Skip to main content
Log in

Degassing of deep-sourced CO2 from Xianshuihe-Anninghe fault zones in the eastern Tibetan Plateau

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

A large number of gases are releasing from the medium-high temperature geothermal fields distributed along the large-scale strike-slip fault zones in the southeastern margin of the Tibetan Plateau. In this study, 11 hot spring water and the associated bubbling gas samples were collected along the Xianshuihe-Anninghe fault zones (XSH-ANHFZ) and analyzed for chemical and isotopic compositions. The \({\delta ^{18}}{{\rm{O}}_{{{\rm{H}}_2}{\rm{O}}}}\) and \(\delta {{\rm{D}}_{{{\rm{H}}_2}{\rm{O}}}}\) values indicate that hot spring waters are predominantly meteoric origin recharged from different altitudes. Most water samples are significantly enriched in Na+ and HCO3 due to the dissolution of regional evaporites, carbonates and Na-silicates. 3He/4He ratios of the gas samples are 0.025–2.73 times the atmospheric value. The 3He/4He ratios are high in the Kangding region where the dense faults are distributed, and gradually decrease with increasing distance from Kangding towards both sides along the Xianshuihe fault zones (XSHFZ). Hydrothermal fluids have dissolved inorganic carbon (DIC) concentrations from 2 to 42 mmol L−1, δ13CDIC from −6.9‰ to 1.3‰, \({\delta ^{13}}{{\rm{C}}_{{\rm{C}}{{\rm{O}}_2}}}\) from −7.2‰ to −3.6‰ and Δ14C from −997‰ to −909‰. Combining regional geochemical and geological information, the CO2 sources can be attributed to deep-sourced CO2 from mantle and metamorphism of marine carbonate, and shallow-sourced CO2 from the dissolution of marine carbonate and biogenic CO2. The mass balance model shows that 11±6% of the DIC is sourced from the dissolution of shallow carbonate minerals, 9±8% formed by pyrolysis of sedimentary organic matter, 80±9% derived from deep metamorphic origin and mantle-derived CO2. Among them, the deep-sourced CO2 in Anninghe fault zones (ANHFZ) is merely metamorphic carbon, whereas ca. 12% and ca. 88% of the deep-sourced CO2 in the XSHFZ are derived from the mantle and metamorphic carbon, respectively. The average deep-sourced CO2 flux in the Kangding geothermal field is estimated to be 160 t a−1. If all the hot springs in various fault zones in the southeastern margin of the Tibetan Plateau are taken into account, the regional deep-sourced CO2 flux would reach ca. 105 t a−1. These results show that the deep-sourced CO2 released from non-volcanic areas might account for a considerable proportion of the total amount of global deep-sourced carbon degassing, which should be paid more attention to.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai D H, Unsworth M J, Meju M A, Ma X B, Teng J W, Kong X R, Sun Y, Sun J, Wang L F, Jiang C S, Zhao C P, Xiao P F, Liu M. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nat Geosci, 3: 358–362

    Article  Google Scholar 

  • Ballentine C J, Burgess R, Marty B. 2002. Tracing fluid origin, transport and interaction in the crust. Rev Mineral Geochem, 47: 539–614

    Article  Google Scholar 

  • Ballentine C J, Burnard P G. 2002. Production, release and transport of noble gases in the continental crust. Rev Mineral Geochem, 47: 481–538

    Article  Google Scholar 

  • Becker J A, Bickle M J, Galy A, Holland T J B. 2008. Himalayan metamorphic CO2 fluxes: Quantitative constraints from hydrothermal springs. Earth Planet Sci Lett, 265: 616–629

    Article  Google Scholar 

  • Bekaert D V, Turner S J, Broadley M W, Barnes J D, Halldórsson S A, Labidi J, Wade J, Walowski K J, Barry P H. 2021. Subduction-driven volatile recycling: A global mass balance. Annu Rev Earth Planet Sci, 49: 37–70

    Article  Google Scholar 

  • Castro M C. 2004. Helium sources in passive margin aquifers—New evidence for a significant mantle 3He source in aquifers with unexpectedly low in situ3He/4He production. Earth Planet Sci Lett, 222: 897–913

    Article  Google Scholar 

  • Chiodini G, Cardellini C, Amato A, Boschi E, Caliro S, Frondini F, Ventura G. 2004. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys Res Lett, 31: L07615

    Article  Google Scholar 

  • Chen M. 1992. A new map of hot springs in China and its explanation (in Chinese). Acta Geol Sinica, (Suppl): 322–332

