Skip to main content
Log in

Green manuring relocates microbiomes in driving the soil functionality of nitrogen cycling to obtain preferable grain yields in thirty years

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Fertilizers are widely used to produce more food, inevitably altering the diversity and composition of soil organisms. The role of soil biodiversity in controlling multiple ecosystem services remains unclear, especially after decades of fertilization. Here, we assess the contribution of the soil functionalities of carbon (C), nitrogen (N), and phosphorus (P) cycling to crop production and explore how soil organisms control these functionalities in a 33-year field fertilization experiment. The long-term application of green manure or cow manure produced wheat yields equivalent to those obtained with chemical N, with the former providing higher soil functions and allowing the functionality of N cycling (especially soil N mineralization and biological N fixation) to control wheat production. The keystone phylotypes within the global network rather than the overall microbial community dominated the soil multifunctionality and functionality of C, N, and P cycling across the soil profile (0–100 cm). We further confirmed that these keystone phylotypes consisted of many metabolic pathways of nutrient cycling and essential microbes involved in organic C mineralization, N2O release, and biological N fixation. The chemical N, green manure, and cow manure resulted in the highest abundances of amoB, nifH, and GH48 genes and Nitrosomonadaceae, Azospirillaceae, and Sphingomonadaceae within the keystone phylotypes, and these microbes were significantly and positively correlated with N2O release, N fixation, and organic C mineralization, respectively. Moreover, our results demonstrated that organic fertilization increased the effects of the network size and keystone phylotypes on the subsoil functions by facilitating the migration of soil microorganisms across the soil profiles and green manure with the highest migration rates. This study highlights the importance of the functionality of N cycling in controlling crop production and keystone phylotypes in regulating soil functions, and provides selectable fertilization strategies for maintaining crop production and soil functions across soil profiles in agricultural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

The obtained sequences were submitted to the NCBI Sequence Read Archive (SRA) with accession number PRJNA841854 and PRJNA841974 (https://dataview.ncbi.nlm.nih.gov/object/PRJNA841854 and https://dataview.ncbi.nlm.nih.gov/object/PRJNA841974). Other data and results supporting the findings of the study are available in this article and its supplementary information files.

References

  • Abu-Ashour, J., Joy, D.M., Lee, H., Whiteley, H.R., and Zelin, S. (1994). Transport of microorganisms through soil. Water Air Soil Pollut 75, 141–158.

    Article  ADS  Google Scholar 

  • Banerjee, S., Kirkby, C.A., Schmutter, D., Bissett, A., Kirkegaard, J.A., and Richardson, A.E. (2016). Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem 97, 188–198.

    Article  CAS  Google Scholar 

  • Barberán, A., Bates, S.T., Casamayor, E.O., and Fierer, N. (2012). Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6, 343–351.

    Article  PubMed  Google Scholar 

  • Benjamini, Y., Krieger, A.M., and Yekutieli, D. (2006). Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93, 491–507.

    Article  MathSciNet  Google Scholar 

  • Blondel, V.D., Guillaume, J.L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in large networks. J Stat Mech 2008, P10008.

    Article  Google Scholar 

  • Borchhardt, N., Baum, C., Thiem, D., Köpcke, T., Karsten, U., Leinweber, P., and Hrynkiewicz, K. (2019). Soil microbial phosphorus turnover and identity of algae and fungi in biological soil crusts along a transect in a glacier foreland. Eur J Soil Biol 91, 9–17.

    Article  Google Scholar 

  • Brown, M., Woodhall, J.W., Nielsen, L.K., Tomlinson, D., Farooqi, A., and Ray, R.V. (2021). Population dynamics of Rhizoctonia, Oculimacula, and Microdochium species in soil, roots, and stems of English wheat crops. Plant Pathol 70, 862–874.

    Article  CAS  Google Scholar 

  • Brown, S.P., Grillo, M.A., Podowski, J.C., and Heath, K.D. (2020). Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula. Microbiome 8, 139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E. K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7, 335–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13, 581–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carey, C.J., Dove, N.C., Beman, J.M., Hart, S.C., and Aronson, E.L. (2016). Metaanalysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea. Soil Biol Biochem 99, 158–166.

    Article  CAS  Google Scholar 

  • Chen, Q.L., Ding, J., Zhu, D., Hu, H.W., Delgado-Baquerizo, M., Ma, Y.B., He, J.Z., and Zhu, Y.G. (2020). Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol Biochem 141, 107686.

