Skip to main content
Log in

Research progresses and prospects of multi-sphere compound extremes from the Earth System perspective

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Compound extremes, whose socioeconomic and ecological impacts are severer than that caused by each event occurring in isolation, have evolved into a hot topic in Earth Science in the past decade. In the context of climate change, many compound extremes have exhibited increasing frequency and intensity, and shown novel fashions of combinations, posing more pressing demands and tougher challenges to scientific research and disaster prevention and response. This article, via a perspective of multi-sphere interactions within the Earth System, systematically reviews the status quo, new scientific understanding, and deficiencies regarding the definition, mechanism, change, attribution, and projection of compound extremes. This study also sorts out existing challenges and outlines a potential roadmap in advancing the study on compound extremes with respect to data requirement, mechanistic diagnosis, numerical modeling, attribution and projection, risk assessment, and adaptive response. Further directions of compound extremes studies and key research topics that warrant multi-disciplinary and multisectoral coordinated efforts are also proposed. Given that climate change has reshaped the type of extremes, a transformation from the traditional single-event perspective to a compound-event perspective is needed for scientific research, disaster prevention and mitigation, and climate change adaptation, calling for bottom-up innovation in research objects, ideas, and methods. This article will add value to promoting the research on compound extremes and interdisciplinary cooperations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • AghaKouchak A, Chiang F, Huning L S, Love C A, Mallakpour I, Mazdiyasni O, Moftakhari H, Papalexiou S M, Ragno E, Sadegh M. 2020. Climate extremes and compound hazards in a warming world. Annu Rev Earth Planet Sci, 48: 519–548

    ADS  CAS  Google Scholar 

  • An N, Zuo Z. 2021. Changing structures of summertime heatwaves over China during 1961–2017. Sci China Earth Sci, 64: 1242–1253

    ADS  Google Scholar 

  • Anderson W B, Seager R, Baethgen W, Cane M, You L. 2019. Synchronous crop failures and climate-forced production variability. Sci Adv, 5: eaaw1976

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari R, Grossi G. 2022. Spatio-temporal evolution of wet-dry event features and their transition across the Upper Jhelum Basin (UJB) in South Asia. Nat Hazards Earth Syst Sci, 22: 287–302

    ADS  Google Scholar 

  • Balch J K, Abatzoglou J T, Joseph M B, Koontz M J, Mahood A L, McGlinchy J, Cattau M E, Williams A P. 2022. Warming weakens the night-time barrier to global fire. Nature, 602: 442–448

    ADS  CAS  PubMed  Google Scholar 

  • Barton Y, Giannakaki P, von Waldow H, Chevalier C, Pfahl S, Martius O. 2016. Clustering of regional-scale extreme precipitation events in southern Switzerland. Mon Weather Rev, 144: 347–369

    ADS  Google Scholar 

  • Barriopedro D, García-Herrera R, Ordóñez C, Miralles D G, Salcedo-Sanz S. 2023. Heat waves: Physical understanding and scientific challenges. Rev Geophys, 61: e2022RG000780

    ADS  Google Scholar 

  • Batibeniz F, Hauser M, Seneviratne S I. 2023. Countries most exposed to individual and concurrent extremes and near-permanent extreme conditions at different global warming levels. Earth Syst Dynam, 14: 485–505

    ADS  Google Scholar 

  • Behrenfeld M J, O’Malley R T, Siegel D A, McClain C R, Sarmiento J L, Feldman G C, Milligan A J, Falkowski P G, Letelier R M, Boss E S. 2006. Climate-driven trends in contemporary ocean productivity. Nature, 444: 752–755

    ADS  CAS  PubMed  Google Scholar 

  • Ben-Ari T, Boé J, Ciais P, Lecerf R, Van der Velde M, Makowski D. 2018. Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France. Nat Commun, 9: 1627

    ADS  PubMed  PubMed Central  Google Scholar 

  • Beniston M. 2009. Trends in joint quantiles of temperature and precipitation in Europe since 1901 and projected for 2100. Geophys Res Lett, 36: L07707

    ADS  Google Scholar 

  • Bercos-Hickey E, O’Brien T A, Wehner M F, Zhang L, Patricola C M, Huang H, Risser M D. 2022. Anthropogenic contributions to the 2021 pacific northwest heatwave. Geophys Res Lett, 49: e2022GL099396

    ADS  Google Scholar 

  • Bevacqua E, De Michele C, Manning C, Couasnon A, Ribeiro A F S, Ramos A M, Vignotto E, Bastos A, Blesić S, Durante F, Hillier J, Oliveira S C, Pinto J G, Ragno E, Rivoire P, Saunders K, van der Wiel K, Wu W, Zhang T, Zscheischler J. 2021. Guidelines for studying diverse types of compound weather and climate events. Earths Future, 9: e2021EF002340

    ADS  Google Scholar 

  • Bevacqua E, Suarez-Gutierrez L, Jézéquel A, Lehner F, Vrac M, Yiou P, Zscheischler J. 2023. Advancing research on compound weather and climate events via large ensemble model simulations. Nat Commun, 14: 2145

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Bevacqua E, Maraun D, Hobæk Haff I, Widmann M, Vrac M. 2017. Multivariate statistical modelling of compound events via pair-copula constructions: Analysis of floods in Ravenna (Italy). Hydrol Earth Syst Sci, 21: 2701–2723

    ADS  Google Scholar 

  • Bevacqua E, Maraun D, Vousdoukas M I, Voukouvalas E, Vrac M, Mentaschi L, Widmann M. 2019. Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change. Sci Adv, 5: eaaw5531

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Bevacqua E, Vousdoukas M I, Shepherd T G, Vrac M. 2020a. Brief communication: The role of using precipitation or river discharge data when assessing global coastal compound flooding. Nat Hazards Earth Syst Sci, 20: 1765–1782

    ADS  Google Scholar 

  • Bevacqua E, Vousdoukas M I, Zappa G, Hodges K, Shepherd T G, Maraun D, Mentaschi L, Feyen L. 2020b. More meteorological events that drive compound coastal flooding are projected under climate change. Commun Earth Environ, 1: 47

    ADS  PubMed  PubMed Central  Google Scholar 

  • Bevacqua E, Zappa G, Lehner F, Zscheischler J. 2022. Precipitation trends determine future occurrences of compound hot-dry events. Nat Clim Chang, 12: 350–355

    ADS  Google Scholar 

  • Black E, Blackburn M, Harrison G, Hoskins B, Methven J. 2004. Factors contributing to the summer 2003 European heatwave. Weather, 59: 217–223

    ADS  Google Scholar 

  • Boers N, Goswami B, Rheinwalt A, Bookhagen B, Hoskins B, Kurths J. 2019. Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature, 566: 373–377

    ADS  PubMed  Google Scholar 

  • Bolinger R A, Brown V M, Fuhrmann C M, Gleason K L, Joyner T A, Keim B D, Lewis A, Nielsen-Gammon J W, Stiles C J, Tollefson W, Attard H E, Bentley A M. 2022. An assessment of the extremes and impacts of the February 2021 South-Central U.S. Arctic outbreak, and how climate services can help. Weather Clim Extrem, 36: 100461

    Google Scholar 

  • Borg M A, Xiang J, Anikeeva O, Pisaniello D, Hansen A, Zander K, Dear K, Sim M R, Bi P. 2021. Occupational heat stress and economic burden: A review of global evidence. Environ Res, 195: 110781

    CAS  PubMed  Google Scholar 

  • Bouwer L M, Cheong S M, Jacot Des Combes H, Frölicher T L, McInnes K L, Ratter B M W, Rivera-Arriaga E. 2022. Risk management and adaptation for extremes and abrupt changes in climate and oceans: Current knowledge gaps. Front Clim, 3: 785641

    Google Scholar 

  • Boyce D G, Lewis M R, Worm B. 2010. Global phytoplankton decline over the past century. Nature, 466: 591–596

    ADS  CAS  PubMed  Google Scholar 

  • Brida A B, Owiyo T, Sokona Y. 2013. Loss and damage from the double blow of flood and drought in Mozambique. Int J Glob Warm, 5: 514–531

    Google Scholar 

  • Burger F A, Terhaar J, Frölicher T L. 2022. Compound marine heatwaves and ocean acidity extremes. Nat Commun, 13: 4722

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzan J R, Huber M. 2020. Moist heat stress on a hotter Earth. Annu Rev Earth Planet Sci, 48: 623–655

    ADS  CAS  Google Scholar 

  • Camus P, Haigh I D, Wahl T, Nasr A A, Méndez F J, Darby S E, Nicholls R J. 2022. Daily synoptic conditions associated with occurrences of compound events in estuaries along north Atlantic coastlines. Intl J Climatol, 42: 5694–5713

    Google Scholar 

  • Cannon A J. 2016. Multivariate bias correction of climate model output: Matching marginal distributions and intervariable dependence structure. J Clim, 29: 7045–7064

    ADS  Google Scholar 

  • Cannon A J. 2018. Multivariate quantile mapping bias correction: An n-dimensional probability density function transform for climate model simulations of multiple variables. Clim Dyn, 50: 31–49

    Google Scholar 

  • Casanueva A, Bedia J, Herrera S, Fernández J, Gutiérrez J M. 2018. Direct and component-wise bias correction of multi-variate climate indices: The percentile adjustment function diagnostic tool. Clim Change, 147: 411–425

    ADS  Google Scholar 

  • Casanueva A, Kotlarski S, Herrera S, Fischer A M, Kjellstrom T, Schwierz C. 2019. Climate projections of a multivariate heat stress index: The role of downscaling and bias correction. Geosci Model Dev, 12: 3419–3438

    ADS  Google Scholar 

  • Catto J L, Dowdy A. 2021. Understanding compound hazards from a weather system perspective. Weather Clim Extrem, 32: 100313

    Google Scholar 

  • Cavole L M, Demko A M, Diner R E, Giddings A, Koester I, Pagniello C M, Paulsen M L, Ramirez-Valdez A, Schwenck S M, Yen N K, Zill M E, Franks P J S. 2016. Biological impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: Winners, losers, and the future. Oceanography, 29: 273–285

    Google Scholar 

  • Chen H, Wang S. 2022. Accelerated transition between dry and wet periods in a warming climate. Geophys Res Lett, 49: e2022GL099766

    ADS  Google Scholar 

  • Chen H, Wang S, Zhu J, Zhang B. 2020. Projected changes in abrupt shifts between dry and wet extremes over China through an ensemble of regional climate model simulations. J Geophys Res-Atmos, 125: e2020JD033894

    ADS  Google Scholar 

  • Chen W, Zhu D, Huang C, Ciais P, Yao Y, Friedlingstein P, Sitch S, Haverd V, Jain A K, Kato E, Kautz M, Lienert S, Lombardozzi D, Poulter B, Tian H, Vuichard N, Walker A P, Zeng N. 2019. Negative extreme events in gross primary productivity and their drivers in China during the past three decades. Agric For Meteorol, 275: 47–58

    ADS  Google Scholar 

  • Chen Y. 2020. Increasingly uneven intra-seasonal distribution of daily and hourly precipitation over eastern China. Environ Res Lett, 15: 104068

