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Association networks are widely applied for the prediction of bacterial interactions in studies of human gut microbiomes. However, the
experimental validation of the predicted interactions is challenging due to the complexity of gut microbiomes and the limited number of
cultivated bacteria. In this study, we addressed this challenge by integrating in vitro time series network (TSN) associations and co-
cultivation of TSN taxon pairs. Fecal samples were collected and used for cultivation and enrichment of gut microbiome on YCFA agar plates
for 13 days. Enriched cells were harvested for DNA extraction and metagenomic sequencing. A total of 198 metagenome-assembled genomes
(MAGs) were recovered. Temporal dynamics of bacteria growing on the YCFA agar were used to infer microbial association networks. To
experimentally validate the interactions of taxon pairs in networks, we selected 24 and 19 bacterial strains from this study and from the
previously established human gut microbial biobank, respectively, for pairwise co-cultures. The co-culture experiments revealed that most
of the interactions between taxa in networks were identified as neutralism (51.67%), followed by commensalism (21.67%), amensalism
(18.33%), competition (5%) and exploitation (3.33%). Genome-centric analysis further revealed that the commensal gut bacteria (helpers
and beneficiaries) might interact with each other via the exchanges of amino acids with high biosynthetic costs, short-chain fatty acids, and/
or vitamins. We also validated 12 beneficiaries by adding 16 additives into the basic YCFA medium and found that the growth of 66.7% of
these strains was significantly promoted. This approach provides new insights into the gut microbiome complexity and microbial inter-
actions in association networks. Our work highlights that the positive relationships in gut microbial communities tend to be overestimated,
and that amino acids, short-chain fatty acids, and vitamins are contributed to the positive relationships.
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INTRODUCTION

The human gut harbors trillions of bacterial cells, comprising
intricate association and interaction networks (Ghoul and Mitri,
2016; Mitri and Foster, 2013). Previous studies have primarily
relied on in silico co-occurrence or association analyses to discuss
microbial relationships in gut microbiome, resulting in a highly
descriptive of the field (Bäckhed et al., 2015; Baxter et al., 2019;
Coker et al., 2018; Halfvarson et al., 2017; Matchado et al.,
2021; Nash et al., 2017; Peng et al., 2018; Qian et al., 2020). It
is still a challenge to get a comprehensive insight into bacterial
interactions predicted from intertwined association networks.
With the growing availability of gut bacterial cultivated
resources, it is possible to address the question that how gut
microbes associated in networks are interacting with each other.

Inference of microbial association networks is widely applied
for mapping microbial interactions (Faust and Raes, 2012;
Matchado et al., 2021). Based on the strategies of sampling
campaign, microbial association networks could be constructed
from longitudinal cohort and cross-sectional cohort studies.
Cross-sectional studies provide a “snapshot” of microbial com-
munity composition at a specific time point (Odamaki et al.,
2016). Correlations between the abundances of different species
across individuals do not directly imply interactions, indicating

that longitudinal (time-series) data is likely more suitable for
inferring microbial interactions than cross-sectional data (Fisher
and Mehta, 2014). In contrast to cross-sectional cohort studies,
longitudinal cohort studies enable the investigation of temporal
dynamics in microbial communities and inference of local or
potentially time-delayed associations (Mars et al., 2020).
Ecological interactions between species are intricate, including
parasitism, commensalism, mutualism, amensalism, or competi-
tion. However, the edges within association networks merely
represent positive or negative associations between taxa. It is
crucial to note that while association network analysis captures
potential links between microbes, these associations are neither
necessary nor sufficient to establish ecological interactions (Hsieh
et al., 2005). Therefore, experimental methods are important to
validate the relationships between taxon pairs within association
network.

Compositions of microbial communities were highly dynamic
in human gut, resulting in the changed microbial interactions
among community members (Palmer and Foster, 2022). The
changes of the gut microbial communities were greatly
influenced not only by interactions among bacteria but also by
hosts and their environments (Hijová et al., 2019; Pan et al.,
2022). In terms of microbial community profiling, compared to
16S rRNA gene amplicon sequencing, metagenomic sequencing
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is a more suitable approach. In our previous work, we found that
microbes from different species share identical 16S rRNA gene V4
or V3/V4 region (Jiang et al., 2022). It could lead to an
overestimation of node abundance, thereby increasing its
significance within the network. To simplify the complexity of
gut microbial community and to overcome the low taxonomic
resolution of amplified 16S rRNA gene (V4 or V3/V4 region), we
considered that employing in-vitro time-series cultivation and
shotgun sequencing to predict the association network was
highly necessary.

In this study, temporal shotgun metagenomics in combination
with co-culture experiment were performed to link the genotype
and interaction relationships among microbes in human gut. The
primary research objective was to establish a research workflow
for predicting and validating the gut microbial interactions in
vitro. We first performed in vitro cultivation with the diluted gut
microbiota (10−2 and 10−4) on YCFA agar plates. Cultures on
plates were then collected in batches of every 2 days (6 time
points) for metagenomic shotgun sequencing. We retrieved 198
bacterial metagenome-assembled genomes (MAGs) representing
the majority (63.4%) of microbial communities in fecal samples
for microbial association network inference. We further isolated
the representative strains of taxa in networks and conducted co-
culture experiments. Comparative genomic analysis and supple-
mentation culture experiments revealed that the commensalism
among phylogenetically closed members of Clostridia and
Bacteroidia in gut microbiome might be dependent on nutrient
exchange (e.g., amino acids, vitamins, and short-chain fatty acid
(SCFA)).

RESULTS

Profiling fecal microbial communities with metagenomic
sequencing

The experimental flow chart is shown in Figure 1A. To
characterize the microbial communities in the fecal samples,
we sequenced fecal metagenomic DNAs. Meanwhile, in attempt
to detect low abundant gut microbes and to extract their
interactions with other bacteria, fecal microbial communities
were cultivated on YCFA agar plates. The fecal sample was
serially diluted in triplicate. Homogenates at two dilution levels
(10−2 and 10−4) were subsequently plated onto six YCFA agar
plates (representing different time points) and incubated under
anaerobic and dark conditions at 37°C. Three plates from each
dilution were collected every 2 days for metagenomic shotgun
sequencing. A total of 419 Gb paired-end reads of high-quality
DNA sequences were generated from 36 plates (2 (dilution levels)
× 3 (replicates) × 6 (time points)), with approximately 10.6 Gb
per cultivated microbial community. Additionally, the donor’s
fecal sample was sequenced and generated 35.9 Gb DNA
sequencing data (Table S1 in Supporting Information). We
recovered 198 non-redundant MAGs (Table S2 in Supporting
Information), of which 84 MAGs were shared by all samples and
60 MAGs were solely assembled from fecal metagenomic data
(Figure 1B). Still, those cultivated microbial communities
provided 7 (from 10−2) and 27 (from 10−4) MAGs that were
not assembled from the fecal sample metagenome, suggesting the
contribution of enrichment for recovering low abundant
bacteria. As expected, the MAGs recovered from microbial
communities cultivated at lower dilution (10−2 group) covered

most of the MAGs from the higher dilution (10−4 group).
Additionally, the microbial diversity of the 10−2 group was
higher than that observed within the 10−4 group (Figure 1C).
The principal coordinate analysis (PCoA) based on Bray-Curtis
dissimilarity showed distinct separation of microbial community
compositions among cultivated microbial communities with
different dilution levels along the PC1 axis (PC1, explained
59.78% of the total variation) (Figure 1D).