    Article  CAS  Google Scholar 

  • Chen, W., Ren, K., Isabwe, A., Chen, H., Liu, M., and Yang, J. (2019). Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons. Microbiome 7, 138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Creamer, C.A., de Menezes, A.B., Krull, E.S., Sanderman, J., Newton-Walters, R., and Farrell, M. (2015). Microbial community structure mediates response of soil C decomposition to litter addition and warming. Soil Biol Biochem 80, 175–188.

    Article  CAS  Google Scholar 

  • Crits-Christoph, A., Diamond, S., Butterfield, C.N., Thomas, B.C., and Banfield, J.F. (2018). Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 558, 440–444.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Dai, X., Song, D., Guo, Q., Zhou, W., Liu, G., Ma, R., Liang, G., He, P., Sun, G., Yuan, F., et al. (2021). Predicting the influence of fertilization regimes on potential N fixation through their effect on free-living diazotrophic community structure in double rice cropping systems. Soil Biol Biochem 156, 108220.

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D., and Singh, B.K. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7, 1–8.

    Article  Google Scholar 

  • Delgado-Baquerizo, M., Reich, P.B., Trivedi, C., Eldridge, D.J., Abades, S., Alfaro, F.D., Bastida, F., Berhe, A.A., Cutler, N.A., Gallardo, A., et al. (2020). Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol 4, 210–220.

    Article  PubMed  Google Scholar 

  • Delgado-Baquerizo, M., Trivedi, P., Trivedi, C., Eldridge, D.J., Reich, P.B., Jeffries, T.C., and Singh, B.K. (2017). Microbial richness and composition independently drive soil multifunctionality. Funct Ecol 31, 2330–2343.

    Article  Google Scholar 

  • Ding, T., Yan, Z., Zhang, W., and Duan, T. (2021). Green manure crops affected soil chemical properties and fungal diversity and community of apple orchard in the loess plateau of China. J Soil Sci Plant Nutr 21, 1089–1102.

    Article  CAS  Google Scholar 

  • Duarte, A.W.F., dos Santos, J.A., Vianna, M.V., Vieira, J.M.F., Mallagutti, V.H., Inforsato, F.J., Wentzel, L.C.P., Lario, L.D., Rodrigues, A., Pagnocca, F.C., et al. (2018). Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Crit Rev Biotechnol 38, 600–619.

    Article  CAS  PubMed  Google Scholar 

  • Eilers, K.G., Debenport, S., Anderson, S., and Fierer, N. (2012). Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem 50, 58–65.

    Article  CAS  Google Scholar 

  • Fan, K., Delgado-Baquerizo, M., Guo, X., Wang, D., Zhu, Y., and Chu, H. (2021). Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME J 15, 550–561.

    Article  CAS  PubMed  Google Scholar 

  • Fan, K., Delgado-Baquerizo, M., Guo, X., Wang, D., Wu, Y., Zhu, M., Yu, W., Yao, H., Zhu, Y., and Chu, H. (2019). Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome 7, 1.

    Article  CAS  Google Scholar 

  • Fan, K., Delgado-Baquerizo, M., Guo, X., Wang, D., Zhu, Y.G., and Chu, H. (2020). Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment. Soil Biol Biochem 141, 107679.

    Article  CAS  Google Scholar 

  • Fan, K., Weisenhorn, P., Gilbert, J.A., Shi, Y., Bai, Y., and Chu, H. (2018). Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields. Soil Biol Biochem 121, 185–192.

    Article  CAS  Google Scholar 

  • Fanin, N., Gundale, M.J., Farrell, M., Ciobanu, M., Baldock, J.A., Nilsson, M.C., Kardol, P., and Wardle, D.A. (2018). Consistent effects of biodiversity loss on multi-functionality across contrasting ecosystems. Nat Ecol Evol 2, 269–278.

    Article  PubMed  Google Scholar 

  • Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15, 579–590.

    Article  CAS  PubMed  Google Scholar 

  • Fierer, N., Schimel, J.P., and Holden, P.A. (2003). Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35, 167–176.

    Article  CAS  Google Scholar 

  • Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., and Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Fu, X., Song, Q., Li, S., Shen, Y., and Yue, S. (2022). Dynamic changes in bacterial community structure are associated with distinct priming effect patterns. Soil Biol Biochem 169, 108671.

    Article  CAS  Google Scholar 

  • Gao, S., Zhang, R., Cao, W., Fan, Y., Gao, J., Huang, J., Bai, J., Zeng, N., Chang, D., Katsu-yoshi, S., et al. (2015). Long-term rice-rice-green manure rotation changing the microbial communities in typical red paddy soil in South China. J Integr Agr 14, 2512–2520.

    Article  Google Scholar 

  • Gardner, J.B., and Drinkwater, L.E. (2009). The fate of nitrogen in grain cropping systems: a meta-analysis of 15N field experiments. Ecol Appl 19, 2167–2184.