    ADS  Google Scholar 

  • Chen Y, Li Y. 2017. An inter-comparison of three heat wave types in China during 1961–2010: Observed basic features and linear trends. Sci Rep, 7: 45619

    ADS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Liao Z, Shi Y, Li P, Zhai P. 2022a. Greater flash flood risks from hourly precipitation extremes preconditioned by heatwaves in the Yangtze River Valley. Geophys Res Lett, 49: e2022GL099485

    ADS  Google Scholar 

  • Chen Y, Liao Z, Shi Y, Tian Y, Zhai P. 2021. Detectable increases in sequential flood-heatwave events across China during 1961–2018. Geophys Res Lett, 48: e2021GL092549

    ADS  Google Scholar 

  • Chen Y, Vogel A, Wagg C, Xu T, Iturrate-Garcia M, Scherer-Lorenzen M, Weigelt A, Eisenhauer N, Schmid B. 2022b. Drought-exposure history increases complementarity between plant species in response to a subsequent drought. Nat Commun, 13: 3217

    ADS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhai P. 2017a. Revisiting summertime hot extremes in China during 1961–2015: Overlooked compound extremes and significant changes. Geophys Res Lett, 44: 5096–5103

    ADS  Google Scholar 

  • Chen Y, Zhai P. 2017b. Simultaneous modulations of precipitation and temperature extremes in southern parts of China by the boreal summer intraseasonal oscillation. Clim Dyn, 49: 3363–3381

    Google Scholar 

  • Chen Y, Zhou B, Zhai P, Moufouma-Okia W. 2019. Half-a-degree matters for reducing and delaying global land exposure to combined daytime-nighttime hot extremes. Earths Future, 7: 953–966

    ADS  Google Scholar 

  • Cheng L, Liu Z. 2022. Detectable increase in global land areas susceptible to precipitation reversals under the RCP8.5 scenario. Earths Future, 10:e2022EF002948

    Google Scholar 

  • Cheung W W L, Frölicher T L, Lam V W Y, Oyinlola M A, Reygondeau G, Sumaila U R, Tai T C, Teh L C L, Wabnitz C C C. 2021. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Sci Adv, 7: eabh0895

    ADS  PubMed  Google Scholar 

  • Chiang F, Greve P, Mazdiyasni O, Wada Y, AghaKouchak A. 2021. A multivariate conditional probability ratio framework for the detection and attribution of compound climate extremes. Geophys Res Lett, 48: e2021GL094361

    ADS  Google Scholar 

  • Christian J, Christian K, Basara J B. 2015. Drought and pluvial dipole events within the great plains of the United States. J Appl Meteorol Climatol, 54: 1886–1898

    ADS  Google Scholar 

  • Clarke H, Nolan R H, De Dios V R, Bradstock R, Griebel A, Khanal S, Boer M M. 2022. Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand. Nat Commun, 13: 7161

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Couasnon A, Eilander D, Muis S, Veldkamp T I E, Haigh I D, Wahl T, Winsemius H C, Ward P J. 2020. Measuring compound flood potential from river discharge and storm surge extremes at the global scale. Nat Hazards Earth Syst Sci, 20: 489–504

    ADS  Google Scholar 

  • Culley S, Maier H R, Westra S, Bennett B. 2021. Identifying critical climate conditions for use in scenario-neutral climate impact assessments. Environ Model Software, 136: 104948

    Google Scholar 

  • Dai A, Rasmussen R M, Liu C, Ikeda K, Prein A F. 2020. A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Clim Dyn, 55: 343–368

    Google Scholar 

  • Das J, Manikanta V, Umamahesh N V. 2022. Population exposure to compound extreme events in India under different emission and population scenarios. Sci Total Environ, 806: 150424

    ADS  CAS  PubMed  Google Scholar 

  • De Luca P, Messori G, Faranda D, Ward P J, Coumou D. 2020a. Compound warm-dry and cold-wet events over the Mediterranean. Earth Syst Dynam, 11: 793–805

    ADS  Google Scholar 

  • De Luca P, Messori G, Wilby R L, Mazzoleni M, Di Baldassarre G. 2020b. Concurrent wet and dry hydrological extremes at the global scale. Earth Syst Dynam, 11: 251–266

    ADS  Google Scholar 

  • de Ruiter M C, Couasnon A, van den Homberg M J C, Daniell J E, Gill J C, Ward P J. 2020. Why we can no longer ignore consecutive disasters. Earths Future, 8: e2019EF001425

    ADS  Google Scholar 

  • Deng D, Gao S, Du X, Wu W. 2012. A diagnostic study of freezing rain over Guizhou, China, in January 2011. Quart J R Meteoro Soc, 138: 1233–1244

    ADS  Google Scholar 

  • Deser C, Lehner F, Rodgers K B, Ault T, Delworth T L, DiNezio P N, Fiore A, Frankignoul C, Fyfe J C, Horton D E, Kay J E, Knutti R, Lovenduski N S, Marotzke J, McKinnon K A, Minobe S, Randerson J, Screen J A, Simpson I R, Ting M. 2020. Insights from Earth system model initial-condition large ensembles and future prospects. Nat Clim Chang, 10: 277–286

    ADS  Google Scholar 

  • Dirmeyer P A, Balsamo G, Blyth E M, Morrison R, Cooper H M. 2021. Land-atmosphere interactions exacerbated the drought and heatwave over northern Europe during Summer 2018. AGU Adv, 2: e2020AV000283

    ADS  Google Scholar 

  • Dong X, Xi B, Kennedy A, Feng Z, Entin J K, Houser P R, Schiffer R A, L’Ecuyer T, Olson W S, Hsu K L, Liu W T, Lin B, Deng Y, Jiang T. 2011. Investigation of the 2006 drought and 2007 flood extremes at the southern great plains through an integrative analysis of observations. J Geophys Res, 116: D03204

    ADS  Google Scholar 

  • Donges J F, Schleussner C F, Siegmund J F, Donner R V. 2016. Event coincidence analysis for quantifying statistical interrelationships between event time series. Eur Phys J Spec Top, 225: 471–487

    Google Scholar 

  • Drakes O, Tate E. 2022. Social vulnerability in a multi-hazard context: A systematic review. Environ Res Lett, 17: 033001

    ADS  Google Scholar 

  • Du J, Wang K, Cui B, Jiang S, Wu G. 2020. Attribution of the record-breaking consecutive dry days in Winter 2017/18 in Beijing. Bull Am Meteorol Soc, 101: S95–S102

    ADS  Google Scholar 

  • Eilander D, Couasnon A, Ikeuchi H, Muis S, Yamazaki D, Winsemius H C, Ward P J. 2020. The effect of surge on riverine flood hazard and impact in deltas globally. Environ Res Lett, 15: 104007

    ADS  Google Scholar 

  • Fang B, Lu M. 2023. Asia faces a growing threat from intraseasonal compound weather whiplash. Earths Future, 11: e2022EF003111

    ADS  Google Scholar 

  • Fang J, Wahl T, Fang J, Sun X, Kong F, Liu M. 2021. Compound flood potential from storm surge and heavy precipitation in coastal China: Dependence, drivers, and impacts. Hydrol Earth Syst Sci, 25: 4403–4416

    ADS  Google Scholar 

  • Feng K, Ouyang M, Lin N. 2022. Tropical cyclone-blackout-heatwave compound hazard resilience in a changing climate. Nat Commun, 13: 4421

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Hao Z, Zhang Y, Zhang X, Hao F. 2023. Amplified future risk of compound droughts and hot events from a hydrological perspective. J Hydrol, 617: 129143

    Google Scholar 

  • Ford T W, Schoof J T. 2017. Characterizing extreme and oppressive heat waves in Illinois. J Geophys Res-Atmos, 122: 682–698

    ADS  Google Scholar 

  • Formetta G, Feyen L. 2019. Empirical evidence of declining global vulnerability to climate-related hazards. Glob Environ Change, 57: 101920

    PubMed  PubMed Central  Google Scholar 

  • Fowler H J, Lenderink G, Prein A F, Westra S, Allan R P, Ban N, Barbero R, Berg P, Blenkinsop S, Do H X, Guerreiro S, Haerter J O, Kendon E J, Lewis E, Schaer C, Sharma A, Villarini G, Wasko C, Zhang X. 2021. Anthropogenic intensification of short-duration rainfall extremes. Nat Rev Earth Environ, 2: 107–122

    ADS  Google Scholar 

  • Frölicher T L, Fischer E M, Gruber N. 2018. Marine heatwaves under global warming. Nature, 560: 360–364

    ADS  PubMed  Google Scholar 

  • Freychet N, Hegerl G C, Lord N S, Lo Y T E, Mitchell D, Collins M. 2022. Robust increase in population exposure to heat stress with increasing global warming. Environ Res Lett, 17: 064049

    ADS  Google Scholar 

  • Ganguli P, Paprotny D, Hasan M, Güntner A, Merz B. 2020. Projected changes in compound flood hazard from riverine and coastal floods in northwestern Europe. Earths Future, 8: e2020EF001752

    ADS  Google Scholar 

  • García-Díez M, Fernández J, Vautard R. 2015. An RCM multi-physics ensemble over Europe: Multi-variable evaluation to avoid error compensation. Clim Dyn, 45: 3141–3156

    Google Scholar 

  • Gaupp F, Hall J, Hochrainer-Stigler S, Dadson S. 2020. Changing risks of simultaneous global breadbasket failure. Nat Clim Chang, 10: 54–57

    ADS  Google Scholar 

  • Gaupp F, Hall J, Mitchell D, Dadson S. 2019. Increasing risks of multiple breadbasket failure under 1.5 and 2°C global warming. Agric Syst, 175: 34–45

    Google Scholar 

  • Ghanbari M, Arabi M, Kao S C, Obeysekera J, Sweet W. 2021. Climate change and changes in compound coastal-riverine flooding hazard along the U.S. coasts. Earths Future, 9: e2021EF002055

    ADS  Google Scholar 

  • Gill J C, Malamud B D. 2014. Reviewing and visualizing the interactions of natural hazards. Rev Geophys, 52: 680–722

    ADS  Google Scholar 

  • Gissing A, Timms M, Browning S, Crompton R, McAneney J. 2022. Compound natural disasters in Australia: A historical analysis. Environ Hazards, 21: 159–173

    Google Scholar 

  • Gloege L, Kornhuber K, Skulovich O, Pal I, Zhou S, Ciais P, Gentine P. 2022. Land-atmosphere cascade fueled the 2020 Siberian heatwave. AGU Adv, 3: e2021AV000619

    ADS  Google Scholar 

  • Gori A, Lin N, Xi D. 2020. Tropical cyclone compound flood hazard assessment: From investigating drivers to quantifying extreme water levels. Earths Future, 8: e2020EF001660

    ADS  Google Scholar 

  • Gori A, Lin N, Xi D, Emanuel K. 2022. Tropical cyclone climatology change greatly exacerbates US extreme rainfall-surge hazard. Nat Clim Chang, 12: 171–178