Reconstruction of association networks and bacterial
growth patterns

To determine the gut microbial associations, we performed an
extended local similarity analysis (eLSA) using genome-based
relative abundance data of the10−2 and 10−4 groups at 6 time
points (see Method, Table S3 in Supporting Information, Figure
2A and B). The eLSA analysis provides statistically local
similarity and potentially time-delayed association patterns in
replicated time series data. As expected, it was found that serial
dilution reduced the number of community members and the
complexity of microbial association networks. The reconstructed
network for the 10−2 group included 110 nodes and 496 edges
(containing 396 ordinary associations and 100 delayed associa-
tions) (Figure 2A; Table S3 in Supporting Information), while the
network for the 10−4 group included 56 nodes and 143 edges
(containing 102 ordinary associations and 41 time-delayed
associations) (Figure 2B; Table S3 in Supporting Information). In
10−2 and 10−4 groups, 12 identical association combinations
were predicted, including 7 combinations with consistently
predicted associations (positive or negative associations in both
groups) (e.g., bin_26-bin_27, bin_81-bin_37, bin_89-bin_102,
bin_37-bin_69, bin_79-bin_8, bin_91-bin_99, bin_47-bin_27),
and 5 combinations with predicted opposite associations (e.g.,
bin_101-bin_67, bin_70-bin_60, bin_89-bin_35, bin_23-
bin_54, bin_82-bin_69). This suggests that series dilution could
not only simplify community composition, but also influence
interactions among microbes.

We analyzed the bacterial growth patterns in each dilution
group using K-medoids clustering method. In the 10−2 dilution
group (Figure 2C), three patterns were recognized: Pattern 1
represented microbes (as represented by MAGs) with constantly
increasing abundances; Pattern 2 represented microbes (as
represented by MAG) with constantly decreasing abundances;
and Pattern 3 represented microbes (as represented by MAG)
with initial increases followed by decreases. Similar growth
patterns were identified for the 10−4 dilution cultivation group
(Figure 2D). For example, bin_36 (Christensenella hongkongensis)
and bin_94 (Parabacteroides distasonis) exhibited increasing
dynamic patterns in biological repeats of 10−2 and 10−4,
respectively. Then, we considered bin_36 and bin_94 showed a
stable growth pattern (Pattern 1) in each of the groups, and we
considered them as one of the candidate nodes for validation.

To retrieve the robust associations from the microbial net-
works, only those nodes of which the corresponding bacteria (as
represented by MAG) exhibited consistent growth patterns in all
replicates of the specific group (10−2 or 10−4) were selected
(Table S4 in Supporting Information). After this filtration, 100
MAGs were selected, and they showed 239 associated pairs
(either local or time-delayed, Figure 2E and F; Table S5 in
Supporting Information) were identified from the association
networks. Those MAGs and pairs were applied for guidance of
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microbial strain isolation and for experimental validation of the
predicted microbial interactions from association network
analysis.

Bacterial isolation and cultivation

In order to validate the predicted interactions, we made efforts on
cultivation and isolation of microbial strains corresponding to the
above selected 100 MAGs. A total of 360 isolates representing 35

taxa at genus level were obtained (Figure 3A; Table S6 in
Supporting Information). At species level, 24 isolates were
matched MAGs of the 100 selected ones (Figure 3B). To obtain
further strain resources for testing the predicted interactions from
the association network, we searched the human Gut Microbial
Biobank (hGMB) (Liu et al., 2021a), and retrieved 19 represen-
tative bacterial strains. Thus, we obtained a total 43 microbial
isolates/strains representing 43 MAGs out of the 100 selected
ones (Figure 3B). With those 43 microbial strains, we would be

Figure 1. The experimental flow-chart and microbial community comparison. A, Experimental flow-chart. B, Venn diagram showing MAGs recovered from the 10−2 and 10−4

and fecal samples. C, Microbial diversity of cultivated microbial communities of 10−2 (purple group) and 10−4 (orange group) determined by Chao 1 index. D, PCoA (Bray-Curtis
dissimilarity) of microbial communities. The 10−2 group samples were circled into the purple box.
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Figure 2. Association network and time series representations (TSR) of gut microbes. For these analyses, MAGs with at least 50% of occurring frequencies in 10−2 (A, C, E) or
10−4 (B, D, F) dilution cultivation groups were used for plots. A and B, Circle size represents the average relative abundances of MAGs. The dominating phyla are colored, orange
for Firmicutes, purple for Bacteroidota, green for Actinobacteria, blue for Proteobacteria, and pink for Desulfobacterota. Red edge represents positive interactions, blue edge
represents negative interactions, and the line thickness represents the strength of association. The solid line represents direct associations, and dashed line represents the time-
delayed association. C and D, TSR analysis of MAGs abundances using R package Tsrepr. x- and y-axes of these subpanels represent the relative abundance (z-score normalized) of
bacteria and sampling time point, respectively. Community members of 10−2 and 10−4 groups were assigned into 4 and 3 clusters, respectively. The clustering process was
independently conducted for each biological replicate (3 replicates for each dilution group), resulting in a total of 12 subpanels (4 clusters × 3 replicates) and 9 subpanels (3
clusters × 3 replicates) in (B) (10−2) and (E) (10−4), respectively. The gray line represents the relative abundance (using z-score normalization) of each MAG changed over time,
and the red line representscentroids of patterns. E and F, Filtered sub-networks for experimental validation of the predicted microbial interactions from panels (A) and (B).
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able to experimentally test 60 association pairs, including 32
predicted positive and 28 predicted negative associations (Table
S7 in Supporting Information).

Co-culture of taxon pairs for validation of predicted
associations

Using the cultivated bacterial isolates, we conducted co-culture
experiments to validate the microbial interactions of the robust
taxon pairs predicted from in silico association networks. In total,
we identified 60 cultivated bacterial isolate combinations
representing 60 taxon pairs in the association network.
Subsequently, all 60 cultivated bacterial isolate combinations
were co-cultured on YCFA agar plates, and the results (Figure 4)
showed the relationships between positively associated taxa
could be commensalism, exploitation, amensalism, and neutral-
ism, and relationships between negatively associated taxa could
be amensalism, commensalism, competition, exploitation, and
neutralism (Figure 5; Table S7 in Supporting Information).
Despite the complexity of observed interactions in co-culture
experiments, we found that the phenotype of neutralism was
identified as the most prevalent relationship (51.67%) between
the robust taxon pairs inferred by network analysis (Table S7 in
Supporting Information). Specifically, 65.63% and 35.71% of the
interactions between taxa with positive and negative associations
in networks were identified as neutralism, respectively.

Based on the observed phenotypes, we classified the relation-
ships between the bacterial isolates as profitable (commensalism
and exploitation) or competitive (amensalism, competition, and
exploitation). The phenotype of profitable interaction showed
that at least one isolate could be enhanced. One example for the
commensalism phenotype is that Eggerthella lenta (bin_77) is

beneficial to Bacteroides ovatus (bin_86) as evidenced by the
higher density of Bacteroides ovatus at the junction of these two
bacterial colonies, while the Eggerthella lenta does not be affected
by Bacteroides ovatus (Figure 4B). On the other hand, for the
competition phenotype, the growth of Intestinimonas butyricipro-
ducens (bin_67) and Shigella flexneri (bin_85) were inhibited at
the areas close to each other.

