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Tobacco smoking is a prevalent and detrimental habit practiced worldwide, increasing the risk of various diseases, including chronic
obstructive pulmonary disease (COPD), cardiovascular disease, liver disease, and cancer. Although previous research has explored the
detrimental health effects of tobacco smoking, recent studies suggest that gut microbiota dysbiosis may play a critical role in these
outcomes. Numerous tobacco smoke components, such as nicotine, are found in the gastrointestinal tract and interact with gut microbiota,
leading to lasting impacts on host health and diseases. This review delves into the ways tobacco smoking and its various constituents
influence gut microbiota composition and functionality. We also summarize recent advancements in understanding how tobacco smoking-
induced gut microbiota dysbiosis affects host health. Furthermore, this review introduces a novel perspective on how changes in gut
microbiota following smoking cessation may contribute to withdrawal syndrome and the degree of health improvements in smokers.
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Introduction

According to the World Health Organization, there are around
1.1 billion smokers worldwide, with over 8 million smoking-
related deaths occurring each year. Tobacco smoking is the
leading cause of preventable death globally, with smokers
typically living roughly 10 years less than nonsmokers (Fouad
et al., 2021; Warren et al., 2009). While cigarette smoking
prevalence is declining in developed countries, it is increasing in
many developing countries, particularly in Asia (Rom et al.,
2013). Tobacco smoke contains toxic components that are
thought to be a substantial contributor to serious disease, and the
underlying pathogenic mechanisms have been thoroughly
studied (Hoffmann et al., 2001; Smith et al., 2002). About half
of smokers develop serious tobacco smoking-related diseases,
such as chronic obstructive pulmonary disease (COPD) (Lai et al.,
2022), cardiovascular disease (Duncan et al., 2022), liver disease
(Marti-Aguado et al., 2022), and cancer (Hecht and Hatsukami,
2022). In addition, passive smoke exposure increases the risk of
pathogenic infections and contributes to the exacerbation of
other lung diseases including asthma (Thomson et al., 2022).
Despite public awareness of the detrimental effects of smoking,
there is still a large number of smokers globally (Rigotti et al.,
2022).
In the past, there has been substantial research into how to

lessen the hazards of smoking (Institute of Medicine, 2001), but
there is still a lack of more effective approaches to accomplish

beyond smoking cessation at the individual level. Tobacco
smoking is an extremely tough addiction to break. Nicotine’s
highly addictive characteristics are the primary reason why
smokers continue to use tobacco (Fiore et al., 1999). Weight gain
and, presumably, insulin resistance after quitting are key causes
of failure to stop for a long time or relapse (Siahpush et al., 2014),
particularly in women (Kim et al., 2017). According to a recent
study, changes in gut flora underlie the metabolic consequences
of obesity linked with smoking cessation (Fluhr et al., 2021). To
summarize, the benefits of smoking quitting outweigh the
drawbacks, and future cessation programs and medicines should
focus on minimizing post-cessation weight gain by modifying
metabolically unfavorable gut flora (Harris et al., 2016).
The gut microbiota refers to a variety of microbial communities

that symbiotically live in the host intestine to maintain
microecological homeostasis, and there are approximately 10
trillion bacteria in the human intestine, mainly composed of
Bacteroidetes, Firmicutes, Actinomycetes, and Aspergillus, most
of which belong to intestinal commensal bacteria (Pushpanathan
et al., 2019). They collaborate to create a complex organism that
contributes to various physiological processes, including the
fermentation of indigestible dietary fiber, the anaerobic metabo-
lism of peptides and proteins, the protective activity against
pathogens, and even the regulation of the immune system (Cai et
al., 2022). Some research has begun to attempt to develop a
database that includes drugs, microbes, and common diseases
interactions (Wu et al., 2023), and some have even proposed that
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gut microecology is a second “brain” for people (Zeng et al.,
2023). Starting from childbirth, many factors affect the
composition and metabolic functions of the gut microecology,
which could further act on the distal host organs through gut
microbiota-derived metabolites. In addition, dysbiosis of the gut
microbiome is associated with the development of several
metabolic disorders such as obesity (Wu et al., 2021b),
hyperlipidemia (Jin et al., 2021), fatty liver disease (Wu et al.,
2021a), polycystic ovary syndrome (Qi et al., 2019), and diabetes
(Sun et al., 2018).
Interest in the gut microbiome has risen rapidly as sequencing

technologies have evolved from 16S rRNA amplicon sequencing
to shotgun metagenomics (Liu et al., 2022). Specific bacterial
taxa, strains, pathways, and metabolites that may be associated
with the development and progression of human disease have
been identified through the application of shotgun metagenomics
in conjunction with metabolomics and proteomics approaches
(de Vos et al., 2022; Lynch and Pedersen, 2016; Tuganbaev et
al., 2022). However, it remains unclear whether these microbial
alterations contribute to disease or just result from disease
conditions, which will be an important challenge in the future.
Thus, the potential mechanisms and causal relationships
between tobacco smoking, smoking-related health hazards,
smoking cessation prognosis, and microbial dysbiosis found in
humans and rodents exposed to tobacco smoke, as well as
knowledge of how detrimental substances from the tobacco
smoking process and smoking cessation interact with the gut
microbiota to affect host health, warrant further research.
In this review, we summarize the major chemicals released

during tobacco combustion, and highlight recent advances in
understanding how tobacco smoking and smoking cessation
affect the composition and metabolic processes of the gut
microbiota. In addition, we discuss the possible impact of the
ensuing microbial dysbiosis on tobacco smoking-related diseases.