    ADS  Google Scholar 

  • Gruber N, Boyd P W, Frölicher T L, Vogt M. 2021. Biogeochemical extremes and compound events in the ocean. Nature, 600: 395–407

    ADS  CAS  PubMed  Google Scholar 

  • Gu L, Chen J, Yin J, Slater L J, Wang H M, Guo Q, Feng M, Qin H, Zhao T. 2022. Global increases in compound flood-hot extreme hazards under climate warming. Geophys Res Lett, 49: e2022GL097726

    ADS  Google Scholar 

  • Guntu R K, Agarwal A. 2021. Disentangling increasing compound extremes at regional scale during Indian Summer monsoon. Sci Rep, 11: 16447

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Q, Chen J, Zhang X J, Xu C Y, Chen H. 2020. Impacts of using state-of-the-art multivariate bias correction methods on hydrological modeling over North America. Water Resources Res, 56: e2019WR026659

    ADS  Google Scholar 

  • Guo X, Gao Y, Zhang S, Wu L, Chang P, Cai W, Zscheischler J, Leung L R, Small J, Danabasoglu G, Thompson L, Gao H. 2022. Threat by marine heatwaves to adaptive large marine ecosystems in an eddy-resolving model. Nat Clim Chang, 12: 179–186

    ADS  PubMed  PubMed Central  Google Scholar 

  • Ha K J, Seo Y W, Yeo J H, Timmermann A, Chung E S, Franzke C L E, Chan J C L, Yeh S W, Ting M. 2022. Dynamics and characteristics of dry and moist heatwaves over East Asia. Npj Clim Atmos Sci, 5: 49

    ADS  Google Scholar 

  • Hao Z. 2022. Compound events and associated impacts in China. iScience, 25: 104689

    ADS  PubMed  PubMed Central  Google Scholar 

  • Hao Z, AghaKouchak A, Phillips T J. 2013. Changes in concurrent monthly precipitation and temperature extremes. Environ Res Lett, 8: 034014

    ADS  Google Scholar 

  • Hao Z, Chen Y, Feng S, Liao Z, An N, Li P. 2023. The 2022 Sichuan-Chongqing spatio-temporally compound extremes: A bitter taste of novel hazards. Sci Bull, 68: 1337–1339

    Google Scholar 

  • Hao Z, Hao F, Xia Y, Feng S, Sun C, Zhang X, Fu Y, Hao Y, Zhang Y, Meng Y. 2022. Compound droughts and hot extremes: Characteristics, drivers, changes, and impacts. Earth-Sci Rev, 235: 104241

    Google Scholar 

  • Hao Z, Singh V P. 2020. Compound events under global warming: A dependence perspective. J Hydrol Eng, 25: 03120001

    Google Scholar 

  • Hao Z, Singh V P, Xia Y. 2018. Seasonal drought prediction: Advances, challenges, and future prospects. Rev Geophys, 56: 108–141

    ADS  Google Scholar 

  • Harley M D, Masselink G, Ruiz de Alegría-Arzaburu A, Valiente N G, Scott T. 2022. Single extreme storm sequence can offset decades of shoreline retreat projected to result from sea-level rise. Commun Earth Environ, 3: 1

    Google Scholar 

  • He C, Kim H, Hashizume M, Lee W, Honda Y, Kim S E, Kinney P L, Schneider A, Zhang Y, Zhu Y, Zhou L, Chen R, Kan H. 2022. The effects of night-time warming on mortality burden under future climate change scenarios: A modelling study. Lancet Planet Health, 6: e648–e657

    PubMed  Google Scholar 

  • He G, Xu Y, Hou Z, Ren Z, Zhou M, Chen Y, Zhou C, Xiao Y, Yu M, Huang B, Xu X, Lin L, Liu T, Xiao J, Gong W, Hu R, Li J, Jin D, Qin M, Zhao Q, Yin P, Xu Y, Hu J, Zeng W, Li X, Chen S, Guo L, Huang C, Yang X, Ma W. 2021. The assessment of current mortality burden and future mortality risk attributable to compound hot extremes in China. Sci Total Environ, 777: 146219

    ADS  CAS  Google Scholar 

  • Hénin R, Ramos A M, Pinto J G, Liberato M L R. 2021. A ranking of concurrent precipitation and wind events for the iberian peninsula. Int J Climatol, 41: 1421–1437

    Google Scholar 

  • He X, Sheffield J. 2020. Lagged compound occurrence of droughts and pluvials globally over the past seven decades. Geophys Res Lett, 47: e2020GL087924

    ADS  Google Scholar 

  • Hendry A, Haigh I D, Nicholls R J, Winter H, Neal R, Wahl T, Joly-Laugel A, Darby S E. 2019. Assessing the characteristics and drivers of compound flooding events around the UK coast. Hydrol Earth Syst Sci, 23: 3117–3139

    ADS  Google Scholar 

  • Herrera-Estrada J E, Diffenbaugh N S. 2020. Landfalling droughts: Global tracking of moisture deficits from the oceans onto land. Water Resources Res, 56: e2019WR026877

    ADS  Google Scholar 

  • Hillier J K, Matthews T, Wilby R L, Murphy C. 2020. Multi-hazard dependencies can increase or decrease risk. Nat Clim Chang, 10: 595–598

    ADS  Google Scholar 

  • Hochman A, Alpert P, Kunin P, Rostkier-Edelstein D, Harpaz T, Saaroni H, Messori G. 2020. The dynamics of cyclones in the twentyfirst century: The Eastern Mediterranean as an example. Clim Dyn, 54: 561–574

    Google Scholar 

  • Hoerling M, Kumar A, Dole R, Nielsen-Gammon J W, Eischeid J, Perlwitz J, Quan X W, Zhang T, Pegion P, Chen M. 2013. Anatomy of an extreme event. J Clim, 26: 2811–2832

    ADS  Google Scholar 

  • Holbrook N J, Scannell H A, Sen Gupta A, Benthuysen J A, Feng M, Oliver E C J, Alexander L V, Burrows M T, Donat M G, Hobday A J, Moore P J, Perkins-Kirkpatrick S E, Smale D A, Straub S C, Wernberg T. 2019. A global assessment of marine heatwaves and their drivers. Nat Commun, 10: 2624

    ADS  PubMed  PubMed Central  Google Scholar 

  • Hoover D L, Hajek O L, Smith M D, Wilkins K, Slette I J, Knapp A K. 2022. Compound hydroclimatic extremes in a semi-arid grassland: Drought, deluge, and the carbon cycle. Glob Change Biol, 28: 2611–2621

    CAS  Google Scholar 

  • Houston T G, Changnon S A. 2007. Freezing rain events: A major weather hazard in the conterminous US. Nat Hazards, 40: 485–494

    Google Scholar 

  • Hu L. 2021. A global assessment of coastal marine heatwaves and their relation with coastal urban thermal changes. Geophys Res Lett, 48: e2021GL093260

    ADS  Google Scholar 

  • Huang J, Li Q, Song Z. 2022. Historical global land surface air apparent temperature and its future changes based on CMIP6 projections. Sci Total Environ, 816: 151656

    ADS  CAS  PubMed  Google Scholar 

  • Huang W, Ye F, Zhang Y J, Park K, Du J, Moghimi S, Myers E, Pe’eri S, Calzada J R, Yu H C, Nunez K, Liu Z. 2021. Compounding factors for extreme flooding around Galveston Bay during Hurricane Harvey. Ocean Model, 158: 101735

    Google Scholar 

  • Hughes J P, Guttorp P, Charles S P. 1999. A non-homogeneous hidden markov model for precipitation occurrence. J R Statistical Soc Ser C-Appl Stat, 48: 15–30

    Google Scholar 

  • Hughes T P, Kerry J T, Connolly S R, Baird A H, Eakin C M, Heron S F, Hoey A S, Hoogenboom M O, Jacobson M, Liu G, Pratchett M S, Skirving W, Torda G. 2019. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat Clim Change, 9: 40–43

    ADS  Google Scholar 

  • Idier D, Bertin X, Thompson P, Pickering M D. 2019. Interactions between mean sea level, tide, surge, waves and flooding: Mechanisms and contributions to sea level variations at the coast. Surv Geophys, 40: 1603–1630

    ADS  Google Scholar 

  • Ikeuchi H, Hirabayashi Y, Yamazaki D, Muis S, Ward P J, Winsemius H C, Verlaan M, Kanae S. 2017. Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: Model development and its application to 2007 Cyclone Sidr in Bangladesh. J Adv Model Earth Syst, 9: 1847–1862

    Google Scholar 

  • Im E S, Pal J S, Eltahir E A B. 2017. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci Adv, 3: e1603322

    ADS  PubMed  PubMed Central  Google Scholar 

  • IPCC. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field C B, Barros V, T F Stocker, eds. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

    Google Scholar 

  • IPCC. 2019. IPCC special report on ocean and cryosphere in a changing climate. In: Pörtner H O, Roberts D C, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer N, eds. Cambridge: Cambridge University Press. 447–587

  • IPCC. 2021. Climate Change 2021: The physical science basis. In: Masson-Delmotte V, Zhai P M, Pirani A, eds. Working Group I Contribution to the Sixth Assessment Report of the IPCC. Cambridge: Cambridge University Press

    Google Scholar 

  • IPCC. 2022. Climate Change 2022: Impacts, adaptation, and vulnerability. In: Pörtner H, Roberts D C, Tignor M M B, eds. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

    Google Scholar 

  • Jafarzadegan K, Moradkhani H, Pappenberger F, Moftakhari H, Bates P, Abbaszadeh P, Marsooli R, Ferreira C, Cloke H L, Ogden F, Duan Q. 2023. Recent advances and new frontiers in riverine and coastal flood modeling. Rev Geophys, 61: e2022RG000788

    ADS  Google Scholar 

  • Jeong D I, Cannon A J, Morris R J. 2020. Projected changes to wind loads coinciding with rainfall for building design in Canada based on an ensemble of Canadian regional climate model simulations. Clim Change, 162: 821–835

    ADS  CAS  Google Scholar 

  • Jha S, Gudmundsson L, Seneviratne S I. 2023. Partitioning the uncertainties in compound hot and dry precipitation, soil moisture, and runoff extremes projections in CMIP6. Earths Future, 11: e2022EF003315

    ADS  Google Scholar 

  • Jiang S, Bevacqua E, Zscheischler J. 2022. River flooding mechanisms and their changes in Europe revealed by explainable machine learning. Hydrol Earth Syst Sci, 26: 6339–6359

    ADS  Google Scholar 

  • Kam J, Sheffield J, Yuan X, Wood E F. 2013. The influence of Atlantic tropical cyclones on drought over the eastern United States (1980–2007). J Clim, 26: 3067–3086

    ADS  Google Scholar 

  • Kang S, Eltahir E A B. 2018. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat Commun, 9: 2894

    ADS  PubMed  PubMed Central  Google Scholar 

  • Klein S G, Geraldi N R, Anton A, Schmidt-Roach S, Ziegler M, Cziesielski M J, Martin C, Rädecker N, Frölicher T L, Mumby P J, Pandolfi J M, Suggett D J, Voolstra C R, Aranda M, Duarte C M. 2022. Projecting coral responses to intensifying marine heatwaves under ocean acidification. Glob Change Biol, 28: 1753–1765