When bacterial species have similar environmental preferences
or respond to the same external factors and nutrients are not
limited, they appear as positive association in their dynamic
profile. However, this statistical association does not necessarily
mean that they are interacting directly or that their relationship
is biologically relevant. We, therefore, assigned the neutral
relationship of co-culture experiment as correct confirmation of
taxon pairs in networks. By doing so, the agreement rate of the
experimental results with the prediction for the 10−2 group was
64.29% and that of the prediction for the 10−4 group was
72.22%. The agreement rate of the prediction for positive
association was 81.82% and 100% in the 10−2 and 10−4

groups, respectively, while that for negative association was 55%
and 37.5% in 10−2 and 10−4 groups, respectively. Additionally,
the final phenotype agreement rate of potentially time-delayed
association patterns was 66.67% and 60% in the 10−2 and 10−4

groups, respectively. In summary, the experimental results fitted
largely with the prediction results, and the positive associations
in the community were predicted more correctly.

Genome-scale metabolic analysis revealing the nutrient
flow within positive taxon pairs

To link the observed phenotypic results to the genotypic
relationships, we reconstructed metabolic pathway of the

Figure 3. Microbial isolates from this study and taxonomic distribution of the chosen 100 MAGs and corresponding microbial isolates/strains. A, The numbers of isolates at
genus level. B, The phylogenetic tree is generated with 120 ubiquitous single-copy marker genes under the WAG model (Parks et al., 2018), and the color blocks of the inner
circle indicate phyla. For the outer circle, the green blocks (n=19) indicate the strains derived from the hGMB, and red blocks (n=24) indicate the strains derived from this study.
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Figure 4. Co-cultivation experiments on YCFA agar plates. A, Schematic diagram illustrating the morphological features of co-cultivated bacteria with different types of
associations. B, Interactions of bacterial isolates on YCFA agar plates. For each panel, strain names were labeled at the up-left and bottom-right corners, and their associations
were labeled at the bottom-middle with the letter Amensalism (Amen), Commensalism (Comm), Competition (Comp), Exploitation (Expl), or Neutralism (Neut). Photographs were
taken after bacterial growth on YCFA agar plates for 4 days at 37°C under anaerobic conditions.
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corresponding bacterial MAGs involved in the experimentally
studied taxon pairs using EnrichM (v0.6.4) and summarized their
KEGG module completeness. Firstly, the results of co-culture
experiment were divided into two groups of interactions based on
their interaction phenotype: profitable group, including com-
mensalism (0/+), exploitation (−/+); and competitive group,
including amensalism (0/−) and competition (−/−) (Table S8 in
Supporting Information). We observed that certain microbes in
the profitable group acted as “helpers” that promoted the growth
of associated microbes (hereafter called “beneficiaries”). Interest-
ingly, the helpers in the profitable group are highly versatile as
evidenced by their significantly greater number of metabolic
modules than that of beneficiaries (Figure S1 in Supporting
Information). However, this difference was not observed in the
competitive group (Competitor_A vs. Competitor_B). Besides, the
module number in Competitor_A or Competitor_B did not
significantly differ from that of helpers in the profitable group.

Furthermore, the incomplete or absent metabolic modules
typically found in beneficiaries (>50% of group members) are
amino acid biosynthesis (e.g., valine, leucine, isoleucine, lysine,
histidine, methionine, tryptophan, ornithine, and arginine), fatty
acid biosynthesis (e.g., acetate, propionate, and butyrate), and
vitamin biosynthesis (e.g., riboflavin, thiamine, tetrahydrofolate,
and cobalamin). Interestingly, we found that beneficiaries were
incapable of synthesizing the amino acids with the high
metabolic costs, such as tryptophan, methionine, and lysine
(Figure 6; Table S8 in Supporting Information). These results
suggested that the amino acid, fatty acids, and vitamins were the
potential cross-feeding components between helpers and bene-
ficiaries. In summary, the microbes with high metabolic diversity
could promote the growth of auxotrophic microbes by providing
them amino acids, SCFAs, and vitamins.

Moreover, within the profitable group, it was found that
helpers and beneficiaries tended to have a close phylogenetic
relationship, and this relationship could even be observed at a
relatively higher taxonomic level (e.g., class level) (e.g., Clostridia

and Bacteroidia) (Table S7 and Figure S2 in Supporting
Information). Specifically, 46.67% of taxon pairs of the validated
profitable group were found to be affiliated with the same order,
suggesting that kin selection might determine the gut microbial
community assembly (Harcombe, 2010). However, this trend
was not observed in the competitive group. Members within the
taxon pairs of competitive groups showed high taxonomic
divergence as none of them were from the same bacterial orders.

We introduced 16 nutrient additives (see Methods) into YCFA
medium, and monitored the growth curves of these beneficiaries
(Figure S3 in Supporting Information) for 48 h (normalized with
the first time point). Our findings revealed that additives could
enhance the maximum biomass for most microbials (66.67%),
such as Bacteroides ovatus, Bacteroides clarus, Bifidobacterium
adolescentis, Enterocloster lavalensis, Neobittarella massiliensis,
Odoribacter splanchnicus, Parabacteroides distasonis, and Parabac-
teroides merdae. However, Enterocloster citroniae experienced a
reduction in their maximum biomass. The additives had no
impact on the growth status of the three microbes, including
Anaerococcus vaginalis, Christensenella minuta, and Finegoldia
magna (Figure 7). Additionally, additives not only enhanced the
maximum biomass of microbes but also significantly reduced
their generation time, as observed with Christensenella minuta,
Enterocloster citroniae, Enterocloster lavalensis, and Parabacteroides
merdae. Additives increased the maximum biomass of Bacteroides
ovatus while increasing its generation time (Figure S4 in
Supporting Information).

DISCUSSION

The aim of this study was to establish a workflow based on
cultivation that could serve as a platform for predicting and
investigating bacterial interactions between at species or strain
level. The in vitro cultivation in the present study was conducted
using YCFA, a commonly used medium for isolating and
cultivating intestinal microbes (Browne et al., 2016; Duncan et

Figure 5. The interaction relationship of cultivated bacterial isolate combinations. Network plots described the interaction relationship of cultivated bacterial isolate
combinations. The dominating phyla were colored, orange for Firmicutes, purple for Bacteroidota, green for Actinobacteria, and blue for Proteobacteria. Red edges were positive
interactions, blue edges were negative interactions, solid arrows represented the interaction phenotype consistent with the prediction, and dashed arrows represent the
interaction phenotype inconsistent with the prediction.
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al., 2002; Forster et al., 2019; Lagkouvardos et al., 2017). The
culture media used for growing or enriching would impact on
bacterial growth and diversity. Yuan et al. (2023) recently
reported that the growth matrix modulated plant microbiome
and the modulated microbiome further impacted insect behavior.
This reminds us that food intake, human immunity and
physiology would modulate gut microbiome interactions, which
would extremely complicate the microbial interactions in host
guts.