  • Clark I D, Frintz P. 1997. Environmental Isotopes in Hydrogeology. Boca Raton: CRC Press. 342

    Google Scholar 

  • Crossey L J, Karlstrom K E, Springer A E, Newell D, Hilton D R, Fischer T. 2009. Degassing of mantle-derived CO2 and He from springs in the southern Colorado Plateau region—Neotectonic connections and implications for groundwater systems. GSA Bull, 121: 1034–1053

    Article  Google Scholar 

  • DePaolo D J. 2015. Sustainable carbon emissions: The geologic perspective. MRS Energy Sustainability, 2: 9

    Article  Google Scholar 

  • Doğan T, Sumino H, Nagao K, Notsu K, Tuncer M K, Çelik C. 2009. Adjacent releases of mantle helium and soil CO2 from active faults: Observations from the Marmara region of the North Anatolian Fault zone, Turkey. Geochem Geophys Geosyst, 10: Q11009

    Article  Google Scholar 

  • Doğan T, Sumino H, Nagao K, Notsu K. 2006. Release of mantle helium from forearc region of the Southwest Japan arc. Chem Geol, 233: 235–248

    Article  Google Scholar 

  • Du J, Cheng W, Zhang Y, Jie C, Guan Z, Liu W, Bai L. 2006. Helium and carbon isotopic compositions of thermal springs in the earthquake zone of Sichuan, Southwestern China. J Asian Earth Sci, 26: 533–539

    Article  Google Scholar 

  • Evans M J, Derry L A, France-Lanord C. 2008. Degassing of metamorphic carbon dioxide from the Nepal Himalaya. Geochem Geophys Geosyst, 9: Q04021

    Article  Google Scholar 

  • Foley S F, Fischer T P. 2017. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat Geosci, 10: 897–902

    Article  Google Scholar 

  • Graham D W. 2002. Noble gases in MORB and OIB: observational constraints for the characterization of mantle source reservoirs. Rev Mineral Geochem, 47: 247–317

    Article  Google Scholar 

  • Guo L, Wang G C, Sheng Y Z, Sun X Y, Shi Z M, Xu Q Y, Mu W Q. 2020. Temperature governs the distribution of hot spring microbial community in three hydrothermal fields, Eastern Tibetan Plateau Geothermal Belt, Western China. Sci Total Environ, 720: 137574

    Article  Google Scholar 

  • Guo Q, Pang Z H, Wang Y C, Tian J. 2017. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas. Appl Geochem, 81: 63–75

    Article  Google Scholar 

  • Hahm D, Hilton D R, Cho M, Wei H, Kim K R. 2008. Geothermal He and CO2 variations at Changbaishan intra-plate volcano (NE China) and the nature of the sub-continental lithospheric mantle. Geophys Res Lett, 35: L22304

    Article  Google Scholar 

  • Hou Y Y, Shi Z M, Mu W Q. 2018. Fluid geochemistry of fault zone hydrothermal system in the Yidun-Litang Area, eastern Tibetan Plateau geothermal belt. Geofluids, 2018: 1–13

    Google Scholar 

  • Isson T T, Planavsky N J, Coogan L A, Stewart E M, Ague J J, Bolton E W, Zhang S, McKenzie N R, Kump L R. 2020. Evolution of the global carbon cycle and climate regulation on Earth. Glob Biogeochem Cycle, 34: 1–28

    Article  Google Scholar 

  • Kagoshima T, Sano Y, Takahata N, Ishida A, Tomonaga Y, Roulleau E, Pinti D L, Fischer T P, Lan T, Nishio Y, Tsunogai U, Guo Z. 2016. Spatial and temporal variations of gas geochemistry at Mt. Ontake, Japan. J Volcanol Geotherm Res, 325: 179–188

    Article  Google Scholar 

  • Kennedy B M, Kharaka Y K, Evans W C, Ellwood A, Depaolo D J, Thordsen J, Ambats G, Mariner R H. 1997. Mantle fluids in the San Andreas fault system, California. Science, 278: 1278–1281

    Article  Google Scholar 

  • Klemperer S L, Kennedy B M, Sastry S R, Makovsky Y, Harinarayana T, Leech M L. 2013. Mantle fluids in the Karakoram fault: Helium isotope evidence. Earth Planet Sci Lett, 366: 59–70