    CAS  Google Scholar 

  • Kornhuber K, Coumou D, Vogel E, Lesk C, Donges J F, Lehmann J, Horton R M. 2020. Amplified rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat Clim Chang, 10: 48–53

    ADS  Google Scholar 

  • Kragh T, Martinsen K T, Kristensen E, Sand-Jensen K. 2020. From drought to flood: Sudden carbon inflow causes whole-lake anoxia and massive fish kill in a large shallow lake. Sci Total Environ, 739: 140072

    ADS  CAS  PubMed  Google Scholar 

  • Kreibich H, Van Loon A F, Schröter K, Ward P J, Mazzoleni M, Sairam N, Abeshu G W, Agafonova S, AghaKouchak A, Aksoy H, Alvarez-Garreton C, Aznar B, Balkhi L, Barendrecht M H, Biancamaria S, Bos-Burgering L, Bradley C, Budiyono Y, Buytaert W, Capewell L, Carlson H, Cavus Y, Couasnon A, Coxon G, Daliakopoulos I, de Ruiter M C, Delus C, Erfurt M, Esposito G, François D, Frappart F, Freer J, Frolova N, Gain A K, Grillakis M, Grima J O, Guzmán D A, Huning L S, Ionita M, Kharlamov M, Khoi D N, Kieboom N, Kireeva M, Koutroulis A, Lavado-Casimiro W, Li H Y, LLasat M C, Macdonald D, Mård J, Mathew-Richards H, McKenzie A, Mejia A, Mendiondo E M, Mens M, Mobini S, Mohor G S, Nagavciuc V, Ngo-Duc T, Thao Nguyen Huynh T, Nhi P T T, Petrucci O, Nguyen H Q, Quintana-Seguí P, Razavi S, Ridolfi E, Riegel J, Sadik M S, Savelli E, Sazonov A, Sharma S, Sörensen J, Arguello Souza F A, Stahl K, Steinhausen M, Stoelzle M, Szalińska W, Tang Q, Tian F, Tokarczyk T, Tovar C, Tran T V T, Van Huijgevoort M H J, van Vliet M T H, Vorogushyn S, Wagener T, Wang Y, Wendt D E, Wickham E, Yang L, Zambrano-Bigiarini M, Blöschl G, Di Baldassarre G. 2022. The challenge of unprecedented floods and droughts in risk management. Nature, 608: 80–86

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruczkiewicz A, Klopp J, Fisher J, Mason S, McClain S, Sheekh N M, Moss R, Parks R M, Braneon C. 2021. Compound risks and complex emergencies require new approaches to preparedness. Proc Natl Acad Sci USA, 118: e2106795118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwiatkowski L, Torres O, Bopp L, Aumont O, Chamberlain M, Christian J R, Dunne J P, Gehlen M, Ilyina T, John J G, Lenton A, Li H, Lovenduski N S, Orr J C, Palmieri J, Santana-Falcón Y, Schwinger J, Séférian R, Stock C A, Tagliabue A, Takano Y, Tjiputra J, Toyama K, Tsujino H, Watanabe M, Yamamoto A, Yool A, Ziehn T. 2020. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences, 17: 3439–3470

    ADS  CAS  Google Scholar 

  • Lai Y, Li J, Gu X, Liu C, Chen Y D. 2021. Global compound floods from precipitation and storm surge: Hazards and the roles of cyclones. J Clim, 34: 8319–8339

    ADS  Google Scholar 

  • Leach N J, Weisheimer A, Allen M R, Palmer T. 2021. Forecast-based attribution of a winter heatwave within the limit of predictability. Proc Natl Acad Sci USA, 118: e2112087118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Grix N, Zscheischler J, Laufkötter C, Rousseaux C S, Frölicher T L. 2021. Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period. Biogeosciences, 18: 2119–2137

    ADS  Google Scholar 

  • Le Grix N, Zscheischler J, Rodgers K B, Yamaguchi R, Frölicher T L. 2022. Hotspots and drivers of compound marine heatwaves and low net primary production extremes. Biogeosciences, 19: 5807–5835

    ADS  Google Scholar 

  • Leonard M, Westra S, Phatak A, Lambert M, van den Hurk B, McInnes K, Risbey J, Schuster S, Jakob D, Stafford-Smith M. 2014. A compound event framework for understanding extreme impacts. WIREs Clim Change, 5: 113–128

    Google Scholar 

  • Li C, Sun Y, Zwiers F, Wang D, Zhang X, Chen G, Wu H. 2020. Rapid warming in Summer wet bulb globe temperature in China with human-induced climate change. J Clim, 33: 5697–5711

    ADS  Google Scholar 

  • Li C, Zhang X, Zwiers F, Fang Y, Michalak A M. 2017. Recent very hot summers in northern hemispheric land areas measured by wet bulb globe temperature will be the norm within 20 years. Earths Future, 5: 1203–1216

    ADS  Google Scholar 

  • Li D, Chen Y, Messmer M, Zhu Y, Feng J, Yin B, Bevacqua E. 2022. Compound wind and precipitation extremes across the Indo-Pacific: Climatology, Variability, and drivers. Geophys Res Lett, 49: e2022GL098594

    ADS  Google Scholar 

  • Li D, Yuan J, Kopp R E. 2020. Escalating global exposure to compound heat-humidity extremes with warming. Environ Res Lett, 15: 064003

    ADS  CAS  Google Scholar 

  • Li G, Cheng L, Zhu J, Trenberth K E, Mann M E, Abraham J P. 2020. Increasing ocean stratification over the past half-century. Nat Clim Chang, 10: 1116–1123

    ADS  Google Scholar 

  • Li H, Chen H, Wang H, Sun J, Ma J. 2018. Can Barents sea ice decline in spring enhance summer hot drought events over northeastern China? J Clim, 31: 4705–4725

    ADS  Google Scholar 

  • Li J, Bevacqua E, Chen C, Wang Z, Chen X, Myneni R B, Wu X, Xu C Y, Zhang Z, Zscheischler J. 2022. Regional asymmetry in the response of global vegetation growth to springtime compound climate events. Commun Earth Environ, 3: 123

    ADS  Google Scholar 

  • Li W, Jiang Z, Li L Z X, Luo J J, Zhai P. 2022. Detection and attribution of changes in Summer compound hot and dry events over northeastern China with CMIP6 models. J Meteorol Res, 36: 37–48

    Google Scholar 

  • Li X, Chen Y, Zhu Y, Shi Y, An N, Liao Z. 2023. Underestimated increase and intensification of humid-heat extremes across southeast China due to humidity data inhomogeneity. Front Environ Sci, 10: 1104039

    Google Scholar 

  • Li Y, Ding Y, Liu Y. 2021. Mechanisms for regional compound hot extremes in the mid-lower reaches of the Yangtze River. Intl J Climatol, 41: 1292–1304

    Google Scholar 

  • Lian X, Piao S, Li L Z X, Li Y, Huntingford C, Ciais P, Cescatti A, Janssens I A, Peñuelas J, Buermann W, Chen A, Li X, Myneni R B, Wang X, Wang Y, Yang Y, Zeng Z, Zhang Y, McVicar T R. 2020. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci Adv, 6: eaax0255

    ADS  PubMed  PubMed Central  Google Scholar 

  • Liao W, Li D, Malyshev S, Shevliakova E, Zhang H, Liu X. 2021. Amplified increases of compound hot extremes over Urban Land in China. Geophys Res Lett, 48: e2020GL091252

    ADS  Google Scholar 

  • Liao Z, Chen Y, Li W, Zhai P. 2021. Growing threats from unprecedented sequential flood-hot extremes across China. Geophys Res Lett, 48: e2021GL094505

    ADS  Google Scholar 

  • Libonati R, Geirinhas J L, Silva P S, Monteiro dos Santos D, Rodrigues J A, Russo A, Peres L F, Narcizo L, Gomes M E R, Rodrigues A P, DaCamara C C, Pereira J M C, Trigo R M. 2022. Drought-heatwave nexus in Brazil and related impacts on health and fires: A comprehensive review. Ann New York Acad Sci, 1517: 44–62

    ADS  Google Scholar 

  • Lin P, Zhao B, Wei J, Liu H, Zhang W, Chen X, Jiang J, Ding M, Man W, Jiang J, Zhang X, Ding Y, Bai W, Jin C, Yu Z, Li Y, Zheng W, Zhou T. 2022. The Super-large Ensemble Experiments of CAS FGOALS-g3. Adv Atmos Sci, 39: 1746–1765

    Google Scholar 

  • Lin Q, Yuan J. 2022. Linkages between amplified quasi-stationary waves and humid heat extremes in northern hemisphere midlatitudes. J Clim, 35: 8245–8258

    Google Scholar 

  • Lin Y C, Jenkins S F, Chow J R, Biass S, Woo G, Lallemant D. 2020. Modeling downward counterfactual events: Unrealized disasters and why they matter. Front Earth Sci, 8: 575048

    Google Scholar 

  • Liu X, Luo Y, Yang T, Liang K, Zhang M, Liu C. 2015. Investigation of the probability of concurrent drought events between the water source and destination regions of China’s water diversion project. Geophys Res Lett, 42: 8424–8431

    ADS  Google Scholar 

  • Liu Z, Chen X, Liu F, Lin K, He Y, Cai H. 2018. Joint dependence between river water temperature, air temperature, and discharge in the Yangtze River: The Role of the Three Gorges Dam. J Geophys Res-Atmos, 123: 11938–11951

    ADS  Google Scholar 

  • Liu Z, Cheng L, Wang X, Lin K, Chen X, Zhao T, Tu X, Zhou P. 2022. A probabilistic framework for sequential drought-fluvial identification, probability estimation and prediction. J Hydrol, 612: 128115

    Google Scholar 

  • Llasat M C, Turco M, Quintana-Seguí P, Llasat-Botija M. 2014. The snow storm of 8 March 2010 in Catalonia (Spain): A paradigmatic wet-snow event with a high societal impact. Nat Hazards Earth Syst Sci, 14: 427–441

    ADS  Google Scholar 

  • Lloyd E A, Oreskes N. 2018. Climate change attribution: When is it appropriate to accept new methods? Earths Future, 6: 311–325

    ADS  Google Scholar 

  • Loecke T D, Burgin A J, Riveros-Iregui D A, Ward A S, Thomas S A, Davis C A, Clair M A S. 2017. Weather whiplash in agricultural regions drives deterioration of water quality. Biogeochemistry, 133: 7–15

    CAS  Google Scholar 

  • Luo L, Zeng F, Bai G, Gong W, Ren Z, Hu J, He G, Shi H, Lin Z, Liu T, Yin P, Qin M, Hou Z, Meng R, Zhou C, Dong X, Pingcuo Z, Xiao Y, Yu M, Huang B, Xu X, Lin L, Xiao J, Zhong J, Jin D, Li Y, Gama C, Xiong P, Xu Y, Lv L, Zeng W, Li X, Zhou M, Huang C, Ma W. 2022. Future injury mortality burden attributable to compound hot extremes will significantly increase in China. Sci Total Environ, 845: 157019