Association network analysis based on time series metage-

nomics has been frequently used to infer microbial relations in
environmental or host-associated microbiomes, including the gut
microbiome (La Fata et al., 2018). Although microbial associa-
tion networks are readily available, still, the identification of true
microbial interactions is challenging and is an important step
towards understanding the gut microbial community assembly.
This necessitates a high throughput experimental method to
validate the microbial interactions inferred from in-silico ana-
lyses. However, the high microbial diversity and unstable
conditions are limiting factors for the understanding of organ-

Figure 6. Complete and incomplete metabolic modules in helpers and beneficiaries. The purple blocks represent complete metabolic modules in each MAG, and the pink blocks
represent incomplete metabolic modules in each MAG.

Figure 7. Evaluating the biomass (as indicated with A600) of each beneficiary under different culture conditions. In the bar chart, the left column of each beneficiary represented
the microbe cultured into YCFA base medium, and the right column of each beneficiary represented the microbe cultured into YCFA supplementation medium. (t-test, P<0.05).
Data were shown as the mean±SEM. The P value was calculated by two-sided paired t-test (*, P<0.05; **, P<0.01; ***, P<0.001).
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ism’s interactions in human gut (Fan and Pedersen, 2021). To
address this challenge, we present a strategy to simplify the gut
microbial community and in vitro time course cultivation on
YCFA agar medium, which is of great importance in the
identification of reliable interactions between gut microbial
species. In vitro cultivated time series samples could effectively
avoid interference from the host gut immune system, and the
community behavior can be predictable.

One hurdle in conducting co-culture experiments is cultivation
of “uncultivable” microbes. We found that 63.4% of indigenous
microbes could be identified on YCFA plates, confirming the
effectiveness of the YCFA medium in cultivating most human gut
microbes (Browne et al., 2016; Duncan et al., 2002; Forster et
al., 2019; Lagkouvardos et al., 2017). This also provides the basis
for inferring representative microbial association networks of the
human gut using in-vitro culturing experiments. Since both the
microbial association networks and bacterial isolates were
obtained from the in-vitro cultivation experiment, bacterial
strains isolated from the YCFA medium could be directly linked
to the taxon nodes in the microbial association networks. The
bacterial isolates obtained from the present study in combination
with the existing isolates in hGMB covered approximately 25.1%
of robust taxon pairs in microbial association networks.

Co-culture experiment conducted in a controlled environment
has been widely applied to verify microbial interactions (Liu et al.,
2021b; Venturelli et al., 2018; Weiss et al., 2022). Previous
studies have demonstrated the consistent results between the
statistical associations inferred from cross-sectional or long-
itudinal cohorts and validating experiments conducted in vitro
(Clavel et al., 2006; Kanazawa et al., 2021; Liu et al., 2022;
Lohia et al., 2022; Petrov et al., 2017; Ruaud et al., 2020). These
studies suggest that in vitro co-culture experiments are relevant
for inferring how bacteria interact in vivo. It is worth noting that
the majority of (65.63%) positively associated taxon pairs in the
microbial association networks have been experimentally con-
firmed as neutral, suggesting that cooperation between two
species is typically rare (Palmer and Foster, 2022). This
inconsistent result may primarily stem from the inherent
limitations of inferring ecological inter-species interactions
directly from sequence data and statistical association analysis.
It is important to keep in mind that species abundances can
exhibit significant variations over time, and these nonlinear
dynamics commonly lead to ephemeral associations over certain
time window or at certain state (Sugihara et al., 2012).
Therefore, statistical association networks can hardly distinguish
between ecological interactions and other nonrandom processes
(e.g., niche overlap). Moreover, our finding suggested that the in-
silico analyses are inadequate to explore the real interactions
between gut microbes. In the present study, we relied on pairwise
co-culture experiments to validate the ecological interactions of
taxon pairs within the association networks. While this approach
may hardly capture the complex communal behaviors, it can
validate a subset of bacterial interactions under controlled
condition. Considering that the statistical associations in a
complex community might be due to many mediator species
and external factors, experiments of systems-level community
dynamics should be taken into consideration in future studies.

We examined the phenotypes of validated positive and
negative interactions among microbes. Owing to the time series
shotgun metagenomic sequencing, we could investigate the
genome-scale metabolic models among the validated interac-

tions. Our reconstructed metabolic models highlighted that the
exchange of amino acids, SCFAs, and vitamins played a
significant role in the development of positive associated microbe
relationships in the human gut. One commensalism relationship
between Bacteroides ovatus and Eggerthella lenta was experimen-
tally confirmed by a previously reported study, which found that
the primary cross-feeding components were amino acids (e.g.,
phenylalanine, valine, gamma-glutamylisoleucine) (Venturelli et
al., 2018). We attempted to evaluate the effects of amino acids,
SCFAs, and vitamins on the growth of beneficiaries by adding
them to YCFA medium. We found that 66.7% of the experi-
mental groups showed an enhancement in growth. Microbes
that did not exhibit noticeable changes in growth may be due to
the absence of certain unidentified growth factors in the medium,
possibly because the incompleteness of the genome for metabolic
pathway prediction. We also inferred that the competition
relationship might improve the colonization resistance in the
gut. For instance, Shigella flexneri, an opportunistic pathogen,
could cause a gut infection known as shigellosis, with more than
160 million cases of shigellosis occurring worldwide each year
(Macmicking, 2017). We found that Intestinimonas butyricipro-
ducens (bin_67) could inhibit the growth of Shigella flexneri
(bin_85) by competition.

In addition to the direct microbial interactions, it is worth
noting that the high-order interaction might play an important
role in community assembly and stability. While this high-order
interaction can be hardly tested by co-culture experiment, we
could attempt to infer the indirect relationships between
microbes if one microbe involved in multiple taxon pairs.
Prediction of this kind of high-order interactions may provide
new insights into the gut microbial community assembly and
play a critical role in regulating the community composition and
function. For instance, the inferred relationship between
bin_101-bin_23 was strong negative interaction, but the co-
culture experiment of the representative isolates (Bacteroides
clarus-Phocaeicola vulgatus) was commensalism. Remarkably, we
identified isolates from two strains, Intestinimonas butyriciprodu-
cens (bin_67) and Phocaeicola vulgatus (bin_23), that showed a
competition relationship when the isolates were closed. We
speculated that Intestinimonas butyriciproducens (bin_67) could
inhibit the growth of Phocaeicola vulgatus (bin_23), and
Phocaeicola vulgatus (bin_23) could enhance the growth of
Bacteroides clarus (bin_101) leading to the strong negative
interaction between Bacteroides clarus (bin_101) and Phocaeicola
vulgatus (bin_23).
In vitro pairwise co-culturing can validate a subset of gut

microbial associations, as microbes from given lineage could not
be cultivated by YCFA medium. Despite having a high relative
abundance in the fecal sample (>2%), some gut microbes (e.g.,
bin_113, bin_124, bin_131, bin_153, bin_154, bin_164,
bin_166, bin_176, bin_183, bin_193) from Firmicutes could
not be cultivated by YCFA agar medium. Additional modified
cultural conditions besides YCFA could increase the diversity of
the cultivable microbes. For example, the modified mGAM
medium with extra addition of carbohydrate mixture has been
demonstrated to significantly increase the biodiversity on agar
plates (Liu et al., 2021a). For future studies, we need to construct
voluminous interaction networks using comprehensiveness
isolates collection obtained from a larger number of fecal samples
and modified cultural conditions. Also, future studies should
incorporate enumeration methods to validate higher-order
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interactions of gut microbe communities.