Tobacco smoking remodels gut microbiota

Numerous microbiotas, particularly intestinal bacteria, inhabit
the human gut, interacting with the host to create a stable
intestinal microecology. However, the makeup of the gut
microbiota varies with each person and is susceptible to
variations in the host and environmental variables. The makeup
of the gut microbiome in both humans and rodents is
significantly altered by tobacco smoking (Figure 1) (Gui et al.,
2021). Smoking causes changes in the gut microenvironment
that may help some bacteria grow and lead to dysbiosis of the gut
microbiota (Tomoda et al., 2011).
Among smokers, significant changes in fecal microbiome

composition were observed compared with the nonsmoking
group (Antinozzi et al., 2022; Kobayashi and Fujiwara, 2013;
Nolan-Kenney et al., 2020; Opstelten et al., 2016; Stewart et al.,
2018). Overall, fecal abundance of Prevotella, Veillonella,
Bacteroides, Acidaminococcus and Oscillospira was increased
in abundance (Lee et al., 2018; Lin et al., 2020), and Firmicutes
and Proteobacteria were reduced in smokers (Lee et al., 2018).
Also, several studies have shown that the Shannon index was
significantly lower in the smoking population (Lee et al., 2018;
Stewartet al., 2018). Yoon et al. (2021) investigated the effects of
tobacco smoking on the composition of the microbiota in healthy
males. A high abundance of Actinobacteria and a low abundance
of Bacteroides spp. were the main features of the gut microbiota,

and current smokers could be distinguished from current non-
smokers by their lower abundance of Bifidobacteria and higher
abundance of Negativicutes. Lin et al. (2020) found that cigarette
smoking and alcohol consumption alter the composition of the
gut microbiota in healthy males. The relative abundance of the
Firmicutes, Bacteroides and more than 40 genera was altered
with cigarette and alcohol consumption. In addition, the
abundance of Bacteroides was positively correlated with the year
of smoking. Stewart et al. (2018) found that using electronic
cigarettes (EC) or cigarette smoking altered the gut microbiota
compared with non-smoking controls. Tobacco smokers had a
higher abundance of Prevotella and a lower abundance of
Bacteroides in the gut and significantly lower Shannon diversity
in stool samples. In contrast, no significant differences in alpha
diversity, beta diversity, or taxonomic relative abundance were
found between EC users and non-smoking groups.
Most studies have indirectly analyzed the composition of the

gut microbiota by testing human stool samples, which differs
from the authentic gut environment in the intestine. Shanahan
et al. (2018) analyzed and tested the mucosal microbiome of the
duodenum in humans undergoing upper gastrointestinal endo-
scopy and found that changes in the mucosal microbiome of
smokers included a higher abundance of phylum Firmicutes (e.g.,
the genera Streptococcus and Veronella) and genus Rothia, and
lower abundance of phyla Neisseria and Prevotella. Consistent
with these findings, Leite et al. (2022) examined the duodenal
luminal microbiome of smokers and found that smokers
exhibited enrichment in Enterobacteriaceae and Lactobacillaceae
and lower abundance of unknown Prevotella, Porphyromonas
species, and Neisseria subflava and N. cinerea. In addition, smokers
had lower diversity of gut microbiota.
To study the effects of tobacco smoking, researchers typically

use rodents with cigarette smoke exposure to mimic the process
of human smoking. 16S rRNA sequencing of fecal samples from
mice exposed to cigarette smoke for three weeks by Fluhr et al.
(2021) showed significant changes in the fecal bacteria of these
mice; as determined by shotgun metagenomics sequencing,
dysbiosis during smoke exposure had different taxonomic
features and functional characteristics metagenomics features.
Similarly, Tomoda et al. (2011) found that rats exposed to
cigarette smoke for four weeks altered the levels of some organic
acids in the cecum, with a significant decrease in the number of
Bifidobacteria and a significant increase in the pH of cecum

Figure 1. A schematic summary of changed microbiota in the mucosal duodenum
and stool after smoking (Created using BioRender.com).
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contents. These results suggest that cigarette smoke may alter
the intestinal environment of rats. Tam et al. (2020) found that
chronic exposure to cigarette smoke resulted in significant
changes in the cecum microbial community in male and female
mice, with the microorganism Alistipes spp. being the most
consistently altered in the cecum, and this bacteria decreased
with chronic smoking. Berkowitz et al. (2019) used intragastric
administration of cigarette smoke condensate (CSC) in mice and
found that antimicrobial peptide production and bactericidal
capacity were reduced. Exposure to CSC resulted in an imbalance
in fecal bacterial populations, leading to an increase in
Erysipellaceae (including Allobaculum) and a decrease in Rike-
nellaceae and Eisenbergiella and resulted in a higher suscept-
ibility of mice to bacterial infection producing ileal damage. Allais
et al. (2016) reported significant changes in bacterial activity and
community structure in the colon after 24 weeks of smoke
exposure in mice, characterized by an increase in the activity of
Lachnospiraceae sp. in the proximal and distal colon of smoke-
exposed mice, and changes in the expression of intestinal mucin
and pro-inflammatory cytokines.
Cigarette smoke can be divided into mainstream and side

stream smoke, and inhaled side stream cigarette smoke is
approximately four times more toxic per gram of total particulate
matter (TPM) than mainstream cigarette smoke (Schick and
Glantz, 2005). Wang (2012) found that exposure of mice to side
stream commercial cigarette smoke for six weeks resulted in
significant changes in the intestinal microbiota of mice, with an
increase in Clostridium perfringens in the cecum but a decrease in
Firmicutes (Lactococi and Ruminococcus), Enterobacteriaceae, and
segmented filamentous bacteria. Also, side stream smoke reduced
the intestinal inflammatory response in mice, which was
associated with increased expression of tight junction proteins.
It is also worth mentioning that hypoxia affects the composition
of gut bacteria, which may be implicated in the combined effect of
smoking on the microbes in the gut (Pan et al., 2022).
In conclusion, investigations on humans and rodents have

shown that exposure to smoking might cause dysbiosis of the gut
microbiota. Additional causative investigations are necessary to
determine how smoking-related intestinal bacterial dysbiosis
develops or whether it affects disease progression.