    ADS  CAS  PubMed  Google Scholar 

  • Luo M, Lau N C. 2018. Increasing heat stress in urban areas of eastern China: Acceleration by urbanization. Geophys Res Lett, 45: 13060–13069

    ADS  Google Scholar 

  • Luo M, Lau N C. 2021. Increasing human-perceived heat stress risks exacerbated by urbanization in China: A comparative study based on multiple metrics. Earths Future, 9: e2020EF001848

    ADS  Google Scholar 

  • Luo M, Lau N C, Liu Z. 2022a. Different mechanisms for daytime, nighttime, and compound heatwaves in southern China. Weather Clim Extrem, 36: 100449

    Google Scholar 

  • Luo M, Wu S, Liu Z, Lau N C. 2022b. Contrasting circulation patterns of dry and humid heatwaves over southern China. Geophys Res Lett, 49: e2022GL099243

    ADS  Google Scholar 

  • Ma F, Yuan X. 2021. More persistent summer compound hot extremes caused by global urbanization. Geophys Res Lett, 48: e2021GL093721

    ADS  Google Scholar 

  • Ma F, Yuan X, Wu P, Zeng Z. 2022. A moderate mitigation can significantly delay the emergence of compound hot extremes. J Geophys Res-Atmos, 127: e2021JD035427

    ADS  Google Scholar 

  • Ma S, Zhu C. 2019. Extreme cold wave over east Asia in January 2016: A possible response to the larger internal atmospheric variability induced by arctic warming. J Clim, 32: 1203–1216

    ADS  Google Scholar 

  • Mallakpour I, Villarini G, Jones M P, Smith J A. 2017. On the use of cox regression to examine the temporal clustering of flooding and heavy precipitation across the central United States. Glob Planet Change, 155: 98–108

    ADS  Google Scholar 

  • Mankin J S, Lehner F, Coats S, McKinnon K A. 2020. The value of initial condition large ensembles to robust adaptation decision-making. Earths Future, 8: e2012EF001610

    ADS  Google Scholar 

  • Markantonis I, Vlachogiannis D, Sfetsos A, Kioutsioukis I. 2022. Investigation of the extreme wet -cold compound events changes between 2025–2049 and 1980–2004 using regional simulations in Greece, Earth Syst Dynam, 13: 1491–1504

    ADS  Google Scholar 

  • Martius O, Pfahl S, Chevalier C. 2016. A global quantification of compound precipitation and wind extremes. Geophys Res Lett, 43: 7709–7717

    ADS  Google Scholar 

  • Matte D, Christensen J H, Feddersen H, Vedel H, Nielsen N W, Pedersen R A, Zeitzen R M K. 2022. On the potentials and limitations of attributing a small-scale climate event. Geophys Res Lett, 49: e2022GL099481

    ADS  Google Scholar 

  • Matthews T. 2018. Humid heat and climate change. Prog Phys Geogr, 42: 391–405

    Google Scholar 

  • Matthews T, Wilby R L, Murphy C. 2019. An emerging tropical cyclone-deadly heat compound hazard. Nat Clim Chang, 9: 602–606

    ADS  Google Scholar 

  • Maxwell J T, Ortegren J T, Knapp P A, Soulé P T. 2013. Tropical cyclones and drought amelioration in the gulf and southeastern coastal United States. J Clim, 26: 8440–8452

    ADS  Google Scholar 

  • McCollum D L, Gambhir A, Rogelj J, Wilson C. 2020. Energy modellers should explore extremes more systematically in scenarios. Nat Energy, 5: 104–107

    ADS  Google Scholar 

  • McKinnon K A, Deser C. 2021. The inherent uncertainty of precipitation variability, trends, and extremes due to internal variability, with implications for western US water resources. J Clim, 34: 9605–9622

    Google Scholar 

  • Mehrabi Z, Ramankutty N. 2019. Synchronized failure of global crop production. Nat Ecol Evol, 3: 780–786

    PubMed  Google Scholar 

  • Meng Y, Hao Z, Feng S, Guo Q, Zhang Y. 2022. Multivariate bias corrections of CMIP6 model simulations of compound dry and hot events across China. Environ Res Lett, 17: 104005

    ADS  Google Scholar 

  • Meng Y, Hao Z, Zhang Y, Zhang X, Hao F. 2023. Projection of compound wind and precipitation extremes in China based on phase 6 of the coupled model intercomparison project models. Intl J Climatol, 43: 1396–1406

    Google Scholar 

  • Merz B, Basso S, Fischer S, Lun D, Blöschl G, Merz R, Guse B, Viglione A, Vorogushyn S, Macdonald E, Wietzke L, Schumann A. 2022. Understanding heavy tails of flood peak distributions. Water Resources Res, 58: e2021WR030506

    ADS  Google Scholar 

  • Messmer M, Simmonds I. 2021. Global analysis of cyclone-induced compound precipitation and wind extreme events. Weather Clim Extrem, 32: 100324

    Google Scholar 

  • Messori G, Bevacqua E, Caballero R, Coumou D, De Luca P, Faranda D, Kornhuber K, Martius O, Pons F, Raymond C, Ye K, Yiou P, Zscheischler J. 2021. Compound climate events and extremes in the midlatitudes: Dynamics, simulation, and statistical characterization. Bull Am Meteorol Soc, 102: E774–E781

    ADS  Google Scholar 

  • Michelangeli P A, Vrac M, Loukos H. 2009. Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophys Res Lett, 36: L11708

    ADS  Google Scholar 

  • Min S K, Jo S Y, Seong M G, Kim Y H, Son S W, Byun Y H, Lott F C, Stott P A. 2022. Human contribution to the 2020 Summer successive hot-wet extremes in South Korea. Bull Am Meteorol Soc, 103: S90–S97

    Google Scholar 

  • Miralles D G, Gentine P, Seneviratne S I, Teuling A J. 2019. Land-atmospheric feedbacks during droughts and heatwaves: State of the science and current challenges. Ann New York Acad Sci, 1436: 19–35

    ADS  Google Scholar 

  • Mishra V, Ambika A K, Asoka A, Aadhar S, Buzan J, Kumar R, Huber M. 2020. Moist heat stress extremes in India enhanced by irrigation. Nat Geosci, 13: 722–728

    ADS  CAS  Google Scholar 

  • Moftakhari H R, Salvadori G, AghaKouchak A, Sanders B F, Matthew R A. 2017. Compounding effects of sea level rise and fluvial flooding. Proc Natl Acad Sci USA, 114: 9785–9790

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal S, K. Mishra A, Leung R, Cook B. 2023. Global droughts connected by linkages between drought hubs. Nat Commun, 14: 144

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Mora C, Dousset B, Caldwell I R, Powell F E, Geronimo R C, Bielecki C R, Counsell C W W, Dietrich B S, Johnston E T, Louis L V, Lucas M P, McKenzie M M, Shea A G, Tseng H, Giambelluca T W, Leon L R, Hawkins E, Trauernicht C. 2017. Global risk of deadly heat. Nat Clim Change, 7: 501–506

    ADS  Google Scholar 

  • Muis S, Verlaan M, Winsemius H C, Aerts J C J H, Ward P J. 2016. A global reanalysis of storm surges and extreme sea levels. Nat Commun, 7: 11969

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Ashfaq M, Mishra A K. 2020. Compound drought and heatwaves at a global scale: The role of natural climate variability-associated synoptic patterns and land-surface energy budget anomalies. J Geophys Res-Atmos, 125: e2019JD031943

    ADS  Google Scholar 

  • Mukherjee S, Mishra A K, Ashfaq M, Kao S C. 2022. Relative effect of anthropogenic warming and natural climate variability to changes in compound drought and heatwaves. J Hydrol, 605: 127396

    Google Scholar 

  • Mukherjee S, Mishra A K, Zscheischler J, Entekhabi D. 2023. Interaction between dry and hot extremes at a global scale using a cascade modeling framework. Nat Commun, 14: 277

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Mishra V. 2018. A sixfold rise in concurrent day and nighttime heatwaves in India under 2°C warming. Sci Rep, 8: 16922

    ADS  PubMed  PubMed Central  Google Scholar 

  • Muthuvel D, Sivakumar B, Mahesha A. 2023. Future global concurrent droughts and their effects on maize yield. Sci Total Environ, 855: 158860

    ADS  CAS  PubMed  Google Scholar 

  • Ning G, Luo M, Zhang W, Liu Z, Wang S, Gao T. 2022. Rising risks of compound extreme heat-precipitation events in China. Intl J Climatol, 42: 5785–5795

    Google Scholar 

  • Noh K M, Lim H G, Kug J S. 2022. Global chlorophyll responses to marine heatwaves in satellite ocean color. Environ Res Lett, 17: 064034

    ADS  Google Scholar 

  • Oliver E C J, Benthuysen J A, Darmaraki S, Donat M G, Hobday A J, Holbrook N J, Schlegel R W, Sen Gupta A. 2021. Marine heatwaves. Annu Rev Mar Sci, 13: 313–342

    ADS  Google Scholar 

  • Otto F E L. 2017. Attribution of weather and climate events. Annu Rev Environ Resour, 42: 627–646

    Google Scholar 

  • Owen L E, Catto J L, Stephenson D B, Dunstone N J. 2021. Compound precipitation and wind extremes over Europe and their relationship to extratropical cyclones. Weather Clim Extrem, 33: 100342

    Google Scholar 

  • Paprotny D, Morales-Nápoles O, Jonkman S N. 2018. Hanze: A pan-European database of exposure to natural hazards and damaging historical floods since 1870. Earth Syst Sci Data, 10: 565–581

    ADS  Google Scholar 

  • Paprotny D, Vousdoukas M I, Morales-Nápoles O, Jonkman S N, Feyen L. 2020. Pan-European hydrodynamic models and their ability to identify compound floods. Nat Hazards, 101: 933–957

    Google Scholar 

  • Parker T J, Berry G J, Reeder M J. 2013. The influence of tropical cyclones on heat waves in southeastern Australia. Geophys Res Lett, 40: 6264–6270

    ADS  Google Scholar 

  • Parry S, Marsh T, Kendon M. 2013. 2012: From drought to floods in England and Wales. Weather, 68: 268–274

    ADS  Google Scholar 

  • Pathmeswaran C, Sen Gupta A, Perkins-Kirkpatrick S E, Hart M A. 2022. Exploring potential links between co-occurring coastal terrestrial and marine heatwaves in Australia. Front Clim, 4, https://doi.org/10.3389/fclim.2022.792730

  • Patricola C M, Wehner M F. 2018. Anthropogenic influences on major tropical cyclone events. Nature, 563: 339–346

    ADS  CAS  PubMed  Google Scholar 

  • Persad G G, Swain D L, Kouba C, Ortiz-Partida J P. 2020. Inter-model agreement on projected shifts in California hydroclimate characteristics critical to water management. Clim Change, 162: 1493–1513