    Article  PubMed  Google Scholar 

  • Garland, G., Edlinger, A., Banerjee, S., Degrune, F., García-Palacios, P., Pescador, D.S., Herzog, C., Romdhane, S., Saghai, A., Spor, A., et al. (2021). Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat Food 2, 28–37.

    Article  PubMed  Google Scholar 

  • Gödde, M., and Conrad, R. (1999). Immediate and adaptational temperature effects on nitric oxide production and nitrous oxide release from nitrification and denitrification in two soils. Biol Fertil Soils 30, 33–40.

    Article  Google Scholar 

  • Han, S., Delgado-Baquerizo, M., Luo, X., Liu, Y., Van Nostrand, J.D., Chen, W., Zhou, J., and Huang, Q. (2021). Soil aggregate size-dependent relationships between microbial functional diversity and multifunctionality. Soil Biol Biochem 154, 108143.

    Article  CAS  Google Scholar 

  • Hartmann, M., Lee, S., Hallam, S.J., and Mohn, W.W. (2009). Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands. Environ Microbiol 11, 3045–3062.

    Article  PubMed  Google Scholar 

  • Harvey, E., Gounand, I., Ward, C.L., and Altermatt, F. (2017). Bridging ecology and conservation: from ecological networks to ecosystem function. JAppl Ecol 54, 371–379.

    Article  Google Scholar 

  • Huang, X., Zhao, J., Zhou, X., Zhang, J., and Cai, Z. (2019). Differential responses of soil bacterial community and functional diversity to reductive soil disinfestation and chemical soil disinfestation. Geoderma 348, 124–134.

    Article  CAS  ADS  Google Scholar 

  • Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., and Wei, G. (2018). Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 6, 146.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiao, S., Chen, W., and Wei, G. (2022). Core microbiota drive functional stability of soil microbiome in reforestation ecosystems. Glob Change Biol 28, 1038–1047.

    Article  CAS  Google Scholar 

  • Jiao, S., Lu, Y., and Wei, G. (2020). Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob Change Biol 28, 140–153.

    Article  Google Scholar 

  • Jing, X., Sanders, N.J., Shi, Y., Chu, H., Classen, A.T., Zhao, K., Chen, L., Shi, Y., Jiang, Y., and He, J.S. (2015). The links between ecosystem multifunctionality and above-and belowground biodiversity are mediated by climate. Nat Commun 6, 8159.

    Article  ADS  PubMed  Google Scholar 

  • Knights, D., Kuczynski, J., Charlson, E.S., Zaneveld, J., Mozer, M.C., Collman, R.G., Bushman, F.D., Knight, R., and Kelley, S.T. (2011). Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8, 761–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langfelder, P., and Horvath, S. (2012). Fast R Functions for Robust Correlations and Hierarchical Clustering. J Stat Soft 46, i11.

    Article  Google Scholar 

  • Legendre, P., Borcard, D., and Peres-Neto, P.R. (2005). Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75, 435–450.

    Article  Google Scholar 

  • Ling, N., Zhu, C., Xue, C., Chen, H., Duan, Y., Peng, C., Guo, S., and Shen, Q. (2016). Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol Biochem 99, 137–149.

    Article  CAS  Google Scholar 

  • Liu, Y.R., Delgado-Baquerizo, M., Trivedi, P., He, J.Z., Wang, J.T., and Singh, B.K. (2017). Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change. Soil Biol Biochem 107, 208–217.

    Article  CAS  Google Scholar 

  • Liu, Z., Gu, H., Liang, A., Li, L., Yao, Q., Xu, Y., Liu, J., Jin, J., Liu, X., and Wang, G. (2022). Conservation tillage regulates the assembly, network structure and ecological function of the soil bacterial community in black soils. Plant Soil 472, 207–223.

    Article  CAS  Google Scholar 

  • Louca, S., Parfrey, L.W., and Doebeli, M. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Luan, L., Liang, C., Chen, L., Wang, H., Xu, Q., Jiang, Y., and Sun, B. (2020). Coupling bacterial community assembly to microbial metabolism across soil profiles. mSystems 5, e00298–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lueders, T., Kindler, R., Miltner, A., Friedrich, M.W., and Kaestner, M. (2006). Identification of bacterial micropredators distinctively active in a soil microbial food web. Appl Environ Microbiol 72, 5342–5348.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  • Luo, G., Xue, C., Jiang, Q., Xiao, Y., Zhang, F., Guo, S., Shen, Q., and Ling, N. (2020). Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C:N:P stoichiometry. mSystems 5, e00162–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M., García-Gómez, M., Bowker, M.A., Soliveres, S., Escolar, C., et al. (2012). Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  • Marklein, A.R., and Houlton, B.Z. (2012). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol 193, 696–704.