MATERIALS AND METHODS

Fecal sample collection and cultivation/extraction of gut
microbiomes

The whole project was approved by the Research Ethics
Committee of the Institute of Microbiology, Chinese Academy of
Science, and the assigned number authority of the ethical
approval is APIMCAS2017049. Fecal samples were collected
from a healthy female from China who had not taken antibiotics
within the last 3 months (Additional file 1 in Supporting
Information). The samples were kept fresh and transferred into
an anaerobic workstation (Coy Laboratory Products Inc., USA).
The gas flow composition in the anaerobic workstation was 85%
(N2), 5% (CO2), and 10% (H2). Fecal samples were homogenized
in sterilized PBS solution containing NaCl 136 mmol L−1,
Na2HPO4 8 mmol L−1, KH2PO4 2 mmol L−1, KCl 2.6 mmol L−1,
L-Cysteine 4 mmol L−1 at pH 7.4, with a ratio of 1 g stool per
1 mL PBS. The homogenate was filtered using a 40 μm cell
strainer (BD Falcon, USA) and equally divided into three 1.5 mL
tubes. The serial dilution was conducted in triplicate (fecal
sample (FS)-1, -2, and -3). The dilutions 10−2 and 10−4 were
plated directly onto YCFA agar respectively, named 10−2-FS1,
-FS2, -FS3 (10−2 group) and 10−4-FS1, -FS2, -FS3 (10−4 group)
in sextuplicate (6 time points for temporal collection). A total of
36 YCFA plates (2 (dilution level) × 3 (triplicate) × 6 (time
points)) were inoculated at anaerobic and dark conditions and at
37°C. One plate from each fecal sample (FS1, FS2, and FS3) was
collected at 72, 120, 168, 216, 264 and 312 h, resulting in 3
plates for each group (10−2 and 10−4) at given sampling point.
Biomass collected from the same dilution rate at the same time
point was harvested. Half of the biomass was resuspended using
1 mL 15% glycerol and stored at −80°C until use.

Metagenomic sequencing, assembly and genome
annotation

The fecal samples (1 sample) and harvest biomass from plates (36
samples) were subjected to DNA extraction and purification
using DNeasy PowerSoil Kit (Qiagen, Germany). Paired-end
libraries were constructed and sequenced on Illumina Novaseq
6000 platform to generate 150 bp paired-end reads with a
350 bp insert size by Novogene Technology Co., Ltd., (Beijing,
China). The raw data were trimmed by SOAPnuke (v2.1.7) (Chen
et al., 2018) and were subsequently aligned to the Homo sapiens
(GCF_000001405.39) reference genome to remove the host
contamination using bowtie2 (v2.3.5.1) (Langmead and Salz-
berg, 2012). The clean reads were de-novo assembled using
SPAdes (v3.13.0) (Bankevich et al., 2012) with the default
parameters. Contigs≥1,500 bp were used for binning with
MetaWRAP (v1.3.2) (Uritskiy et al., 2018). MAGs with
completeness≥50% and contamination≤10% were used for
subsequent analysis. The set of quality-filtered MAGs was
dereplicated using dRep (v2.2, nc 0.6 ANI 99) (Olm et al.,
2017). A total of 198 non-redundant bacterial MAGs were
retained. The MAGs were classified with GTDB-TK (v1.5.1) based
on the Genome Taxonomy Database (release95) (Chaumeil et al.,
2020). The phylogenetic tree was inferred from concatenated
alignment of 120 bacterial marker genes from the non-

redundant MAGs and the selected reference genomes under the
WAG model (Parks et al., 2018). Gene prediction and annotation
of the non-redundant MAGs were performed using Prokka
(v1.13) (Seemann, 2014). Metabolic reconstruction of these
MAGs was performed using EnrichM (v0.6.4) (https://github.
com/geronimp/enrich). KEGG module completeness was defined
as the proportion of Steps_found in Steps_needed. To assess the
presence of modules in bacterial genomes, we set a threshold of
70%. If the module completeness was >70%, we considered the
module as complete in the genome (Johnson et al., 2021;
Zimmermann et al., 2021).

Microbial association networks construction and time
series representations analysis

The relative abundance of each MAG was estimated using
coverM (v0.6.1) (github.com/wwood/CoverM) with “- -min-
read-percent-identity” 0.9 and “- -min-read-aligned-percent”
0.7. MAGs which were detected in less than 50% of the samples
in each group (i.e., dilution rate 10−2 and 10−4) were filtered
before association network construction. Moreover, the relative
abundance outlier for biological triplicates was eliminated using
R (v3.6.2) (https://www.r-project.org/) package “outliers”
(v0.15). Microbial association networks were inferred using
eLSA (Xia et al., 2011) with the parameters of -r 3 (three
replicates), -s 6 (six time points), and -d 2 (including time-shifted
associations of two time points). The inferred association
networks were visualized with Cytoscape (v3.9.0) (Cline et al.,
2007). Bacterial pairs (MAG pairs) exhibit robust (|local
similarity score|>0.6, |ρ|>0.6, P<0.05) local associations and
time-delayed associations were filtered for the downstream
analysis. For the microbial community of each biological
replicate, we conducted time series representations (TSR)
analysis using R package “Tsrepr” (v.1.1.0) to cluster bacteria
with similar temporal dynamic features. We applied K-medoids
clustering method to categorize bacteria exhibiting similar
dynamic patterns into clusters. Davies-Bouldin index was used
to evaluate the optimal number of clusters (K). The range of K
was set between 2 and 10. The community members of 10−2 and
10−4 groups were assigned to 4 and 3 clusters, respectively.
Bacteria clustered into consistent dynamic pattern (e.g.,
sustained increase or sustained decrease) across biological
replicates were deemed to exhibit strong dynamic reproducibility.
If both members of a robust association were classified as highly
reproducible bacteria, the taxon association would be selected for
validation through interaction experiments.

Bacterial isolation and cultivation

Bacterial isolation was performed using two types of samples:
fecal samples and cells scraped from the surface of YCFA agar
mediums (from the same sample donor). For the fecal sample,
insoluble particles were removed by filtration using a 40 μm cell
strainer (BD Falcon, USA), followed by serial dilution ranging
from 10−1 to 10−5 using PBS. Glycerol-stored samples, scraped
from the surface of YCFA agar mediums, were diluted directly
under the same conditions. Subsequently, 50 μL aliquots of the
diluted samples were spread onto YCFA (Poyet et al., 2019) or
mGAM (Liu et al., 2021a) agar plates and incubated for 5–20
days. Single colonies were then picked from the agar plates, and
their purity was confirmed by sequencing their 16S rRNA gene,
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following the method described in our previous study (Liu et al.,
2020). Taxonomic classification of the isolates was performed by
comparing their 16S rRNA gene sequences against NCBI
database with a sequence identity cutoff of 98.7%. Taxonomic
assignment of MAGs was analyzed using GTDB-Tk (Chaumeil et
al., 2020). An isolate was assigned as a representative bacterium
of a given MAG if it belonged to the same bacterial species.