    ADS  Google Scholar 

  • Piatt J F, Parrish J K, Renner H M, Schoen S K, Jones T T, Arimitsu M L, Kuletz K J, Bodenstein B, García-Reyes M, Duerr R S, Corcoran R M, Kaler R S A, McChesney G J, Golightly R T, Coletti H A, Suryan R M, Burgess H K, Lindsey J, Lindquist K, Warzybok P M, Jahncke J, Roletto J, Sydeman W J. 2020. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS ONE, 15: e0226087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pirani F J, Najafi M R. 2022. Multivariate analysis of compound flood hazard across Canada’s Atlantic, Pacific and great lakes coastal areas. Earths Future, 10: e2022EF002655

    ADS  Google Scholar 

  • Qi W, Feng L, Yang H, Liu J. 2022. Increasing concurrent drought probability in global main crop production countries. Geophys Res Lett, 49: e2021GL097060

    ADS  Google Scholar 

  • Qian X, Miao Q, Zhai P, Chen Y. 2014. Cold-wet spells in mainland China during 1951–2011. Nat Hazards, 74: 931–946

    Google Scholar 

  • Qiao Y, Xu W, Meng C, Liao X, Qin L. 2022. Increasingly dry/wet abrupt alternation events in a warmer world: Observed evidence from China during 1980–2019. Intl J Climatol, 42: 6429–6440

    Google Scholar 

  • Qiu J, Liu B, Yang F, Wang X, He X. 2022. Quantitative stress test of compound coastal-fluvial floods in China’s Pearl River delta. Earths Future, 10: e2021EF002638

    ADS  Google Scholar 

  • Qiu L, Im E S, Min S K, Kim Y H, Cha D H, Shin S W, Ahn J B, Chang E C, Byun Y H. 2022. Direct and indirect application of univariate and multivariate bias corrections on heat-stress indices based on multiple regional-climate-model simulations. Earth Syst Dynam, 14: 507–517

    ADS  Google Scholar 

  • Raveh-Rubin S, Wernli H. 2015. Large-scale wind and precipitation extremes in the Mediterranean: A climatological analysis for 1979–2012. Q J R Meteoro Soc, 141: 2404–2417

    ADS  Google Scholar 

  • Raveh-Rubin S, Wernli H. 2016. Large-scale wind and precipitation extremes in the Mediterranean: Dynamical aspects of five selected cyclone events. Q J R Meteoro Soc, 142: 3097–3114

    ADS  Google Scholar 

  • Raymond C, Horton R M, Zscheischler J, Martius O, AghaKouchak A, Balch J, Bowen S G, Camargo S J, Hess J, Kornhuber K, Oppenheimer M, Ruane A C, Wahl T, White K. 2020a. Understanding and managing connected extreme events. Nat Clim Chang, 10: 611–621

    ADS  Google Scholar 

  • Raymond C, Matthews T, Horton R M. 2020b. The emergence of heat and humidity too severe for human tolerance. Sci Adv, 6: eaaw1838

    ADS  PubMed  PubMed Central  Google Scholar 

  • Raymond C, Suarez-Gutierrez L, Kornhuber K, Pascolini-Campbell M, Sillmann J, Waliser D E. 2022. Increasing spatiotemporal proximity of heat and precipitation extremes in a warming world quantified by a large model ensemble. Environ Res Lett, 17: 035005

    ADS  Google Scholar 

  • Reed K A, Wehner M F, Zarzycki C M. 2022. Attribution of 2020 hurricane season extreme rainfall to human-induced climate change. Nat Commun, 13: 1905

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichstein M, Riede F, Frank D. 2022. More floods, fires and cyclones—Plan for domino effects on sustainability goals. Nature, 592: 347–349

    ADS  Google Scholar 

  • Ridder N, de Vries H, Drijfhout S. 2018. The role of atmospheric rivers in compound events consisting of heavy precipitation and high storm surges along the Dutch coast. Nat Hazards Earth Syst Sci, 18: 3311–3326

    ADS  Google Scholar 

  • Ridder N N, Pitman A J, Ukkola A M. 2021. Do CMIP6 climate models simulate global or regional compound events skillfully? Geophys Res Lett, 48: e2020GL091152

    ADS  Google Scholar 

  • Ridder N N, Pitman A J, Westra S, Ukkola A, Do H X, Bador M, Hirsch A L, Evans J P, Di Luca A, Zscheischler J. 2020. Global hotspots for the occurrence of compound events. Nat Commun, 11: 5956

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridder N N, Ukkola A M, Pitman A J, Perkins-Kirkpatrick S E. 2022. Increased occurrence of high impact compound events under climate change. Npj Clim Atmos Sci, 5: 3

    ADS  Google Scholar 

  • Rising J, Tedesco M, Piontek F, Stainforth D A. 2022. The missing risks of climate change. Nature, 610: 643–651

    ADS  CAS  PubMed  Google Scholar 

  • Robin Y, Vrac M, Naveau P, Yiou P. 2019. Multivariate stochastic bias corrections with optimal transport. Hydrol Earth Syst Sci, 23: 773–786

    ADS  Google Scholar 

  • Rodrigues R R, Taschetto A S, Sen Gupta A, Foltz G R. 2019. Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat Geosci, 12: 620–626

    ADS  CAS  Google Scholar 

  • Rogers C D, Kornhuber K, Perkins-Kirkpatrick S E, Loikith P C, Singh D. 2022. Sixfold increase in historical northern hemisphere concurrent large heatwaves driven by warming and changing atmospheric circulations. J Climate, 35: 1063–1078

    ADS  Google Scholar 

  • Rogers C D W, Ting M, Li C, Kornhuber K, Coffel E D, Horton R M, Raymond C, Singh D. 2021. Recent increases in exposure to extreme humid-heat events disproportionately affect populated regions. Geophys Res Lett, 48: e2021GL094183

    ADS  Google Scholar 

  • Sampurno J, Vallaeys V, Ardianto R, Hanert E. 2022. Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta. Nonlin Processes Geophys, 29: 301–315

    ADS  Google Scholar 

  • Samuel C L, Norma Yolanda H S, Salvador Emilio L C, Pedro C H, Felipe De Jesús A V, María Teresa S. 2019. Survival and respiration of green abalone (Haliotis fulgens) facing very short-term marine environmental extremes. Mar Freshw Behav Phy, 52: 1–15

    Google Scholar 

  • Sauter C, White C J, Fowler H J, Westra S. 2023. Temporally compounding heatwave-heavy rainfall events in Australia. Intl J Climatol, 43: 1050–1061

    Google Scholar 

  • Schumacher D L, Hauser M, Seneviratne S I. 2022. Drivers and mechanisms of the 2021 pacific northwest heatwave. Earths Future, 10: e2022EF002967

    ADS  Google Scholar 

  • Sedlmeier K, Mieruch S, Schädler G, Kottmeier C. 2016. Compound extremes in a changing climate-a Markov chain approach. Nonlin Processes Geophys, 23: 375–390

    ADS  Google Scholar 

  • Seeherman J, Liu Y. 2015. Effects of extraordinary snowfall on traffic safety. Accid Anal Prev, 81: 194–203

    PubMed  Google Scholar 

  • Shan L, Zhang L, Song J, Zhang Y, She D, Xia J. 2018. Characteristics of dry-wet abrupt alternation events in the middle and lower reaches of the Yangtze River Basin and the relationship with ENSO. J Geogr Sci, 28: 1039–1058

    Google Scholar 

  • Shepherd J G, Brewer P G, Oschlies A, Watson A J. 2017. Ocean ventilation and deoxygenation in a warming world: Introduction and overview. Phil Trans R Soc A, 375: 20170240

    ADS  PubMed  PubMed Central  Google Scholar 

  • Shepherd T G. 2016. A common framework for approaches to extreme event attribution. Curr Clim Change Rep, 2: 28–38

    Google Scholar 

  • Shi H, García-Reyes M, Jacox M G, Rykaczewski R R, Black B A, Bograd S J, Sydeman W J. 2021. Co-occurrence of California drought and northeast Pacific marine heatwaves under climate change. Geophys Res Lett, 48: e2021GL092765

    ADS  Google Scholar 

  • Shi Z, Xu X, Jia G. 2021. Urbanization magnified nighttime heat waves in China. Geophys Res Lett, 48: e2021GL093603

    ADS  Google Scholar 

  • Simpson N P, Mach K J, Constable A, Hess J, Hogarth R, Howden M, Lawrence J, Lempert R J, Muccione V, Mackey B, New M G, O’Neill B, Otto F, Pörtner H O, Reisinger A, Roberts D, Schmidt D N, Seneviratne S, Strongin S, van Aalst M, Totin E, Trisos C H. 2021. A framework for complex climate change risk assessment. One Earth, 4: 489–501

    ADS  Google Scholar 

  • Singh H, Najafi M R, Cannon A J. 2021a. Characterizing non-stationary compound extreme events in a changing climate based on large-ensemble climate simulations. Clim Dyn, 56: 1389–1405

    Google Scholar 

  • Singh J, Ashfaq M, Skinner C B, Anderson W B, Mishra V, Singh D. 2022. Enhanced risk of concurrent regional droughts with increased ENSO variability and warming. Nat Clim Chang, 12: 163–170

    ADS  Google Scholar 

  • Singh J, Ashfaq M, Skinner C B, Anderson W B, Singh D. 2021b. Amplified risk of spatially compounding droughts during co-occurrences of modes of natural ocean variability. Npj Clim Atmos Sci, 4: 7

    ADS  Google Scholar 

  • Smale D A, Wernberg T, Oliver E C J, Thomsen M, Harvey B P, Straub S C, Burrows M T, Alexander L V, Benthuysen J A, Donat M G, Feng M, Hobday A J, Holbrook N J, Perkins-Kirkpatrick S E, Scannell H A, Sen Gupta A, Payne B L, Moore P J. 2019. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat Clim Chang, 9: 306–312

    ADS  Google Scholar 

  • Smith D M, Gillett N P, Simpson I R, Athanasiadis P J, Baehr J, Bethke I, Bilge T A, Bonnet R, Boucher O, Findell K L, Gastineau G, Gualdi S, Hermanson L, Leung L R, Mignot J, Müller W A, Osprey S, Otterå O H, Persad G G, Scaife A A, Schmidt G A, Shiogama H, Sutton R T, Swingedouw D, Yang S, Zhou T, Ziehn T. 2022. Attribution of multi-annual to decadal changes in the climate system: The large ensemble single forcing model intercomparison project (LESFMIP). Front Clim, 4: 955414

    Google Scholar 

  • Speizer S, Raymond C, Ivanovich C, Horton R M. 2022. Concentrated and intensifying humid heat extremes in the IPCC AR6 regions. Geophys Res Lett, 49: e2021GL097261

    ADS  Google Scholar 

  • Squire D T, Richardson D, Risbey J S, Black A S, Kitsios V, Matear R J, Monselesan D, Moore T S, Tozer C R. 2021. Likelihood of unprecedented drought and fire weather during Australia’s 2019 megafires. Npj Clim Atmos Sci, 4: 64