Effects of major detrimental components of tobacco
on gut microbiota

More than 80% of tobacco users in the United States use
combustible products, primarily cigarettes, cigars, pipes, and
hookahs (National Center for Chronic Disease Prevention and
Health Promotion (US) Office on Smoking and Health, 2014).
Commercially sold cigarettes contain more than 7,000 chemi-
cals, and their combustion produces potentially toxic substances
in the mainstream smoke (MS), side stream smoke (SS), second-
hand smoke (SHS), thirdhand smoke (THS), and discarded
cigarette butts (CBs) (Talhout et al., 2011). These include
nicotine, smoke tar, aldehydes, polycyclic aromatic hydrocar-
bons (PAHs), and heavy metals (Gui et al., 2021; Rigotti et al.,
2022). These toxic compounds seriously affect human health,
and cigarette smoke contains a complex variety of substances,
many of which affect gut microbiota and have different
mechanisms of action for different substances (Table 1) (Breton
et al., 2013; Fluhr et al., 2021; Motta et al., 2015; Ribière et al.,
2016; Rom et al., 2017).

Effect of nicotine on gut microbiota

Nicotine is the most abundant alkaloid in tobacco and the
primary active ingredient with addictive characteristics (Darby et
al., 1984). Cigarettes contain 1%–2% nicotine by mass, with the
maximum bioavailability of nicotine being 90% when inhaled
and roughly 60% when taken orally, as in smokeless tobacco.
Nicotine may be taken into the body through the lips, skin, and
gastrointestinal tract when smoking (Benowitz, 1988; Le Foll et
al., 2022; Onor et al., 2017). Previous research has focused on
the distribution of nicotine in the plasma, liver, kidney, heart,
and brain (Lindell et al., 1996; Sobkowiak and Lesicki, 2013;
Yamazaki et al., 2010). The initial concentration of nicotine from
smoke inhalation and cigarette intake is highest in lung tissue
and the mouth, but after one hour, nicotine concentration in the
stomach is significantly higher than in other tissues (Lindell et
al., 1996). More intuitively, nicotine was considerably enriched
in the gut, liver, nasal mucosa, and salivary glands after 15 min
after intramuscular injection by 14C-nicotine radioautography
(Schmiterlöw and Hansson, 1962). These results demonstrate
that nicotine from tobacco works not only in the brain and lungs,
but also in the liver, kidney, and digestive system, indicating that
nicotine accumulation plays a major role in modifying gut
microecology.
Nicotine’s influence on bacterial activity was investigated in

two in vitro investigations. At a dosage of 2 g mL−1, nicotine
demonstrated antibacterial action against Escherichia coli,
Pseudomonas aeruginosa, and Streptococcus faecalis (Pavia et al.,
2000). At a dosage of 10 g mL−1, nicotine was efficient against
Listeria monocytogenes and Streptococcus viridans (Pavia et al.,
2000). High levels of nicotine were detectable in saliva during
smoking (Lindell et al., 1996) and affected oral microbiota
homeostasis. Streptococcus mutans biofilm formation and meta-
bolic activity were increased in a nicotine-dependent manner,
and nicotine enhanced Streptococcus mutans biofilm formation
and biofilm metabolic activity, promoting the formation of
Streptococcus mutans biofilm on the tooth surface, thereby
increasing the occurrence of dental caries (Huang et al., 2012).
Similarly, nicotine could affect the pathogenicity of Streptococcus
mutans and lead to increased dental caries by producing more
lactic acid and upregulating virulence genes (Li et al., 2016). The
oral microbiota of smokers represents a significant enrichment of
Veillonella dispar, Leptotrichia spp. and Prevotella pleutitis com-
pared with nonsmokers. Functional analysis revealed that
smokers exhibited enrichment in tricarbonate utilization and
lactic acid racemization compared with nonsmokers (Al Bataineh
et al., 2020). Nicotine-induced differences in microbiome
composition and functional differences may provide important
insights into how changes in the oral microbiota may predispose
smokers to respiratory disease and relapse to smoking cessation.
Notably, Chen et al. (2022) found that high levels of nicotine

(approximately 200 ng g−1 tissue) were detected in the ileal
mucosal tissue of smokers, the ileum of mice from different
nicotine exposure models, and their contents. This suggests that
nicotine may reshape the homeostasis of the gut microbiota
during cigarette smoking or nicotine exposure by directly
influencing processes like colonization and growth through
enrichment in the intestine. Chi et al. (2017b) analyzed how oral
nicotine delivery for 13 weeks affects gut microbiota composition
and its metabolic profile in C57BL/6 mice. The results showed
that the effects of nicotine on gut microbiota exhibited sex
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differences: in nicotine-treated female mice, the abundance of
Christensenellaceae, Anaeroplasmataceae, F16, an unknown
family of Bacillariophyceae, and RF39 bacteria were significantly
reduced, whereas in nicotine-treated male mice, the abundance
of F16, Turicibacteraceae, and Peptococcaceae were greatly
increased and Dehalobacteriaceae bacteria were reduced con-
siderably. In addition, nicotine disrupted the carbohydrate
metabolic pathways of the gut microbiota and specifically
reduced body weight gain in male mice. According to Zubcevic
et al. (2022), one month following subcutaneous nicotine pump

treatment, the overall trend in female rats during gestation was a
decrease in Firmicutes and an increase in Actinobacteria. During
intrauterine development, it affected fetal exposure to circulating
short chain fatty acids (SCFA) and leptin. There was a decrease in
Bacteroidetes and an increase in Firmicutes, Proteobacteria, and
Actinobacteria in the gut of offspring of maternal nicotine
exposure (MNE) during nursing rats. It has been proposed that
nicotine exposure through breast milk causes long-term dysbiosis
of the gut microbiota (Rodrigues et al., 2021). In Leviel Fluhr’s
study, whether mice received nicotine water or nicotine

