zhu D, et al. Low-temperature and instantaneous high-rate output performance of AB5-type hydrogen storage alloy with duplex surface hot-alkali treatment. J Alloys Compd, 2016, 692: 364–374

    Article  Google Scholar 

  29. Ma Z, Zhou W, Wu C, et al. Effects of size of nickel powder additive on the low-temperature electrochemical performances and kinetics parameters of AB5-type hydrogen storage alloy for negative electrode in Ni/MH battery. J Alloys Compd, 2016, 660: 289–296

    Article  Google Scholar 

  30. Young K, Ouchi T, Reichman B, et al. Effects of Mo additive on the structure and electrochemical properties of low-temperature AB5 metal hydride alloys. J Alloys Compd, 2011, 509: 3995–4001

    Article  Google Scholar 

  31. Oesterreicher H, Bittner H. Hydride formation in La1-xMgxNi2. J Less Common Met, 1980, 73: 339–344

    Article  Google Scholar 

  32. Liu J, Han S, Li Y, et al. Phase structures and electrochemical properties of La-Mg-Ni-based hydrogen storage alloys with superlattice structure. Int J Hydrogen Energy, 2016, 41: 20261–20275

    Article  Google Scholar 

  33. Verbovyts’kyi Y V, Zavalii I Y. New metal-hydride electrode materials based on R1–xMgxNi3–4 alloys for chemical current sources. Mater Sci, 2016, 51: 443–456

    Article  Google Scholar 

  34. Kadir K, Sakai T, Uehara I. Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers. J Alloys Compd, 1997, 257: 115–121

    Article  Google Scholar 

  35. Liu B, Li J, Han S, et al. Microstructures and hydrogen storage properties of LaMg8.40Ni2.34-xAlx alloys. J Alloys Compd, 2012, 526: 6–10

    Article  Google Scholar 

  36. Peng X, Liu B, Zhao X, et al. Effects of ultra-high pressure on phase compositions, phase configurations and hydrogen storage properties of LaMg4Ni alloys. Int J Hydrogen Energy, 2013, 38: 14661–14667

    Article  Google Scholar 

  37. Li Q, Pan Y, Leng H, et al. Structures and properties of Mg-La-Ni ternary hydrogen storage alloys by microwave-assisted activation synthesis. Int J Hydrogen Energy, 2014, 39: 14247–14254

    Article  Google Scholar 

  38. Balcerzak M, Nowak M, Jurczyk M. Hydrogenation and electrochemical studies of La-Mg-Ni alloys. Int J Hydrogen Energy, 2017, 42: 1436–1443

    Article  Google Scholar 

  39. Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature, 2001, 414: 353–358

    Article  Google Scholar 

  40. Young K, Wong D F, Wang L, et al. Mn in misch-metal based superlattice metal hydride alloy—Part 1 Structural, hydrogen storage and electrochemical properties. J Power Sources, 2014, 277: 426–432

    Article  Google Scholar 

  41. Verbovytskyy Y V, Shtender V V, Hackemer A, et al. Solid-gas and electrochemical hydrogenation properties of the La1-xNdxMgNi4-yCoy alloys. J Alloys Compd, 2018, 741: 307–314

    Article  Google Scholar 

  42. Xue C, Zhang L, Fan Y, et al. Phase transformation and electrochemical hydrogen storage performances of La3RMgNi19 (R=La, Pr, Nd, Sm, Gd and Y) alloys. Int J Hydrogen Energy, 2016, 42: 6051–6064

    Article  Google Scholar 

  43. Fan Y, Zhang L, Xue C, et al. Phase structure and electrochemical hydrogen storage performance of La4MgNi18M (M=Ni, Al, Cu and Co) alloys. J Alloys Compd, 2017, 727: 398–409

    Article  Google Scholar 

  44. Takasaki T, Nishimura K, Saito M, et al. Cobalt-free nickel-metal hydride battery for industrial applications. J Alloys Compd, 2013, 580: S378–S381

    Article  Google Scholar 

  45. Yasuoka S, Ishida J, Kishida K, et al. Effects of cerium on the hydrogen absorption-desorption properties of rare earth-Mg-Ni hydrogen-absorbing alloys. J Power Sources, 2017, 346: 56–62