    ADS  Google Scholar 

  • Stevenson S, Coats S, Touma D, Cole J, Lehner F, Fasullo J, Otto-Bliesner B. 2022. Twenty-first century hydroclimate: A continually changing baseline, with more frequent extremes. Proc Natl Acad Sci USA, 119: e2108124119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart R E, Bonsal B R, Harder P, Henson W, Kochtubajda B. 2012. Cold and hot periods associated with dry conditions over the Canadian prairies. Atmosphere-Ocean, 50: 364–372

    ADS  Google Scholar 

  • Su Q, Dong B. 2019. Projected near-term changes in three types of heat waves over China under RCP4.5. Clim Dyn, 53: 3751–3769

    Google Scholar 

  • Svensson C, Jones D A. 2004. Dependence between sea surge, river flow and precipitation in south and west Britain. Hydrol Earth Syst Sci, 8: 973–992

    ADS  Google Scholar 

  • Swain D L, Langenbrunner B, Neelin J D, Hall A. 2018. Increasing precipitation volatility in twenty-first-century California. Nat Clim Change, 8: 427–433

    ADS  Google Scholar 

  • Tan X, Wu X, Huang Z, Fu J, Tan X, Deng S, Liu Y, Gan T Y, Liu B. 2023. Increasing global precipitation whiplash due to anthropogenic greenhouse gas emissions. Nat Commun, 14: 2796

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavakol A, Rahmani V, Harrington Jr. J. 2020. Probability of compound climate extremes in a changing climate: A copula-based study of hot, dry, and windy events in the central United States. Environ Res Lett, 15: 104058

    ADS  Google Scholar 

  • Tang Z, Yang T, Lin X, Li X, Cao R, Li W. 2022. Future changes in the risk of compound hot and dry events over China estimated with two large ensembles. PloS ONE, 17: e0264980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tett S F B, Stott P A, Allen M R, Ingram W J, Mitchell J F B. 1999. Causes of twentieth-century temperature change near the Earth’s surface. Nature, 399: 569–572

    ADS  CAS  Google Scholar 

  • Thalheimer L, Choquette-Levy N, Garip F. 2022. Compound impacts from droughts and structural vulnerability on human mobility. iScience, 25: 105491

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiery W, Visser A J, Fischer E M, Hauser M, Hirsch A L, Lawrence D M, Lejeune Q, Davin E L, Seneviratne S I. 2020. Warming of hot extremes alleviated by expanding irrigation. Nat Commun, 11: 290

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilloy A, Malamud B D, Winter H, Joly-Laugel A. 2019. A review of quantification methodologies for multi-hazard interrelationships. Earth Sci Rev, 196: 102881

    Google Scholar 

  • Toreti A, Cronie O, Zampieri M. 2019. Concurrent climate extremes in the key wheat producing regions of the world. Sci Rep, 9: 5493

    ADS  PubMed  PubMed Central  Google Scholar 

  • Touma D, Stevenson S, Swain D L, Singh D, Kalashnikov D A, Huang X. 2022. Climate change increases risk of extreme rainfall following wildfire in the western United States. Sci Adv, 8: eabm0320

    Google Scholar 

  • Trenberth K E, Fasullo J T, Shepherd T G. 2015. Attribution of climate extreme events. Nat Clim Change, 5: 725–730

    ADS  Google Scholar 

  • Tschumi E, Zscheischler J. 2019. Countrywide climate features during recorded climate-related disasters. Clim Change, 158: 593–609

    ADS  PubMed  PubMed Central  Google Scholar 

  • Vaghefi S A, Muccione V, Neukom R, Huggel C, Salzmann N. 2022. Future trends in compound concurrent heat extremes in Swiss cities-an assessment considering deep uncertainty and climate adaptation options. Weather Clim Extrem, 38: 100501

    Google Scholar 

  • Vajda A, Tuomenvirta H, Juga I, Nurmi P, Jokinen P, Rauhala J. 2014. Severe weather affecting European transport systems: The identification, classification and frequencies of events. Nat Hazards, 72: 169–188

    Google Scholar 

  • Valle-Levinson A, Olabarrieta M, Heilman L. 2020. Compound flooding in Houston-Galveston Bay during Hurricane Harvey. Sci Total Environ, 747: 141272

    ADS  CAS  PubMed  Google Scholar 

  • Van de Walle J, Thiery W, Brogli R, Martius O, Zscheischler J, van Lipzig N P M. 2021. Future intensification of precipitation and wind gust associated thunderstorms over Lake Victoria. Weather Clim Extrem, 34: 100391

    Google Scholar 

  • van den Hurk B, van Meijgaard E, de Valk P, van Heeringen K J, Gooijer J. 2015. Analysis of a compounding surge and precipitation event in the Netherlands. Environ Res Lett, 10: 035001

    ADS  Google Scholar 

  • van der Wiel K, Selten F M, Bintanja R, Blackport R, Screen J A. 2020. Ensemble climate-impact modelling: Extreme impacts from moderate meteorological conditions. Environ Res Lett, 15: 034050

    ADS  Google Scholar 

  • Verschuur J, Li S, Wolski P, Otto F E L. 2021. Climate change as a driver of food insecurity in the 2007 Lesotho-South Africa drought. Sci Rep, 11: 3852

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Villalobos-Herrera R, Bevacqua E, Ribeiro A F S, Auld G, Crocetti L, Mircheva B, Ha M, Zscheischler J, De Michele C. 2021. Towards a compound-event-oriented climate model evaluation: A decomposition of the underlying biases in multivariate fire and heat stress hazards. Nat Hazards Earth Syst Sci, 21: 1867–1885

    ADS  Google Scholar 

  • Vitolo C, Di Napoli C, Di Giuseppe F, Cloke H L, Pappenberger F. 2019. Mapping combined wildfire and heat stress hazards to improve evidence-based decision making. Environ Int, 127: 21–34

    PubMed  Google Scholar 

  • Vogel J, Paton E, Aich V. 2021. Seasonal ecosystem vulnerability to climatic anomalies in the Mediterranean. Biogeosciences, 18: 5903–5927

    ADS  Google Scholar 

  • Vogel M M, Zscheischler J, Wartenburger R, Dee D, Seneviratne S I. 2019. Concurrent 2018 hot extremes across northern hemisphere due to human-induced climate change. Earths Future, 7: 692–703

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Vousdoukas M I, Mentaschi L, Voukouvalas E, Verlaan M, Jevrejeva S, Jackson L P, Feyen L. 2018. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat Commun, 9: 2360

    ADS  PubMed  PubMed Central  Google Scholar 

  • Vrac M. 2018. Multivariate bias adjustment of high-dimensional climate simulations: The rank resampling for distributions and dependences (R2 D2) bias correction. Hydrol Earth Syst Sci, 22: 3175–3196

    ADS  Google Scholar 

  • Wahl E R, Hoell A, Zorita E, Gille E, Diaz H F. 2020. A 450-year perspective on California precipitation “flips”. J Clim, 33: 10221–10237

    ADS  Google Scholar 

  • Wahl T, Jain S, Bender J, Meyers S D, Luther M E. 2015. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat Clim Change, 5: 1093–1097

    ADS  Google Scholar 

  • Waliser D, Guan B. 2017. Extreme winds and precipitation during landfall of atmospheric rivers. Nat Geosci, 10: 179–183

    ADS  CAS  Google Scholar 

  • Wang B, Lee M Y, Xie Z, Lu M, Pan M. 2022. A new Asian/North American teleconnection linking clustered extreme precipitation from Indian to Canada. Npj Clim Atmos Sci, 5: 90

    ADS  Google Scholar 

  • Wang D Q, Sun Y. 2022. Effects of anthropogenic forcing and atmospheric circulation on the record-breaking welt bulb heat event over southern China in September 2021. Adv Clim Change Res, 13: 778–786

    CAS  Google Scholar 

  • Wang J, Chen Y, Liao W, He G, Tett S F B, Yan Z, Zhai P, Feng J, Ma W, Huang C, Hu Y. 2021. Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities. Nat Clim Chang, 11: 1084–1089

    ADS  CAS  Google Scholar 

  • Wang J, Chen Y, Nie J, Yan Z, Zhai P, Feng J. 2022. On the role of anthropogenic warming and wetting in the July 2021 Henan record-shattering rainfall. Sci Bull, 67: 2055–2059

    Google Scholar 

  • Wang J, Chen Y, Tett S F B, Yan Z, Zhai P, Feng J, Xia J. 2020a. Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat Commun, 11: 528

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen Y, Tett S F B, Stone D, Nie J, Feng J, Yan Z, Zhai P, Ge Q. 2023. Storyline attribution of human influence on a record-breaking spatially compounding flood-heat event. Sci Adv, 9: eadi2714

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Feng J, Yan Z, Chen Y. 2020b. Future risks of unprecedented compound heat waves over three vast urban agglomerations in China. Earths Future, 8: e2020EF001716

    ADS  Google Scholar 

  • Wang P, Luo M, Liao W, Xu Y, Wu S, Tong X, Tian H, Xu F, Han Y. 2021. Urbanization contribution to human perceived temperature changes in major urban agglomerations of China. Urban Clim, 38: 100910

    Google Scholar 

  • Wang S, Huang J, Yuan X. 2021. Attribution of 2019 extreme Spring-early Summer hot drought over Yunnan in southwestern China. Bull Am Meteorol Soc, 102: S91–S96

    ADS  Google Scholar 

  • Wang S S Y, Kim H, Coumou D, Yoon J H, Zhao L, Gillies R R. 2019. Consecutive extreme flooding and heat wave in Japan: Are they becoming a norm? Atmos Sci Lett, 20: e933

    Google Scholar 

  • Wang Y, Chen L, Song Z, Huang Z, Ge E, Lin L, Luo M. 2019. Human-perceived temperature changes over south China: Long-term trends and urbanization effects. Atmos Res, 215: 116–127

    Google Scholar 

  • Ward P J, Couasnon A, Eilander D, Haigh I D, Hendry A, Muis S, Veldkamp T I E, Winsemius H C, Wahl T. 2018. Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries. Environ Res Lett, 13: 084012

    ADS  Google Scholar 

  • Weber T, Bowyer P, Rechid D, Pfeifer S, Raffaele F, Remedio A R, Teichmann C, Jacob D. 2020. Analysis of compound climate extremes and exposed population in Africa under two different emission scenarios. Earths Future, 8: e2019EF001473

    ADS  Google Scholar 

  • Wehrli K, Guillod B P, Hauser M, Leclair M, Seneviratne S I. 2019. Identifying key driving processes of major recent heat waves. J Geophys Res-Atmos, 124: 11746–11765

    ADS  Google Scholar 

  • Wei X, Zhang H, Singh V P, Dang C, Shao S, Wu Y. 2020. Coincidence probability of streamflow in water resources area, water receiving area and impacted area: Implications for water supply risk and potential impact of water transfer. Hydrol Res, 51: 1120–1135

    Google Scholar 

  • Woo G. 2021. A counterfactual perspective on compound weather risk. Weather Clim Extrem, 32: 100314