Table 1. Summary of animal studies on the effects of detrimental components in tobacco smoke on gut microbiota

Smoke compo-
nents Administration Treatment

time Concentration Animals Gut microbiota changes References

Nicotine

Water drinking 13 weeks 60 mg L−1 Male/female mouse

Female: Christensenellaceae↓
Anaeroplasmataceae↓ F16↓
Male: F16↑Peptococcaceae↑

Turicibacteraceae↑
Dehalobacteriaceae↓

(Chi et al., 2017b)

Subcutaneous pump 28 d 6 mg kg−1 d−1 Female rats Actinobacteria↑
Firmicutes↓

(Zubcevic et al.,
2022)

Subcutaneous pump 14 d 6 mg kg−1 d−1 Female rats
Firmicutes↑ Proteobacteria↑

Actinobacteria↑
Bacteroidetes↓

(Rodrigues et al.,
2021)

Water drinking 3 weeks 0.15 mg mL−1 Male mice NA (Fluhr et al., 2021)

Subcutaneous pump 4 weeks 1.5 mg kg−1 d−1 Male mice Actinobacteria↑
Tenericutes↓ (Fluhr et al., 2021)

Bap Oral gavage 28 d 50 mg kg−1 d−1 Mice

Bacteroidaceae↑
Porphyromonadaceae↑
Paraprevotellaceae↑
Lactobacillaceae↓

Verrucomicrobiaceae↓

(Ribière et al., 2016)

NNK and Bap Oral gavage 4 weeks NNK 2 μmol plus Bap 2 μmol Mice

Actinobacteria↑
Bifidobacterium↑
Intestinimonas↑

Alistipes↓ Odoribacter↓
Acetatifactor↓

(Qu et al., 2021)

NNK Intraperitoneal injection 8 weeks 150 mg kg−1 per week Mice Firmicutes↑
Bacteroidetes↓

(Finnicum et al.,
2022)

Formaldehyde Water drinking 24 d 1 and 3 ng mL−1 Mice
Proteobacteria↑
Actinobacteria↑
Cyanobacteria↓

(Guo et al., 2018)

Acrolein Water drinking 30 d 3 mg kg−1 d−1 Mice Firmicutes↑
Bacteroidetes↓ (Rom et al., 2017)

Benzene

Subcutaneous injection 30 d 6, 30, and 150 mg kg−1 d−1 Male mice Actinobacteria↑ (Sun et al., 2020)

Subcutaneous injection 30 d 25, 125, and 625 mg kg−1 per week Male mice Bacteroides sartorii↑
Anaerotruncus sp.↓

(Zhang et al.,
2021a)

Arsenic

Water drinking 13 weeks 0.1 mg kg−1 Female mice Verrucomicrobia↑
Firmicutes↓ (Chi et al., 2017a)

Water drinking 4 weeks 10 mg kg−1 Female mice Firmicutes↓ (Lu et al., 2014)

Water drinking 4 weeks 0.5 and 5 mg kg−1 Male/female mouse Verrucomicrobia↑
Firmicutes ↓

(Wu et al., 2022)

Oral gavage 5 d 15, 22, and 31 mg kg−1 d−1 Rats Proteobacteria↑ (Richardson et al.,
2018)

Nickel

Oral gavage 5 d 77, 232, and 300 mg kg−1 d−1 Rats
Proteobacteria↑
Verrucomicrobia↓

(Richardson et al.,
2018)

Oral gavage 35 d 40 mg kg−1 d−1 Male mice
Bacteroidetes↑
Proteobacteria↑
Firmicutes↓

(Yang et al., 2023)

Cadmium Oral gavage 5 d 35, 54, and 85 mg kg−1 d−1 Rats Verrucomicrobia↑ (Richardson et al.,
2018)

Chromium Oral gavage 5 d 44, 62, and 88 mg kg−1 d−1 Rats Proteobacteria↑ Verrucomicrobia↑ (Richardson et al.,
2018)
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subcutaneous injection treatment for three weeks, the gut
microbiota was altered compared with the control group, and
neither was the same as during smoke exposure (Fluhr et al.,
2021). This suggests that additional cigarette smoke constituents
are also involved in changing the gut microbiome of mice. At the
moment, the only information available on the effects of nicotine
on the gut microbiota is observational. As a result, extensive
study is required to investigate the processes by which nicotine
induces dysbiosis of the gut microbiota.
Recently, there has been a growing focus on the nicotine-

metabolizing microbiome, which had potent for treating nico-
tine-related diseases. In sunbirds (Cinnyris osea) that ingested
nicotine, administration of antibiotics that disrupted the intest-
inal bacterial community reduced the rate of nicotine degrada-
tion in their feces (Gunasekaran et al., 2021), suggesting that the
gut microbiota may be involved in the metabolism of nicotine. In
a recent study by Chen et al. (2022), higher levels of nicotine
were detected in the gut of germ-free mice compared with SPF
mice after nicotine drinking, suggesting that the gut microbiota
can metabolize nicotine. Further, they identified that human
intestinal commensal bacteria, Bacteroides xylanisolvens, could
efficiently degrade intestinal nicotine and identified a novel
nicotine metabolizing enzyme, NicX, and its metabolite, 4-
hydroxy-1-(3-pyridyl)-1-butanone (HPB). Administration of B.
xylanisolvens intestinal colonization to SPF mice reduced nicotine
levels in the gut, which in turn ameliorated the nicotine-
accelerated nonalcoholic steatohepatitis (NASH) process. Thus,
the pathway by which gut microbes utilize nicotine and other
tobacco-related chemicals may offer a new potential possibility
for the treatment of smoking-related metabolic diseases.