    Article  Google Scholar 

  • Kulongoski J T, Hilton D R, Barry P H, Esser B K, Hillegonds D, Belitz K. 2013. Volatile fluxes through the Big Bend section of the San Andreas Fault, California: Helium and carbon-dioxide systematics. Chem Geol, 339: 92–102

    Article  Google Scholar 

  • Lee H, Muirhead J D, Fischer T P, Ebinger C J, Kattenhorn S A, Sharp Z D, Kianji G. 2016. Massive and prolonged deep carbon emissions associated with continental rifting. Nat Geosci, 9: 145–149

    Article  Google Scholar 

  • Lee C T, Jiang H, Dasgupta R, Torres M. 2019. A framework for understanding whole-Earth carbon cycling. In: Orcutt B N, Daniel I, Dasgupta R, eds. Deep Carbon: Past to Present. Cambridge: Cambridge University Press. 313–357

    Chapter  Google Scholar 

  • Legendre C P, Deschamps F, Zhao L, Chen Q F. 2015. Rayleigh-wave dispersion reveals crust-mantle decoupling beneath eastern Tibet. Sci Rep, 5: 16644

    Article  Google Scholar 

  • Lewicki J L, Evans W C, Hilley G E, Sorey M L, Rogie J D, Brantley S L. 2003. Shallow soil CO2 flow along the San Andreas and Calaveras Faults, California. J Geophys Res, 108: 2187

    Google Scholar 

  • Li M K, Zhang S X, Wang F, Wu T F, Qin W B. 2016. Crustal and upper-mantle structure of the southeastern Tibetan Plateau from joint analysis of surface wave dispersion and receiver functions. J Asian Earth Sci, 117: 52–63

    Article  Google Scholar 

  • Li Y H, Hao M, Ji L Y, Qin S L. 2014. Fault slip rates and seismic moment deficits on major active faults in middle and south parts of the eastern margin of the Tibetan Plateau. Chin J Geophys, 57: 177–194

    Article  Google Scholar 

  • Liu Z, Yuan D, He S, Zhang M, Zhang J. 2000. Geochemical features of the geothermal CO2-watercarbonate rock system and analysis on its CO2 sources. Sci China Ser D-Earth Sci, 43: 569–576

    Article  Google Scholar 

  • Luo J, Pang Z G, Kong Y K, Wang Y C. 2017. Geothermal potential evaluation and development prioritization based on geochemistry of geothermal waters from Kangding area, western Sichuan, China. Environ Earth Sci, 76: 343

    Article  Google Scholar 

  • Mamyrin B A, Tolstikhin I N. 1984. Helium Isotope in Nature. Amsterdam: Elsevier Science. 273

    Google Scholar 

  • Marty B, Jambon A. 1987. C3He in volatile fluxes from the solid Earth: Implications for carbon geodynamics. Earth Planet Sci Lett, 83: 16–26

    Article  Google Scholar 

  • Marwick T R, Tamooh F, Teodoru C R, Borges A V, Darchambeau F, Bouillon S. 2015. The age of river-transported carbon: A global perspective. Glob Biogeochem Cycle, 29: 122–137

    Article  Google Scholar 

  • McKenzie N R, Horton B K, Loomis S E, Stockli D F, Planavsky N J, Lee C T A. 2016. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science, 352: 444–447

    Article  Google Scholar 

  • Mook W G, Bommerson J C, Staverman W H. 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett, 22: 169–176

    Article  Google Scholar 

  • Muirhead J D, Fischer T P, Oliva S J, Laizer A, van Wijk J, Currie C A, Lee H, Judd E J, Kazimoto E, Sano Y, Takahata N, Tiberi C, Foley S F, Dufek J, Reiss M C, Ebinger C J. 2020. Displaced cratonic mantle concentrates deep carbon during continental rifting. Nature, 582: 67–72

    Article  Google Scholar 

  • Plank T, Manning C E. 2019. Subducting carbon. Nature, 574: 343–352

    Article  Google Scholar 

  • Qi J H, Xu M, An C J, Wu M L, Zhang Y H, Li X, Zhang Q, Lu G P. 2017. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China. Phys Earth Planet Inter, 263: 12–22

    Article  Google Scholar 

  • Sano Y, Marty B. 1995. Origin of carbon in fumarolic gas from island arcs. Chem Geol, 119: 265–274

    Article  Google Scholar 

  • Searle M P, Roberts N M W, Chung S L, Lee Y H, Cook K L, Elliott J R, Weller O M, St-Onge M R, Xu X W, Tan X B, Li K. 2016. Age and anatomy of the Gongga Shan batholith, eastern Tibetan Plateau, and its relationship to the active Xianshui-he fault. Geosphere, 12: 948–970