Pairwise co-culture with representative bacterial isolates

To validate the interactions between MAG pairs in network,
representative isolates were cultivated on YCFA agar plates.
Monocultures of the representative bacterial isolates were
prepared in 5 mL mGAM medium with 1% (v/v=1:1) inoculation
and cultured at 37°C for 3–4 days. The growing cells were
harvested at 3,000 r min−1 at 4°C for 30 min and resuspended in
0.2 mL YCFA medium. For experimental validation of microbial
interactions inferred by the network, the bacterial isolates
representing the associated MAGs were co-cultured on YCFA
agar plate. Specifically, 3 μL of the representative bacterial isolate
cultures were dripped onto the YCFA agar plate surface, followed
by the addition of 3 μL of another representative bacterial isolate
at external tangency to the first representative isolate. The plates
were then cultivated at 37°C for 5 days, and photographs were
recorded. According to the pairwise interaction result, we could
identify the interaction relationship of pairwise cultivated
bacterial strains, including neutralism (0/0), commensalism
(0/+), exploitation (−/+), amensalism (0/−) and competition
(−/−). Then, we could visualize the validated interaction
relationship by using Cytoscape (v3.9.0) (Cline et al., 2007).

Validation of metabolic interactions of beneficiaries

We defined the microbes within profitable relationship (com-
mensalism, exploitation) that could facilitate the growth of other
microbe (“beneficiaries) as “helpers”, and we defined the
microbes in competitive relationship (competition and amensal-
ism) as “competitor_A” and “competitor_B”. Module prevalence
was determined as the proportion of complete modules within
helpers, beneficiaries, competitor_A or competitor_B MAGs. If the
prevalence>50%, We established a control group and experi-
mental groups for this study. The control group was cultured in
YCFA medium without any additives, while the experimental
groups were added with 16 additives, including 9 amino acids
(valine, leucine, isoleucine, lysine, histidine, methionine, trypto-
phan, ornithine and arginine) (100 mg L−1 respectively, pH 7.3),
4 vitamins (riboflavin, thiamine, tetrahydrofolate, and cobala-
min) (0.5, 0.5, 0.5, and 0.01 mg L−1 respectively, pH 7.3) and 3
SCFAs (acetate, propionate, and butyrate) (100 mg L−1 respec-
tively, pH 7.3). Subsequently, the mixed YCFA medium was
added into a 96-well plate at a volume of 150 μL per well.
Monocultures of the beneficiaries were prepared in 5 mL mGAM
medium with 1% (v/v=1:1) inoculation and cultured at 37°C for
3–4 days. The growing cells were harvested at 6,000 r min−1 at
room temperature for 5 min and then the supernatant was
removed. The pellet was resuspended in YCFA medium, and the
optical density (A600) was adjusted to 0.5. Inoculated the
adjusted bacterial culture with 1% (v/v=1:1) into a 96-well
plate, with three replicates for each sample and measured the
A600 absorbance every 30 min with a microplate reader
(SPECTROstar Omega, Germany). The generation time of each

beneficiary was calculated as

Gt t t N N(hour/generation) = ( 2 1) / log ( 2 / 1),2

where Gt represented the generation time, t1 represented the
starting time of the logarithmic growth phase, t2 represented the
ending time of the logarithmic growth phase, N1 represented the
A600 at the starting time of the logarithmic growth phase, N2
represented the A600 at the ending time of the logarithmic
growth phase.

Statistical analysis

All the data are indicated as the means±SEM. GraphPad Prism
9.0 software and Adobe Illustrator 2019 for data analysis and
figures modification. The normal distribution was assessed with
the Shapiro-Wilk test. Data were shown as the mean±SEM. The P
value was calculated by two-tailed unpaired Student’s t-test (*,
P<0.05; **, P<0.01; ***, P<0.001).

Availability of data and materials

The reconstructed metagenome-assembled genomes in the
present study have been deposited in China National Microbiol-
ogy Data Center (NMDC) with accession numbers
NMDC10018525.

Compliance and ethics
The author(s) declare that they have no conflict of interest. This study was approved by the
Research Ethics Committee of the Institute of Microbiology, Chinese Academy of Science. All
subjects provided informed consent to be included in the study.

Acknowledgement
This work was supported by the National Key Research and Development Program of China
(2021YFA0717002) and Taishan Young Scholars (tsqn202306029).

Supporting information
The supporting information is available online at https://doi.org/10.1007/s11427-023-2537-0.
The supporting materials are published as submitted, without typesetting or editing. The
responsibility for scientific accuracy and content remains entirely with the authors.

References
Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., Li, Y.,

Xia, Y., Xie, H., Zhong, H., et al. (2015). Dynamics and stabilization of the human
gut microbiome during the first year of life. Cell Host Microbe 17, 852.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S.,
Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., et al. (2012). SPAdes: a new
genome assembly algorithm and its applications to single-cell sequencing. J Comput
Biol 19, 455–477.

Baxter, N.T., Schmidt, A.W., Venkataraman, A., Kim, K.S., Waldron, C., and Schmidt,
T.M. (2019). Dynamics of human gut microbiota and short-chain fatty acids in
response to dietary interventions with three fermentable fibers. mBio 10, e02566-
02518.

Browne, H.P., Forster, S.C., Anonye, B.O., Kumar, N., Neville, B.A., Stares, M.D.,
Goulding, D., and Lawley, T.D. (2016). Culturing of ‘unculturable’ human
microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546.

Chaumeil, P.A., Mussig, A.J., Hugenholtz, P., and Parks, D.H. (2020). GTDB-Tk: a
toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics
36, 1925–1927.

Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., Li, Y., Ye, J., Yu, C., Li, Z., et al.
(2018). SOAPnuke: a MapReduce acceleration-supported software for integrated
quality control and preprocessing of high-throughput sequencing data. Gigascience
7, 1–6.

Clavel, T., Henderson, G., Engst, W., Doré, J., and Blaut, M. (2006). Phylogeny of
human intestinal bacteria that activate the dietary lignan secoisolariciresinol
diglucoside. FEMS Microbiol Ecol 55, 471–478.

Cline, M.S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Workman, C.,
Christmas, R., Avila-Campilo, I., Creech, M., Gross, B., et al. (2007). Integration of
biological networks and gene expression data using Cytoscape. Nat Protoc 2,
2366–2382.

https://doi.org/10.1007/s11427-023-2537-0 SCIENCE CHINA Life Sciences 11

https://doi.org/10.1007/s11427-023-2537-0
https://doi.org/10.1016/j.chom.2015.05.012
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1038/nature17645
https://doi.org/10.1093/gigascience/gix120
https://doi.org/10.1111/j.1574-6941.2005.00057.x
https://doi.org/10.1038/nprot.2007.324
https://doi.org/10.1007/s11427-023-2537-0


Coker, O.O., Dai, Z., Nie, Y., Zhao, G., Cao, L., Nakatsu, G., Wu, W.K., Wong, S.H.,
Chen, Z., Sung, J.J.Y., et al. (2018). Mucosal microbiome dysbiosis in gastric
carcinogenesis. Gut 67, 1024–1032.