    Article  Google Scholar 

  46. Xiong W, Yan H, Wang L, et al. Characteristics of A2B7-type LaYNibased hydrogen storage alloys modified by partially substituting Ni with Mn. Int J Hydrogen Energy, 2017, 42: 10131–10141

    Article  Google Scholar 

  47. Liu J, Han S, Li Y, et al. Effect of Al incorporation on the degradation in discharge capacity and electrochemical kinetics of La-Mg-Ni-based alloys with A2B7-type super-stacking structure. J Alloys Compd, 2015, 619: 778–787

    Article  Google Scholar 

  48. Li Y, Han S, Liu Z. Effect of Mo-Ni treatment on electrochemical kinetics of La-Mg-Ni-based hydrogen storage alloys. Int J Hydrogen Energy, 2010, 35: 12858–12863

    Article  Google Scholar 

  49. Young K H, Lin X, Lien Y, et al. Properties of nickel metal hydride battery using molybdenum-added superlattice metal hydride alloy. Mater Sci Eng Adv Res, 2018, 2: 1–14

    Article  Google Scholar 

  50. Young K H, Lin X, Jiang C, et al. Effects of molybdenum to the hydrogen storage and electrochemical properties of superlattice metal hydride alloy. Mater Sci Eng Adv Res, 2018, 2: 13–26

    Article  Google Scholar 

  51. Kong L, Li X, Young K, et al. Effects of rare-earth element additions to Laves phase-related body-centered-cubic solid solution metal hydride alloys: Thermodynamic and electrochemical properties. J Alloys Compd, 2018, 737: 174–183

    Article  Google Scholar 

  52. Yao Z, Liu L, Xiao X, et al. Effect of rare earth doping on the hydrogen storage performance of Ti1.02Cr1.1Mn0.3Fe0.6 alloy for hybrid hydrogen storage application. J Alloys Compd, 2018, 731: 524–530

    Article  Google Scholar 

  53. Zhu J, Ma L, Liang F, et al. Effect of Sc substitution on hydrogen storage properties of Ti-V-Cr-Mn alloys. Int J Hydrogen Energy, 2015, 40: 6860–6865

    Article  Google Scholar 

  54. Schüth F, Bogdanovic B, Felderhoff M. Light metal hydrides and complex hydrides for hydrogen storage. Cheminform, 2005, 36: 2249–2258

    Google Scholar 

  55. Orimo S I, Nakamori Y, Eliseo J R, et al. Complex hydrides for hydrogen storage. Chem Rev, 2007, 107: 4111–4132

    Article  Google Scholar 

  56. Ravnsbæk D B, Filinchuk Y, Cerný R, et al. Thermal polymorphism and decomposition of Y(BH4)3. Inorganic Chemistry, 2010, 49: 3801

    Article  Google Scholar 

  57. Ley M B, Ravnsbæk D B, Filinchuk Y, et al. LiCe(BH4)3Cl, a new lithium-ion conductor and hydrogen storage material with isolated tetranuclear anionic clusters. Chem Mater, 2012, 24: 1654–1663

    Article  Google Scholar 

  58. GharibDoust S H P, Ravnsbæk D B, Cerný R, et al. Synthesis, structure and properties of bimetallic sodium rare-earth (RE) borohydrides, NaRE(BH4)4, RE=Ce, Pr, Er or Gd. Dalton Trans, 2017, 46: 13421–13431

    Article  Google Scholar 

  59. Frommen C, Heere M, Riktor M D, et al. Hydrogen storage properties of rare earth (RE) borohydrides (RE=La, Er) in composite mixtures with LiBH4 and LiH. J Alloys Compd, 2015, 645: S155–S159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiMin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, F., Lin, J., Cheng, Y. et al. Gaseous sorption and electrochemical properties of rare-earth hydrogen storage alloys and their representative applications: A review of recent progress. Sci. China Technol. Sci. 61, 1309–1318 (2018). https://doi.org/10.1007/s11431-018-9316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9316-0

Keywords

Navigation