    Article  Google Scholar 

  • Shi Z M, Liao F, Wang G C, Xu Q Y, Mu W Q, Sun X Y. 2017. Hydrogeochemical characteristics and evolution of hot springs in eastern Tibetan Plateau geothermal belt, western China: Insight from multivariate statistical analysis. Geofluids, 2017: 1–11

    Google Scholar 

  • Tamburello G, Pondrelli S, Chiodini G, Rouwet D. 2018. Global-scale control of extensional tectonics on CO2 earth degassing. Nat Commun, 9: 4608

    Article  Google Scholar 

  • Tang X C, Zhang J, Pang Z H, Hu S B A, Tian J, Bao S J. 2017. The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system. Tectonophysics, 717: 433–448

    Article  Google Scholar 

  • Umeda K, Asamori K, Kusano T. 2013. Release of mantle and crustal helium from a fault following an inland earthquake. Appl Geochem, 37: 134–141

    Article  Google Scholar 

  • Umeda K, Ninomiya A. 2009. Helium isotopes as a tool for detecting concealed active faults. Geochem Geophys Geosyst, 10: Q08010

    Article  Google Scholar 

  • Wang H, Liu M A, Cao J L, Shen X H, Zhang G M. 2011. Slip rates and seismic moment deficits on major active faults in mainland China. J Geophys Res, 116: B02405

    Google Scholar 

  • Wang Y C, Pang Z H, Hao Y L, Fan Y F, Tian J, Li J. 2019. A revised method for heat flux measurement with applications to the fracture-controlled Kangding geothermal system in the Eastern Himalayan Syntaxis. Geothermics, 77: 188–203

    Article  Google Scholar 

  • Xu S, Nakai S, Wakita H, Wang X B. 2004. Carbon and noble gas isotopes in the Tengchong volcanic geothermal area, Yunnan, southwestern China. Acta Geol Sin, 78: 1122–1135

    Article  Google Scholar 

  • Xu S, Zheng G D, Wang X B, Wang H L, Nakai S, Wakita H. 2014. Helium and carbon isotope variations in Liaodong Peninsula, NE China. J Asian Earth Sci, 90: 149–156

    Article  Google Scholar 

  • Xu X M, Trumbore S E, Zheng S H, Southon J R, McDuffee K E, Luttgen M, Liu J C. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: Reducing background and attaining high precision. Nucl Instruments Methods Phys Res Sect B-Beam Interactions Mater Atoms, 259: 320–329

    Article  Google Scholar 

  • Yang L Z, Wei J, Sun J Y. 1999. A study of the deep-source CO2 release of the hot springs system in Kangding, Sichuan Province (in Chinese). Acta Geol Sinica, 73: 278–285

    Google Scholar 

  • Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci, 28: 211–280

    Article  Google Scholar 

  • Zhang J, Li W Y, Tang X C, Tian J, Wang Y C, Guo Q, Pang Z H. 2017. Geothermal data analysis at the high-temperature hydrothermal area in Western Sichuan. Sci China Earth Sci, 60: 1507–1521

    Article  Google Scholar 

  • Zhou X C, Liu L, Chen Z, Cui Y J, Du J G. 2017. Gas geochemistry of the hot spring in the Litang fault zone, Southeast Tibetan Plateau. Appl Geochem, 79: 17–26

    Article  Google Scholar 

  • Zhou X C, Wang W C, Chen Z, Yi L, Liu L, Xie C, Cui Y J, Du J G, Cheng J W, Yang L M. 2015. Hot spring gas geochemistry in western Sichuan Province, China after the wenchuan MS 8.0 earthquake. Terr Atmos Ocean Sci, 26: 361–373

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous reviewers and the responsible editor for their constructive comments, which greatly improved the manuscript. We are also grateful to Dr B. Chen for discussion and English improvement. This work was supported by China Seismic Experimental Site (CSES) (Grant No. 2019CSES0104) and the National Natural Science Foundation of China (Grant No. 41930642).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Guan, L., Zhang, M. et al. Degassing of deep-sourced CO2 from Xianshuihe-Anninghe fault zones in the eastern Tibetan Plateau. Sci. China Earth Sci. 65, 139–155 (2022). https://doi.org/10.1007/s11430-021-9810-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9810-x

Keywords

Navigation