Effect of other substances in tobacco smoke on gut
microbiota

The full or incomplete burning of tobacco and distillation at
various temperatures result in the production of tobacco smoke,
a process that is extremely complicated in terms of the materials
used and the reactions that take place. In general, each
inhalation of tobacco smoke has a varied composition of smoke,
which might even differ greatly. In addition to nicotine, tobacco
smoke typically contains additional hazardous components such
as polycyclic aromatic hydrocarbons, aza-arenes, N-nitrosa-
mines, aromatic amines, aldehydes, and other organic and
inorganic compounds (Talhout et al., 2011).

PAHs

Many PAHs have been found to cause cancer in animals or
humans in previous studies, but their effects on the gut
microbiota have received more attention only in recent years.
Benzo[a]pyrene (Bap) is the most representative component of
tobacco PAHs and appears to have a relatively strong effect on
gut microbes from lower to higher organisms. In a variety of
aquatic organisms, Bap has been found to alter the diversity and
composition of the gut microbiota, causing dysbiosis of the gut
microbiota (Li et al., 2021; Quintanilla-Mena et al., 2021; Zhao
et al., 2019). In mammals, Bap is absorbed and inhaled from the
oral cavity, but BaP is also transported from the lungs to the
digestive system via a mucosal ciliary clearance mechanism
(Semmler-Behnke et al., 2007). This feature may lead to an
essential role of Bap in the animal and human gut, especially for

the gut microbiota exerting an important influence.
Although there was no substantial change in alpha diversity, it

was discovered that the relative abundances of 15 families and
18 genera were severely altered. Among dominant taxa, the
abundances of Verrucomicrobia were decreased, while Bacter-
oidetes were increased, respectively. Bacteroides, Parabacteroides
and Paraprevotella showed significant increase at the end of the
Bap treatment, whereas the relative abundances of Lactobacillus
and Verrucomicrobiaceae (a family exclusively represented by
Akkermansia muciniphila) were decreased. Following the modifi-
cations in these organisms, there was a considerable rise in the
relative abundance of Lactobacillaceae in ileal and colonic
mucosal inflammation, as well as enhanced ileal permeability
in mice models (Ribière et al., 2016). However, in studies based
on human infants, the relative abundance of Akkermansia
muciniphila, a bacterium generally considered to be beneficial,
was increased in infants exposed to Bap (Zhang et al., 2021b).
These results suggest that Bap may be able to exert anti-
inflammatory effects in the short term after exposure. After
extended Bap exposure, gut microorganisms were disturbed,
resulting in detrimental physiological consequences. Interest-
ingly, microorganisms can respond to Bap exposure by regulat-
ing host xenobiotic metabolism following Bap exposure, in
addition to the effects of Bap on gut microbiota (Garcia et al.,
2022). It implies that the metabolism of many xenobiotics in vivo
in mammals and gut microbes’ co-interaction and evolution of
metabolic processes are more complex and interesting than we
previously knew.

Aza-arenes

Aza-arenes are organic components that are relatively abundant
in tobacco, including quinoline, dibenz (a, h) acridine, 7H-
dibenzo (c, g) carbazole (Snook et al., 1981). Such substances
may be present in high concentrations in bile after ingestion
(Mukherjee and Banerjee, 1947), and biliary excretion, which is
considered one of the major excretion routes of quinoline. Thus,
although not directly reported, it is reasonable to believe that aza-
arenes ingested by tobacco smoking can have appreciable
concentrations in the intestine. Many bacteria have been found
to produce some quinoline derivatives as quorum-sensing
molecules (Saalim et al., 2020). So although it is not clear how
aza-arenes affect the gut microbiota, there is reason to believe
that aza-arenes, at least the quinoline in them, can have a
significant effect on the gut microbiota.

N-nitrosamines

Tobacco-specific N-nitrosamines, including 4-(methylnitrosami-
no)-1-(3-pyridyl)-1-butanone or nicotine-derived nitrosamine
ketone (NNK), N-nitrosonornicotine (NNN), nitrosaminoalde-
hyde (NNAL), N-nitrosoanatabine (NAT), N-nitrosoanabasine
(NAB), iso-NNAL, and iso-N-nitrosamino acids (iso-NNAC), are
present in tobacco smoke and proved pro-carcinogenic (Yalcin
and de la Monte, 2016). NNK has been implicated in various
cancers, and some recent studies suggest that NNK may affect
cancer by influencing intestinal bacteria. For example, in a lung
cancer mouse model, exposure to NNK plus Bap altered fecal
bacterial composition, resulting in increased levels of Actinobac-
teria, Bifidobacterium and Intestinimonas and decreased levels of
Alistipes, Odoribacter and Acetatifactor, ultimately affecting
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several bacterial metabolite production, including purine meta-
bolism, phenylalanine metabolism, primary bile acid biosynth-
esis, steroid hormone biosynthesis, biosynthesis of unsaturated
fatty acids, linoleic acid metabolism, and others (Qu et al., 2021).
A gradual increase in Firmicutes and a decrease in Bacteroidetes
was also observed at different time points after the NNK
treatment of mice. At the genus level, a progressive increase in
the tumor-promoting Helicobacter and a decrease in Lactobacillus,
Akkermansia, and Ruminococcus, which are considered beneficial
bacteria, were found. Correspondingly, significant reductions in
the levels of intestinal and circulating SCFAs (propionic acid and
butyric acid) were also observed in NNK-treated mice, all of
which suggest that NNK can significantly affect the composition
and function of intestinal bacteria (Finnicum et al., 2022).