    Google Scholar 

  • Woolway R I, Kraemer B M, Zscheischler J, Albergel C. 2021. Compound hot temperature and high chlorophyll extreme events in global lakes. Environ Res Lett, 16: 124066

    ADS  CAS  Google Scholar 

  • Wouters H, Keune J, Petrova I Y, van Heerwaarden C C, Teuling A J, Pal J S, Vilà-Guerau de Arellano J, Miralles D G. 2022. Soil drought can mitigate deadly heat stress thanks to a reduction of air humidity. Sci Adv, 8: eabe6653

    ADS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Chen Y, Liao Z, Gao X, Zhai P, Hu Y. 2022. Increasing risk from landfalling tropical cyclone-heatwave compound events to coastal and inland China. Environ Res Lett, 17: 105007

    ADS  Google Scholar 

  • Wu S, Chan T O, Zhang W, Ning G, Wang P, Tong X, Xu F, Tian H, Han Y, Zhao Y, Luo M. 2021a. Increasing compound heat and precipitation extremes elevated by urbanization in south China. Front Earth Sci, 9: 636777

    Google Scholar 

  • Wu S, Wang P, Tong X, Tian H, Zhao Y, Luo M. 2021b. Urbanization-driven increases in summertime compound heat extremes across China. Sci Total Environ, 799: 149166

    ADS  CAS  PubMed  Google Scholar 

  • Wu W, McInnes K, O’Grady J, Hoeke R, Leonard M, Westra S. 2018. Mapping dependence between extreme rainfall and storm surge. J Geophys Res Oceans, 123: 2461–2474

    ADS  Google Scholar 

  • Wu W, Westra S, Leonard M. 2021a. Estimating the probability of compound floods in estuarine regions. Hydrol Earth Syst Sci, 25: 2821–2841

    ADS  Google Scholar 

  • Wu X, Hao Z, Hao F, Zhang X. 2019. Variations of compound precipitation and temperature extremes in china during 1961–2014. Sci Total Environ, 663: 731–737

    ADS  CAS  PubMed  Google Scholar 

  • Wu X, Hao Z, Hao F, Zhang X, Singh V P, Sun C. 2021b. Influence of large-scale circulation patterns on compound dry and hot events in China. J Geophys Res-Atmos, 126: e2020JD033918

    ADS  Google Scholar 

  • Wu X, Hao Z, Zhang Y, Zhang X, Hao F. 2022. Anthropogenic influence on compound dry and hot events in China based on Coupled Model Intercomparison Project Phase 6 models. Intl J Climatol, 42: 4379–4390

    Google Scholar 

  • Wu Y, Miao C, Sun Y, AghaKouchak A, Shen C, Fan X. 2021. Global observations and CMIP6 simulations of compound extremes of monthly temperature and precipitation. GeoHealth, 5: e2021GH000390

    PubMed  PubMed Central  Google Scholar 

  • Wu Z, Li J, He J, Jiang Z. 2006. Occurrence of droughts and floods during the normal summer monsoons in the mid- and lower reaches of the Yangtze River. Geophys Res Lett, 33: L05813

    ADS  Google Scholar 

  • Wyser K, Koenigk T, Fladrich U, Fuentes-Franco R, Karami M P, Kruschke T. 2021. The SMHI large ensemble (SMHI-LENS) with EC-Earth3.3.1. Geosci Model Dev, 14: 4781–4796

    ADS  Google Scholar 

  • Xie W, Zhou B, Han Z, Xu Y. 2022. Substantial increase in daytime-nighttime compound heat waves and associated population exposure in China projected by the CMIP6 multimodel ensemble. Environ Res Lett, 17: 045007

    ADS  Google Scholar 

  • Xu R, Li Y, Teuling A J, Zhao L, Spracklen D V, Garcia-Carreras L, Meier R, Chen L, Zheng Y, Lin H, Fu B. 2022. Contrasting impacts of forests on cloud cover based on satellite observations. Nat Commun, 13: 670

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaddanapudi R, Mishra A, Huang W, Chowdhary H. 2022. Compound wind and precipitation extremes in global coastal regions under climate change. Geophys Res Lett, 49: e2022GL098974

    ADS  Google Scholar 

  • Yang S, Wu B, Zhang R, Zhou S. 2013. Relationship between an abrupt drought-flood transition over mid-low reaches of the Yangtze River in 2011 and the intraseasonal oscillation over mid-high latitudes of East Asia. Acta Meteorol Sin, 27: 129–143

    ADS  Google Scholar 

  • Yao H, Zhao L, Shen X, Xiao Z, Li Q. 2022. Relationship between Summer compound hot and dry extremes in China and the snow cover pattern in the preceding Winter. Front Earth Sci, 10: 834284

    Google Scholar 

  • Yin Z, Wan Y, Zhang Y, Wang H. 2022. Why super sandstorm 2021 in north China? Natl Sci Rev, 9: nwab165

    PubMed  Google Scholar 

  • You J, Wang S. 2021. Higher probability of occurrence of hotter and shorter heat waves followed by heavy rainfall. Geophys Res Lett, 48: e2021GL094831

    ADS  Google Scholar 

  • Yu Y, Mao J, Wullschleger S D, Chen A, Shi X, Wang Y, Hoffman F M, Zhang Y, Pierce E. 2022. Machine learning-based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nat Commun, 13: 1250

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai P, Liao Z, Chen Y, Yu R, Yuan Y, Lu H. 2017. A review on changes in precipitation persistence and phase under the background of global warming (in Chinese). Acta Meteorol Sin, 75: 527–538

    Google Scholar 

  • Zhang B, Wang S, Zscheischler J. 2021. Higher probability of abrupt shift from drought to heavy rainfall in a warmer world, https://doi.org/10.21203/rs.3.rs-940109/v1

  • Zhang K, Cao C, Chu H, Zhao L, Zhao J, Lee X. 2023. Increased heat risk in wet climate induced by urban humid heat. Nature, 617: 738–742

    ADS  CAS  PubMed  Google Scholar 

  • Zhang W, Furtado K, Wu P, Zhou T, Chadwick R, Marzin C, Rostron J, Sexton D. 2021a. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci Adv, 7: eabf8021

    ADS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Luo M, Gao S, Chen W, Hari V, Khouakhi A. 2021b. Compound hydrometeorological extremes: Drivers, mechanisms and methods. Front Earth Sci, 9: 673495

    Google Scholar 

  • Zhang W, Murakami H, Khouakhi A, Luo M. 2021c. Editorial: Compound climate extremes in the present and future climates: Machine learning, statistical methods and dynamical modelling. Front Earth Sci, 9: 807224

    Google Scholar 

  • Zhang W, Villarini G. 2020. Deadly compound heat stress-flooding hazard across the central United States. Geophys Res Lett, 47: e2020GL089185

    ADS  Google Scholar 

  • Zhang Y, Hao Z, Zhang X, Hao F. 2022. Anthropogenically forced increases in compound dry and hot events at the global and continental scales. Environ Res Lett, 17: 024018

    ADS  Google Scholar 

  • Zhang Y, Hao Z, Zhang Y. 2023. Agricultural risk assessment of compound dry and hot events in China. Agric Water Manage, 277: 108128

    Google Scholar 

  • Zhang Y, Keenan T F, Zhou S. 2021a. Exacerbated drought impacts on global ecosystems due to structural overshoot. Nat Ecol Evol, 5: 1490–1498

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Sun X, Chen C. 2021b. Characteristics of concurrent precipitation and wind speed extremes in China. Weather Clim Extrem, 32: 100322

    Google Scholar 

  • Zhao H, Zhang L, Kirkham M B, Welch S M, Nielsen-Gammon J W, Bai G, Luo J, Andresen D A, Rice C W, Wan N, Lollato R P, Zheng D, Gowda P H, Lin X. 2022. U.S. winter wheat yield loss attributed to compound hot-dry-windy events. Nat Commun, 13: 7233

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng F, Leonard M, Westra S. 2017. Application of the design variable method to estimate coastal flood risk. J Flood Risk Manage, 10: 522–534

    Google Scholar 

  • Zheng F, Westra S, Leonard M, Sisson S A. 2014. Modeling dependence between extreme rainfall and storm surge to estimate coastal flooding risk. Water Resources Res, 50: 2050–2071

    ADS  Google Scholar 

  • Zheng F, Westra S, Sisson S A. 2013. Quantifying the dependence between extreme rainfall and storm surge in the coastal zone. J Hydrol, 505: 172–187

    Google Scholar 

  • Zhou P, Liu Z. 2018. Likelihood of concurrent climate extremes and variations over China. Environ Res Lett, 13: 094023

    ADS  Google Scholar 

  • Zhou B, Zhai P. 2021. The constraint methods for projection in the IPCC sixth assessment report on climate change (in Chinese). Acta Meteorol Sin, 79: 1063–1070

    Google Scholar 

  • Zhou J, Wu C, Yeh P J F, Ju J, Zhong L, Wang S, Zhang J. 2023. Anthropogenic climate change exacerbates the risk of successive flood-heat extremes: Multi-model global projections based on the inter-sectoral impact model intercomparison project. Sci Total Environ, 889: 164274

    ADS  CAS  PubMed  Google Scholar 

  • Zscheischler J, Lehner F. 2022. Attributing compound events to anthropogenic climate change. Bull Am Meteorol Soc, 103: E936–E953

    ADS  Google Scholar 

  • Zscheischler J, Martius O, Westra S, Bevacqua E, Raymond C, Horton R M, van den Hurk B, AghaKouchak A, Jézéquel A, Mahecha M D, Maraun D, Ramos A M, Ridder N N, Thiery W, Vignotto E. 2020. A typology of compound weather and climate events. Nat Rev Earth Environ, 1: 333–347

    ADS  Google Scholar 

  • Zscheischler J, Naveau P, Martius O, Engelke S C, Raible C. 2021. Evaluating the dependence structure of compound precipitation and wind speed extremes. Earth Syst Dynam, 12: 1–16

    ADS  Google Scholar 

  • Zscheischler J, Seneviratne S I. 2017. Dependence of drivers affects risks associated with compound events. Sci Adv, 3: e1700263

    ADS  PubMed  PubMed Central  Google Scholar 

  • Zscheischler J, Westra S, van den Hurk B J J M, Seneviratne S I, Ward P J, Pitman A, AghaKouchak A, Bresch D N, Leonard M, Wahl T, Zhang X. 2018. Future climate risk from compound events. Nat Clim Change, 8: 469–477

    ADS  Google Scholar 

Download references

Acknowledgements

We appreciate the help from Sifang FENG and Boying LV on figures and tables of this study. This study was supported by the National Natural Science Foundation of China (Grant No. 42271024) and the Science & Technology Development Funding of Chinese Academy of Meteorological Sciences (Grant No. 2023KJ015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Chen.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Chen, Y. Research progresses and prospects of multi-sphere compound extremes from the Earth System perspective. Sci. China Earth Sci. 67, 343–374 (2024). https://doi.org/10.1007/s11430-023-1201-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1201-y

Keywords

Navigation