    Article  CAS  PubMed  Google Scholar 

  • Mestre, M.C., Pastorino, M.J., Aparicio, A.G., and Fontenla, S.B. (2017). Natives helping foreigners? The effect of inoculation of poplar with patagonian beneficial microorganisms. J Soil Sci Plant Nutr 17, 1028–1039.

    Article  CAS  Google Scholar 

  • Nguyen, N.H., Song, Z., Bates, S.T., Branco, S., Tedersoo, L., Menke, J., Schilling, J.S., and Kennedy, P.G. (2016). FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20, 241–248.

    Article  Google Scholar 

  • Ning, Q., Chen, L., Jia, Z., Zhang, C., Ma, D., Li, F., Zhang, J., Li, D., Han, X., Cai, Z., et al. (2020). Multiple long-term observations reveal a strategy for soil pH-dependent fertilization and fungal communities in support of agricultural production. Agr Ecosyst Environ 293, 106837.

    Article  CAS  Google Scholar 

  • Nuccio, E.E., Anderson-Furgeson, J., Estera, K.Y., Pett-Ridge, J., de Valpine, P., Brodie, E.L., and Firestone, M.K. (2016). Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology 97, 1307–1318.

    Article  PubMed  Google Scholar 

  • Paumier, D., Bammé, B., Penaud, A., Valade, R., and Suffert, F. (2021). First report of the sexual stage of the flax pathogen Mycosphaerella linicola in France and its impact on pasmo epidemiology. Plant Pathol 70, 475–483.

    Article  CAS  Google Scholar 

  • Peng, G., and Wu, J. (2016). Optimal network topology for structural robustness based on natural connectivity. Phys A Stat Mech Appl 443, 212–220.

    Article  MathSciNet  Google Scholar 

  • Qiu, L., Zhang, Q., Zhu, H., Reich, P.B., Banerjee, S., van der Heijden, M.G.A., Sadowsky, M.J., Ishii, S., Jia, X., Shao, M., et al. (2021). Erosion reduces soil microbial diversity, network complexity and multifunctionality. ISME J 15, 2474–2489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez, G. (2013). PLS path modeling with R. Berkeley: Trowchez Editions. 383, 551.

    Google Scholar 

  • Schmidt, J.E., Kent, A.D., Brisson, V.L., and Gaudin, A.C.M. (2019). Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 7, 1–8.

    Article  Google Scholar 

  • Shi, Y., Delgado-Baquerizo, M., Li, Y., Yang, Y., Zhu, Y.G., Penuelas, J., and Chu, H. (2020). Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. Environ Int 142, 105869.

    Article  CAS  PubMed  Google Scholar 

  • Sridevi, G., Minocha, R., Turlapati, S.A., Goldfarb, K.C., Brodie, E.L., Tisa, L.S., and Minocha, S.C. (2012). Soil bacterial communities of a calcium-supplemented and a reference watershed at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. FEMS Microbiol Ecol 79, 728–740.

    Article  CAS  PubMed  Google Scholar 

  • Sun, R., Zhang, X.X., Guo, X., Wang, D., and Chu, H. (2015). Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol Biochem 88, 9–18.

    Article  CAS  Google Scholar 

  • Sun, Y., Zhang, M., Duan, C., Cao, N., Jia, W., Zhao, Z., Ding, C., Huang, Y., and Wang, J. (2021). Contribution of stochastic processes to the microbial community assembly on field-collected microplastics. Environ Microbiol 23, 6707–6720.

    Article  CAS  PubMed  Google Scholar 

  • Tibbett, M., Gil-Martnez, M., Fraser, T., Green, I.D., Duddigan, S., De Oliveira, V.H., Raulund-Rasmussen, K., Sizmur, T., and Diaz, A. (2019). Long-term acidification of pH neutral grasslands affects soil biodiversity, fertility and function in a heathland restoration. Catena 180, 401–415.

    Article  CAS  Google Scholar 

  • Wagg, C., Bender, S.F., Widmer, F., and van der Heijden, M.G.A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunction-ality. Proc Natl Acad Sci USA 111, 5266–5270.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Liu, D., and Bai, E. (2018). Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol Biochem 120, 126–133.