Duncan, S.H., Hold, G.L., Harmsen, H.J.M., Stewart, C.S., and Flint, H.J. (2002).
Growth requirements and fermentation products of Fusobacterium prausnitzii, and a
proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J
Syst Evol Microbiol 52, 2141–2146.

Fan, Y., and Pedersen, O. (2021). Gut microbiota in human metabolic health and
disease. Nat Rev Microbiol 19, 55–71.

Faust, K., and Raes, J. (2012). Microbial interactions: from networks to models. Nat
Rev Microbiol 10, 538–550.

Fisher, C.K., and Mehta, P. (2014). Identifying keystone species in the human gut
microbiome from metagenomic timeseries using sparse linear regression. PLoS ONE
9, e102451arXiv: 1402.0511..

Forster, S.C., Kumar, N., Anonye, B.O., Almeida, A., Viciani, E., Stares, M.D., Dunn,
M., Mkandawire, T.T., Zhu, A., Shao, Y., et al. (2019). A human gut bacterial
genome and culture collection for improved metagenomic analyses. Nat Biotechnol
37, 186–192.

Ghoul, M., and Mitri, S. (2016). The ecology and evolution of microbial competition.
Trends Microbiol 24, 833–845.

Halfvarson, J., Brislawn, C.J., Lamendella, R., Vázquez-Baeza, Y., Walters, W.A.,
Bramer, L.M., D’Amato, M., Bonfiglio, F., McDonald, D., Gonzalez, A., et al. (2017).
Dynamics of the human gut microbiome in inflammatory bowel disease. Nat
Microbiol 2, 17004.

Harcombe, W. (2010). Novel cooperation experimentally evolved between species.
Evolution 64, 2166–2172.

Hijová, E., Bertková, I., and Štofilová, J. (2019). Dietary fibre as prebiotics in nutrition.
Cent Eur J Public Health 27, 251–255.

Hsieh, C.H., Glaser, S.M., Lucas, A.J., and Sugihara, G. (2005). Distinguishing random
environmental fluctuations from ecological catastrophes for the North Pacific
Ocean. Nature 435, 336–340.

Jiang, M.Z., Zhu, H.Z., Zhou, N., Liu, C., Jiang, C.Y., Wang, Y., and Liu, S.J. (2022).
Droplet microfluidics-based high-throughput bacterial cultivation for validation of
taxon pairs in microbial co-occurrence networks. Sci Rep 12, 18145.

Johnson, M.D., Scott, J.J., Leray, M., Lucey, N., Bravo, L.M.R., Wied, W.L., and Altieri,
A.H. (2021). Rapid ecosystem-scale consequences of acute deoxygenation on a
Caribbean coral reef. Nat Commun 12, 4522.

Kanazawa, A., Aida, M., Yoshida, Y., Kaga, H., Katahira, T., Suzuki, L., Tamaki, S.,
Sato, J., Goto, H., Azuma, K., et al. (2021). Effects of synbiotic supplementation on
chronic inflammation and the gut microbiota in obese patients with type 2 diabetes
mellitus: a randomized controlled study. Nutrients 13, 558.

La Fata, G., Weber, P., and Mohajeri, M.H. (2018). Probiotics and the gut immune
system: indirect regulation. Probiotics Antimicro Prot 10, 11–21.

Lagkouvardos, I., Overmann, J., and Clavel, T. (2017). Cultured microbes represent a
substantial fraction of the human and mouse gut microbiota. Gut Microbes 8, 493–
503.

Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2.
Nat Methods 9, 357–359.

Liu, C., Du, M.X., Abuduaini, R., Yu, H.Y., Li, D.H., Wang, Y.J., Zhou, N., Jiang, M.Z.,
Niu, P.X., Han, S.S., et al. (2021a). Enlightening the taxonomy darkness of human
gut microbiomes with a cultured biobank. Microbiome 9, 119.

Liu, C., Zhou, N., Du, M.X., Sun, Y.T., Wang, K., Wang, Y.J., Li, D.H., Yu, H.Y., Song,
Y., Bai, B.B., et al. (2020). The Mouse Gut Microbial Biobank expands the coverage
of cultured bacteria. Nat Commun 11, 79.

Liu, P., Zhang, T., Zheng, Y., Li, Q., Su, T., and Qi, Q. (2021b). Potential one-step
strategy for PET degradation and PHB biosynthesis through co-cultivation of two
engineered microorganisms. Eng Microbiol 1, 100003.

Liu, W., Fang, X., Zhou, Y., Dou, L., and Dou, T. (2022). Machine learning-based
investigation of the relationship between gut microbiome and obesity status.
Microbes Infect 24, 104892.

Lohia, S., Vlahou, A., and Zoidakis, J. (2022). Microbiome in chronic kidney disease
(CKD): an omics perspective. Toxins 14, 176.

Macmicking, J.D. (2017). Bacteria disarm host-defence proteins. Nature 551, 303–
304.

Mars, R.A.T., Yang, Y., Ward, T., Houtti, M., Priya, S., Lekatz, H.R., Tang, X., Sun, Z.,
Kalari, K.R., Korem, T., et al. (2020). Longitudinal multi-omics reveals subset-

specific mechanisms underlying irritable bowel syndrome. Cell 183, 1137–1140.
Matchado, M.S., Lauber, M., Reitmeier, S., Kacprowski, T., Baumbach, J., Haller, D.,

and List, M. (2021). Network analysis methods for studying microbial commu-
nities: A mini review. Comput Struct Biotechnol J 19, 2687–2698.

Mitri, S., and Foster, K.R. (2013). The genotypic view of social interactions in
microbial communities. Annu Rev Genet 47, 247–273.

Nash, A.K., Auchtung, T.A., Wong, M.C., Smith, D.P., Gesell, J.R., Ross, M.C., Stewart,
C.J., Metcalf, G.A., Muzny, D.M., Gibbs, R.A., et al. (2017). The gut mycobiome of
the Human Microbiome Project healthy cohort. Microbiome 5, 153.

Odamaki, T., Kato, K., Sugahara, H., Hashikura, N., Takahashi, S., Xiao, J., Abe, F.,
and Osawa, R. (2016). Age-related changes in gut microbiota composition from
newborn to centenarian: a cross-sectional study. BMC Microbiol 16, 90.

Olm, M.R., Brown, C.T., Brooks, B., and Banfield, J.F. (2017). dRep: a tool for fast and
accurate genomic comparisons that enables improved genome recovery from
metagenomes through de-replication. ISME J 11, 2864–2868.

Palmer, J.D., and Foster, K.R. (2022). Bacterial species rarely work together. Science
376, 581–582.

Pan, Z., Hu, Y., Huang, Z., Han, N., Li, Y., Zhuang, X., Yin, J., Peng, H., Gao, Q.,
Zhang, W., et al. (2022). Alterations in gut microbiota and metabolites associated
with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia
challenge. Sci China Life Sci 65, 2093–2113.

Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewski, A., Chaumeil, P.A.,
and Hugenholtz, P. (2018). A standardized bacterial taxonomy based on genome
phylogeny substantially revises the tree of life. Nat Biotechnol 36, 996–1004.