Aromatic amines

Although the intestine has been detected to contain a variety of
aromatic amines that can affect intestinal bacteria and hosts,
tobacco is also rich in aromatic amines. The aromatic amines in
tobacco smoke are mainly 1-aminonaphthalene, 2-amino-
naphthalene, 3-aminobiphenyl, 4-aminobiphenyl, o-toluidine,
and o-anisidine, as opposed to the typical intestinal aromatic
amines (Ji and Jin, 2022). Whether these aromatic amines have a
profound effect on intestinal bacteria is still unknown.

Aldehydes

Aldehydes are common toxic pollutants, with formaldehyde,
acetaldehyde, and acrolein predominating in tobacco smoke. In
one study, an increase in the relative abundance of Proteobac-
teria and Actinobacteria and a decrease in the relative
abundance of Cyanobacteria were observed at the phylum level
after Formaldehyde exposure was given to mice. At genus level, a
significant increase in the abundance of 13 genera and a
decrease in the abundance of 4 genera were found. Among the
genera with increased relative abundance, Prevotella was one of
the major genera (Guo et al., 2018).
Acetaldehyde is one of the most important components of

aldehydes in tobacco smoke. Since its effects on intestinal
bacteria have been mostly mentioned in ethanol-related studies
in the past (Pohl et al., 2021), it is difficult to confirm what effects
acetaldehyde can have on gut microbiota independently. Found
in mitochondrial aldehyde dehydrogenase 2 (ALDH2) mutant
mice, higher acetaldehyde concentrations may lead to decreased
abundance of Actinobacteria and an increase in Deferribacteres
(Yang et al., 2021b).
In addition, acrolein-fed mice also showed significant changes

in gut microbiota composition, including phylum-level altera-
tions with an increase in Firmicutes and a decrease in
Bacteroidetes and family-level alterations with an increase in
Ruminococcaceae and Lachnospiraceae. At genus level, Copro-
coccus significantly and positively correlated with lipid levels and
peroxidation in serum, aorta, and macrophages (Rom et al.,
2017).

Miscellaneous organic compounds

Benzene in tobacco smoke also causes dysbiosis and metabolic
disturbances in the intestinal microbiota of mice. A study using
three different concentrations of benzene to treat mice found

significant changes in the composition of the gut microbiota in
both cecum and feces, and it appeared that higher concentrations
of benzene caused more drastic changes in the composition of the
gut microbiota. Significant enrichments of Actinobacteria at the
phylum level and Helicobacter at the genus level were observed in
benzene-exposed mice (Sun et al., 2020). Another study found
that increased Family_XIII_AD3011_group at the genus level
and decreased Anaerotruncus_sp at the species level in the
benzene-exposed group. In this study, mice were also treated
with a similar dose of benzene as in the previous study, but no
significant relationship was observed between the composition of
gut microbiota and benzene concentration, which may be related
to the different sexes of the two mouse models. Differences in the
gut microbiota changes between genders were also observed in
the effects of nicotine on the gut microbiota, and these
phenomena may suggest that sex-specific factors, such as
hormones, play an important role in the symbiosis between gut
microbiota and their hosts (Zhang et al., 2021a).

Inorganic substances

Arsenic is a well-known environmental contaminant and a
frequently detected inorganic component of tobacco (Iwai et al.,
2016). The relative abundance of Muribaculaceae was signifi-
cantly reduced in the arsenic-exposed mouse pups, while the
relative abundance of Akkermansia and Bacteroides was signifi-
cantly increased at the genus level. In both arsenic-exposed
mouse models, profound remodeling of the gut microbiota
appears to occur, indicating impaired intestinal barrier function
and mucosal inflammation (Chi et al., 2017a; Lu et al., 2014;
Wu et al., 2022).
Nickel is also common in tobacco as a common heavy metal

contaminant. A decrease in Lactobacillus and Blautia and an
increase in inflammation-promoting bacteria such as Alistipes
and Mycoplasma were observed in both nickel-exposed humans
and rats (Yang et al., 2023). More specifically, one study found
that nickel exposure almost completely eliminated the very
common Bacteroidetes S24-7, while the abundance of non-S24-
7 Bacteroidetes was relatively increased (Richardson et al.,
2018).
In addition to nickel, chromium exposure also significantly

affected gut microbiota composition in mice, decreasing the
diversity of the microbiome composition (Mu et al., 2022;
Richardson et al., 2018), while cadmium also altered the
abundance of specific strains of intestinal bacteria, decreased
the abundance of Prevotella and Lachnoclostridium but increased
Escherichia coli_Shigella (Yang et al., 2021a).
The types and levels of heavy metals contained in tobacco vary

depending on the environment in which the crop is grown, and
the more common ones include Plumbum, Polonium and other
heavy metals. Due to the way tobacco is smoked, these heavy
metals can often reach the digestive tract and may have a
corresponding effect on the gut microbiota. Corresponding
changes in gut microbiota are often observed in the presence of
heavy metal exposure, but more detailed proof of the causality
behind these correlated changes is still lacking.

Smoking affects disease through gut microbiota
dysbiosis

Many substances in tobacco smoke may change the gut
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microbiota, and differences in these bacteria may have a variety
of impacts on various diseases. The function of gut microbiota in
a number of diseases is well documented, and tobacco smoking
has a variety of effects on the makeup of gut microbiota.
Analysis of changes in the composition and metabolism of gut

microbiota can often suggest that changes in gut microbiota may
be involved in different disease processes, but this association is
often indirect and unsupported. A very good recent example is,
which clearly demonstrates that the gut microbiota affected after
smoke exposure is essential for smoking-cessation-induced
weight gain in mice (Fluhr et al., 2021). This study clearly
demonstrated the indispensable effect of smoke exposure on
smoking-cessation-induced weight gain, and further analyzed
the metabolites of bacterial origin and performed small-scale
population validation. In another study, Bai et al. (2022)
demonstrated that smoke-induced dysbiosis of the gut microbiota
alters intestinal metabolites and impairs intestinal barrier
function, thereby promoting colorectal cancer. This study also
provides direct evidence that tobacco smoking affects disease by
influencing gut microbiota.
Gut microbiota can affect cancer (Gagliani et al., 2014), IBD

(Neurath, 2020), diabetes (Cani, 2019), nonalcoholic fatty liver
disease (NAFLD) (Caussy and Loomba, 2018), and cardiovas-
cular disease (Chakaroun et al., 2023) through changes in the
metabolism of SCFAs, metabolism of bile acids, effects on
intestinal permeability, increased LPS, decreased choline avail-
ability, and trimethylamine production (Figure 2).
In cancer, increased deoxycholic acid (DCA) caused by

alterations in Clostridium Cluster IX promotes the development
of obesity-associated liver cancer by promoting the senescence-
associated secretory phenotype (SASP) (Yoshimoto et al., 2013).
Genetic operations on E. coli NC101 revealed that colitis could
promote tumorigenesis by altering microbial composition and
inducing the expansion of microorganisms with genotoxic
capabilities (Arthur et al., 2012). Additionally, clinical investiga-
tions have demonstrated that gut microbiota can influence the
clinical outcomes of CAR-T cell cancer immunotherapy (Stein-
Thoeringer et al., 2023) as well as the toxicity of combination
CTLA-4 and PD-1 inhibition (Andrews et al., 2021).
The two types of IBD are ulcerative colitis and Crohn’s disease,

and intriguingly, smoking appears to have the exact opposite
effect on both of these conditions (Lindberg et al., 1992; Russel et
al., 1998). The increased frequency of IBD in developed nations
and its sharp rise in recently industrialized nations both imply
that the onset of IBD may be linked to various lifestyle choices
(Kaplan and Ng, 2017). Both disorders have been linked to
significant alterations in gut microbiota as compared with
healthy people (Ananthakrishnan, 2015). Additionally, it is
believed that several of the genes linked to IBD susceptibility that
have been discovered by genome-wide association studies are
also involved in modulating the host’s response to the gut
microbiota (Liu et al., 2015). It was found that the spore-forming
component of indigenous intestinal microbiota, particularly
clusters IV and XIVa of the genus Clostridium, promoted T(reg)
cell accumulation and resulted in resistance to colitis (Atarashi et
al., 2011). This suggests that components or metabolites of the
gut microbiota could be directly involved in the inflammatory
response of the gut as well as in the disease process. Overall, IBD
is the result of a combination of genetic susceptibility, gut
microbiota dysbiosis, and environment, each of which interacts
in a complex way to cause IBD. These facts suggest that gut

microbiota may also play an important role in the pathogenesis
of IBD.
Indeed, the involvement of gut microbiota in the development

of metabolic diseases has been reported abundantly. A study
discovered that the metabolite of gut microbiota imidazole
propionate, which activates mTORC1 signaling in the host liver,
can disrupt insulin signaling (Koh et al., 2018). This shows that
the development of diabetes mellitus is directly influenced by gut
microbiota. Additionally, it has been discovered that metformin
helps to improve metabolism by preventing the growth of
Bacteroides fragilis, decreasing the action of this bacterium’s bile
salt hydrolase, raising GUDCA levels, and blocking intestinal FXR
signaling (Sun et al., 2018). Clinical research has also discovered
an association between some metabolic syndrome symptoms and
certain gut microbiota, particularly Ruminococcus gnavus (Grah-
nemo et al., 2022).
Numerous NAFLD investigations have discovered that the gut

microbiota promotes NAFLD through the intestine-hepatic axis
and that the characteristics of the gut microbiota may also
operate as diagnostic indicators (Aron-Wisnewsky et al., 2020).
After adjusting for the effects of lifestyle choices and medication

as potential confounding factors, research on populations with
ischemic heart disease (IHD) has revealed that middle-aged
adults at various stages of the cardiometabolic disease spectrum,
from metabolic disorders (obesity/diabetes) to ischemic heart
disease, are characterized by corresponding changes in the
microbiota and metabolome of the disease process (Fromentin et
al., 2022). When it comes to acute coronary syndrome (ACS),
metabolic abnormalities linked to nutrition and the gut micro-
biota may already exist at an early level, long before the onset of
the condition (Talmor-Barkan et al., 2022). Trimethylamine
oxide (TMAO), a metabolite produced by gut microbiota, has
even been linked to the onset and progression of many kinds of
cardiovascular disorders, including atherosclerosis (Wang et al.,
2015), myocardial infarction (Wang et al., 2015), heart failure
(Suzuki et al., 2019), and abdominal aortic aneurysms (AAA)
(Benson et al., 2023).
It is obvious from the abundance of evidence that gut

microbiota plays a role in the emergence of many diseases, but
it is still unclear whether smoking can also influence these
diseases by influencing gut microbiota. In other words, tobacco
smoking has a significant impact on the gut and thus may
influence the development and progression of many diseases
through a variety of gut microbiota, although more direct
causation studies are now needed to establish this.

Effects of smoking cessation on gut microbiota

It has been widely reported that tobacco smoking has a very
important effect on gut microbiota, but the effect of smoking
cessation on gut microbiota has received little attention.
Cessation, as the most effective way to reduce the harms of
tobacco smoking, can minimize the harm caused by smoking
among the commonmethods of avoiding tobacco harm (Visseren
et al., 2021). Nevertheless, several studies have found that the
risk of developing a variety of smoking-related diseases after
quitting does not decrease to the same extent as in non-smokers.
In the Health Professionals Follow-up Study (HPFS), the
incidence of peripheral artery disease in smokers who quit did
not return to the level of non-smokers (Joosten et al., 2012).
Epidemiology shows that the incidence of peripheral artery
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disease is higher in low-income and middle-income countries,
even among former smokers than among current smokers
(Fowkes et al., 2017). In both Crohn’s disease and Ulcerative
colitis, former smokers who have quit smoking have a higher
incidence of the disease compared with non-smokers. Former
smokers also had a higher incidence of hepatocellular carcinoma
(Abdel-Rahman et al., 2017). The incidence of type 2 diabetes
was similar in former and current smokers (InterAct et al.,
2014). All of these phenomena suggest that quitting smoking
after experiencing smoking status does not readily restore the
biological effects of tobacco smoking. Smoking exposure has been
shown to have profound effects on host epigenetic information
(Joehanes et al., 2016), which may account for the incomplete
elimination of the harms of tobacco smoking after quitting.
Tobacco smoking has been shown to largely affect gut

microbiota, but the alteration of gut microbiota by smoking
cessation is relatively poorly understood. Studies based on 16S
rRNA sequencing found significant changes in microbial
composition after smoking cessation, with increases in Firmi-
cutes and Actinobacteria and decreases in the proportions of
Bacteroidetes and Proteobacteria at the phylum level. The
microbial diversity increased after smoking cessation as opposed
to a general decrease in microbial diversity after smoking
cessation (Biedermann et al., 2013). A fluorescence in situ
hybridization (FISH) based study also found that intestinal
microbiota composition was substantially altered after smoking
cessation as characterized by an increase in key representatives
from the phyla of Firmicutes and Actinobacteria as well as a
decrease in Bacteroidetes and Proteobacteria (Biedermann et al.,
2014). A more detailed study evaluating cigarette smoking
markers and the effect of smoking cessation on the gut
microbiota of current quitters found that 12 weeks of smoking
cessation resulted in only small changes in the gut microbiota,
with Bacteroidetes increased and Firmicutes decreased observed
at the phylum level (Sublette et al., 2020). A population-based
cross-sectional study found that the gut microbiota composition
of former smokers who had quit smoking for an average of up to
6 years was largely intermediate between current smokers and
non-smokers, but former and current smokers showed taxa
abundance differences only at the phylum level (Lee et al., 2018).
Due to the complex composition andmechanisms associated with

cigarettes and the complexity of gut microbiota ecology, the
phenomena found in these studies of changes in gut microbiota
after smoking cessation are not entirely consistent. However,
functional changes in the gut microbiota after smoking cessation
have been found through the transplantation of gut microbiota
and have been shown to be involved in weight gain after
discontinued smoke exposure (Fluhr et al., 2021). This finding
suggests that intestinal bacteria may play a very important role
in the physiological effects of smoking cessation. In general, our
knowledge of the changes and functions of the gut microbiota
after smoking cessation is still very poor. It is apparent that a gut
microbiota viewpoint on the long-lasting effects of smoke
exposure is novel and has a great deal of promise to offer new
insights and actions to address improvements in the retention of
the health concerns related to tobacco smoking over the long
term.

Conclusion and perspectives

A bidirectional relationship between tobacco smoking and gut
microbiota in smokers has been established, demonstrating that
tobacco smoking affects gut microbiota, and gut microbiota, in
turn, impact tobacco smoking effects. These interactions may
contribute to the onset and progression of various diseases in the
host. Studies have consistently found significant changes in gut
microbiota in both experimental animals and humans following
tobacco smoking exposure, as tobacco smoke consists of
numerous components known to alter gut microbiota. Direct
links between cigarette smoking and gut microbiota-promoted
host diseases have been shown in colorectal cancer (CRC) (Bai et
al., 2022) and smoking-cessation-induced weight gain (SCWG)
(Fluhr et al., 2021). However, direct evidence of causality for
many other disorders remains scarce. Furthermore, the influence
of gut microbiota on smoking has been revealed, such as
nicotine-degrading gut microbiota that can attenuate nicotine-
induced liver damage (Chen et al., 2022). It is also noteworthy
that the long-lasting effects of smoking and cessation on gut
microbiota composition and functionality, future research should
focus on understanding the underlying mechanisms and
identifying potential therapeutic targets. Exploring probiotics or
prebiotics as potential interventions to restore gut microbiota
balance and mitigate the adverse health effects associated with
smoking and cessation may pave the way for innovative
treatment approaches. Additionally, personalized microbiota-
based therapies could be developed to promote successful
smoking cessation and optimize long-term health outcomes for
former smokers. Each individual’s tobacco damage varies. It is
challenging to comprehend that there might be factors besides
individual differences that affect how each person reacts to
tobacco smoke based on prior knowledge. These groundbreaking
studies imply that gut microbiota may play a significant role in
the interactions between the host and tobacco components.
Discovering and explaining the mechanism of connections
between gut microbiota, tobacco components, and the host will
be extremely relevant for understanding the development of
various diseases and may lead to novel targets for treatments and
therapeutic methods based on this new understanding. In
conclusion, although still in its early stages, the pursuit of novel
strategies to mitigate the detrimental effects of smoking or
enhance the health benefits of smoking cessation through gut
microbiota therapies holds tremendous potential and appeal.

Figure 2. Smoking affects disease through gut microbiota dysbiosis. Solid arrow:
direct evidence, dashed arrow: indirect hints (Created using BioRender.com).
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