    Article  CAS  Google Scholar 

  • Wang, H., Proctor, C.R., Edwards, M.A., Pryor, M., Santo Domingo, J.W., Ryu, H., Camper, A.K., Olson, A., and Pruden, A. (2014). Microbial community response to chlorine conversion in a chloraminated drinking water distribution system. Environ Sci Technol 48, 10624–10633.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Wang, Y., Li, C., Tu, B., Kou, Y., and Li, X. (2021). Species pool and local ecological assembly processes shape the β-diversity of diazotrophs in grassland soils. Soil Biol Biochem 160, 108338.

    Article  CAS  Google Scholar 

  • Wang, Y.F., Chen, P., Wang, F.H., Han, W.X., Qiao, M., Dong, W.X., Hu, C.S., Zhu, D., Chu, H.Y., and Zhu, Y.G. (2022). The ecological clusters of soil organisms drive the ecosystem multifunctionality under long-term fertilization. Environ Int 161, 107133.

    Article  CAS  PubMed  Google Scholar 

  • Weldmichael, T.G., Márton, D., Simon, B., Michéli, E., Reda, G.T., Adiyah, F., and Cserháti, M. (2021). Bacterial community characterization and microbial respiration of selected arable soils of ethiopia. Eurasian Soil Sc 54, 1921–1934.

    Article  CAS  ADS  Google Scholar 

  • Woodmansee, R. (1984). Comparative nutrient cycles of natural and agricultural ecosystems: a step toward principles. In: Lowrance, R., Stinner, B.R., and House, G. J., eds. Agricultural Ecosystems: Unifying Concepts. New York: John Wiley and Sons. 145–156.

    Google Scholar 

  • Woudenberg, J.H.C., Truter, M., Groenewald, J.Z., and Crous, P.W. (2014). Large-spored Alternaria pathogens in section Porri disentangled. Studies Mycology 79, 1–47.

    Article  CAS  Google Scholar 

  • Yang, T., Tedersoo, L., Soltis, P.S., Soltis, D.E., Sun, M., Ma, Y., Ni, Y., Liu, X., Fu, X., Shi, Y., et al. (2023). Plant and fungal species interactions differ between aboveground and belowground habitats in mountain forests of eastern China. Sci China Life Sci 66, 1134–1150.

    Article  PubMed  Google Scholar 

  • Zhang, J., Li, T., Jia, J., Zhang, J., and Zhang, F. (2021). Bacterial taxa and fungal diversity are the key factors determining soil multifunctionality in different cropping systems. Land Degrad Dev 32, 5012–5022.

    Article  Google Scholar 

  • Zhao, Z.B., He, J.Z., Geisen, S., Han, L.L., Wang, J.T., Shen, J.P., Wei, W.X., Fang, Y.T., Li, P.P., and Zhang, L.M. (2019). Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome 7, 1–6.

    Article  Google Scholar 

  • Zheng, Q., Hu, Y., Zhang, S., Noll, L., Böckle, T., Dietrich, M., Herbold, C.W., Eichorst, S.A., Woebken, D., Richter, A., et al. (2019). Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biol Biochem 136, 107521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, G., Cao, W., Bai, J., Xu, C., Zeng, N., Gao, S., and Rees, R.M. (2019). Nonadditive responses of soil C and N to rice straw and hairy vetch (Vicia villosa Roth L.) mixtures in a paddy soil. Plant Soil 436, 229–244.

    Article  CAS  Google Scholar 

  • Zhou, G., Fan, K., Li, G., Gao, S., Chang, D., Liang, T., Li, S., Liang, H., Zhang, J., Che, Z., et al. (2023). Synergistic effects of diazotrophs and arbuscular mycorrhizal fungi on soil biological nitrogen fixation after three decades of fertilization. iMeta 2, e81.

    Article  Google Scholar 

  • Zhou, G., Gao, S., Lu, Y., Liao, Y., Nie, J., and Cao, W. (2020). Co-incorporation of green manure and rice straw improves rice production, soil chemical, biochemical and microbiological properties in a typical paddy field in southern China. Soil Tillage Res 197, 104499.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (2021YFD1700200), the earmarked fund for CARS-Green manure (CARS-22), and the Agricultural Science and Technology Innovation Program of CAAS. The authors would like to thank Xingguo Bao, Kesheng Wu, Yue Luo, Rui Liu, Hui Wang, Peng Jiang, Yarong Song and Qiaolin Chang for their assistance in field management, soil sampling, and laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongxian Che or Weidong Cao.

Ethics declarations

The authors declare that they have no conflict of Interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Fan, K., Gao, S. et al. Green manuring relocates microbiomes in driving the soil functionality of nitrogen cycling to obtain preferable grain yields in thirty years. Sci. China Life Sci. 67, 596–610 (2024). https://doi.org/10.1007/s11427-023-2432-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-023-2432-9

Navigation