Peng, W., Yi, P., Yang, J., Xu, P., Wang, Y., Zhang, Z., Huang, S., Wang, Z., and
Zhang, C. (2018). Association of gut microbiota composition and function with a
senescence-accelerated mouse model of Alzheimer’s Disease using 16S rRNA gene
and metagenomic sequencing analysis. Aging 10, 4054–4065.

Petrov, V.A., Saltykova, I.V., Zhukova, I.A., Alifirova, V.M., Zhukova, N.G., Dorofeeva,
Y.B., Tyakht, A.V., Kovarsky, B.A., Alekseev, D.G., Kostryukova, E.S., et al. (2017).
Analysis of gut microbiota in patients with Parkinson’s disease. Bull Exp Biol Med
162, 734–737.

Poyet, M., Groussin, M., Gibbons, S.M., Avila-Pacheco, J., Jiang, X., Kearney, S.M.,
Perrotta, A.R., Berdy, B., Zhao, S., Lieberman, T.D., et al. (2019). A library of
human gut bacterial isolates paired with longitudinal multiomics data enables
mechanistic microbiome research. Nat Med 25, 1442–1452.

Qian, Y., Yang, X., Xu, S., Huang, P., Li, B., Du, J., He, Y., Su, B., Xu, L.M., Wang, L.,
et al. (2020). Gut metagenomics-derived genes as potential biomarkers of
Parkinson’s disease. Brain 143, 2474–2489.

Ruaud, A., Esquivel-Elizondo, S., de la Cuesta-Zuluaga, J., Waters, J.L., Angenent, L.T.,
Youngblut, N.D., and Ley, R.E. (2020). Syntrophy via interspecies H2 transfer
between Christensenella and Methanobrevibacter underlies their global cooccurrence
in the human gut. mBio 11, e03235.

Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics
30, 2068–2069.

Sugihara, G., May, R., Ye, H., Hsieh, C., Deyle, E., Fogarty, M., and Munch, S. (2012).
Detecting causality in complex ecosystems. Science 338, 496–500.

Uritskiy, G.V., DiRuggiero, J., and Taylor, J. (2018). MetaWRAP—a flexible pipeline
for genome-resolved metagenomic data analysis. Microbiome 6, 158.

Venturelli, O.S., Carr, A.V., Fisher, G., Hsu, R.H., Lau, R., Bowen, B.P., Hromada, S.,
Northen, T., and Arkin, A.P. (2018). Deciphering microbial interactions in
synthetic human gut microbiome communities. Mol Syst Biol 14, e8157.

Weiss, A.S., Burrichter, A.G., Durai Raj, A.C., von Strempel, A., Meng, C., Kleigrewe,
K., Münch, P.C., Rössler, L., Huber, C., Eisenreich, W., et al. (2022). In vitro
interaction network of a synthetic gut bacterial community. ISME J 16, 1095–
1109.

Xia, L.C., Steele, J.A., Cram, J.A., Cardon, Z.G., Simmons, S.L., Vallino, J.J., Fuhrman,
J.A., and Sun, F. (2011). Extended local similarity analysis (eLSA) of microbial
community and other time series data with replicates. BMC Syst Biol 5, S15.

Yuan, J., Wen, T., Yang, S., Zhang, C., Zhao, M., Niu, G., Xie, P., Liu, X., Zhao, X.,
Shen, Q., et al. (2023). Growth substrates alter aboveground plant microbial and
metabolic properties thereby influencing insect herbivore performance. Sci China
Life Sci 66, 1728–1741.

Zimmermann, J., Kaleta, C., and Waschina, S. (2021). gapseq: informed prediction of
bacterial metabolic pathways and reconstruction of accurate metabolic models.
Genome Biol 22, 81.

12 SCIENCE CHINA Life Sciences https://doi.org/10.1007/s11427-023-2537-0

https://doi.org/10.1136/gutjnl-2017-314281
https://doi.org/10.1099/00207713-52-6-2141
https://doi.org/10.1099/00207713-52-6-2141
https://doi.org/10.1038/s41579-020-0433-9
https://doi.org/10.1038/nrmicro2832
https://doi.org/10.1038/nrmicro2832
https://doi.org/10.1371/journal.pone.0102451
http://arxiv.org/abs/1402.0511
https://doi.org/10.1038/s41587-018-0009-7
https://doi.org/10.1016/j.tim.2016.06.011
https://doi.org/10.1038/nmicrobiol.2017.4
https://doi.org/10.1038/nmicrobiol.2017.4
https://doi.org/10.1111/j.1558-5646.2010.00959.x
https://doi.org/10.21101/cejph.a5313
https://doi.org/10.1038/nature03553
https://doi.org/10.1038/s41598-022-23000-7
https://doi.org/10.1038/s41467-021-24777-3
https://doi.org/10.3390/nu13020558
https://doi.org/10.1007/s12602-017-9322-6
https://doi.org/10.1080/19490976.2017.1320468
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1186/s40168-021-01064-3
https://doi.org/10.1038/s41467-019-13836-5
https://doi.org/10.1016/j.engmic.2021.100003
https://doi.org/10.1016/j.micinf.2021.104892
https://doi.org/10.3390/toxins14030176
https://doi.org/10.1038/nature24157
https://doi.org/10.1016/j.cell.2020.10.040
https://doi.org/10.1016/j.csbj.2021.05.001
https://doi.org/10.1146/annurev-genet-111212-133307
https://doi.org/10.1186/s40168-017-0373-4
https://doi.org/10.1186/s12866-016-0708-5
https://doi.org/10.1038/ismej.2017.126
https://doi.org/10.1126/science.abn5093
https://doi.org/10.1007/s11427-021-2056-1
https://doi.org/10.1038/nbt.4229
https://doi.org/10.18632/aging.101693
https://doi.org/10.1007/s10517-017-3700-7
https://doi.org/10.1038/s41591-019-0559-3
https://doi.org/10.1093/brain/awaa201
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.1126/science.1227079
https://doi.org/10.1186/s40168-018-0541-1
https://doi.org/10.15252/msb.20178157
https://doi.org/10.1038/s41396-021-01153-z
https://doi.org/10.1186/1752-0509-5-S2-S15
https://doi.org/10.1007/s11427-022-2279-5
https://doi.org/10.1007/s11427-022-2279-5
https://doi.org/10.1186/s13059-021-02295-1
https://doi.org/10.1007/s11427-023-2537-0

	Gut microbial interactions based on network construction and bacterial pairwise cultivation
	INTRODUCTION�
	RESULTS�
	Profiling fecal microbial communities with metagenomic sequencing�
	Reconstruction of association networks and bacterial growth patterns�
	Bacterial isolation and cultivation�
	Co-culture of taxon pairs for validation of predicted associations�
	Genome-scale metabolic analysis revealing the nutrient flow within positive taxon pairs�

	DISCUSSION�
	MATERIALS AND METHODS�
	Fecal sample collection and cultivation/extraction of gut microbiomes�
	Metagenomic sequencing, assembly and genome annotation�
	Microbial association networks construction and time series representations analysis�
	Bacterial isolation and cultivation�
	Pairwise co-culture with representative bacterial isolates�
	Validation of metabolic interactions of beneficiaries �
	Statistical analysis�
	Availability of data and materials�



