Skip to main content
Log in

Global multifaceted biodiversity patterns, centers, and conservation needs in angiosperms

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The Convention on Biological Diversity seeks to conserve at least 30% of global land and water areas by 2030, which is a challenge but also an opportunity to better preserve biodiversity, including flowering plants (angiosperms). Herein, we compiled a large database on distributions of over 300,000 angiosperm species and the key functional traits of 67,024 species. Using this database, we constructed biodiversity-environment models to predict global patterns of taxonomic, phylogenetic, and functional diversity in terrestrial angiosperms and provide a comprehensive mapping of the three diversity facets. We further evaluated the current protection status of the biodiversity centers of these diversity facets. Our results showed that geographical patterns of the three facets of plant diversity exhibited substantial spatial mismatches and nonoverlapping conservation priorities. Idiosyncratic centers of functional diversity, particularly of herbaceous species, were primarily distributed in temperate regions and under weaker protection compared with other biodiversity centers of taxonomic and phylogenetic facets. Our global assessment of multifaceted biodiversity patterns and centers highlights the insufficiency and unbalanced conservation among the three diversity facets and the two growth forms (woody vs. herbaceous), thus providing directions for guiding the future conservation of global plant diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnan, X., Cerdá, X., and Retana, J. (2017). Relationships among taxonomic, functional, and phylogenetic ant diversity across the biogeographic regions of Europe. Ecography 40, 448–457.

    Article  Google Scholar 

  • Bánki, O., Roskov, Y., Vandepitte, L., DeWalt, R. E., Remsen, D., Schalk, P., Orrell, T., Keping, M., Miller, J., Aalbu, R., et al. (2023). Catalogue of Life Checklist (Version 2023-12-15). (Leiden: Catalogue of Life).

    Google Scholar 

  • Barreto, E., Graham, C.H., and Rangel, T.F. (2019). Environmental factors explain the spatial mismatches between species richness and phylogenetic diversity of terrestrial mammals. Glob Ecol Biogeogr 28, 1855–1865.

    Article  Google Scholar 

  • Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M.A., Baldocchi, D., Bonan, G.B., et al. (2010). Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838.

    Article  CAS  PubMed  Google Scholar 

  • Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., and Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecol Lett 15, 365–377.

    Article  PubMed  PubMed Central  Google Scholar 

  • Belmaker, J., and Jetz, W. (2015). Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients. Ecol Lett 18, 563–571.

    Article  PubMed  Google Scholar 

  • Bjorkman, A.D., Myers-Smith, I.H., Elmendorf, S.C., Normand, S., Rüger, N., Beck, P. S.A., Blach-Overgaard, A., Blok, D., Cornelissen, J.H.C., Forbes, B.C., et al. (2018). Plant functional trait change across a warming tundra biome. Nature 562, 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Breiman, L. (2001). Random forests. Mach Learn 45, 5–32.

    Article  Google Scholar 

  • Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., Hennekens, S. M., Botta-Dukát, Z., Chytrý, M., Field, R., Jansen, F., et al. (2018). Global trait-environment relationships of plant communities. Nat Ecol Evol 2, 1906–1917.

    Article  PubMed  Google Scholar 

  • Brum, F.T., Graham, C.H., Costa, G.C., Hedges, S.B., Penone, C., Radeloff, V.C., Rondinini, C., Loyola, R., and Davidson, A.D. (2017). Global priorities for conservation across multiple dimensions of mammalian diversity. Proc Natl Acad Sci USA 114, 7641–7646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buisson, E., Archibald, S., Fidelis, A., and Suding, K.N. (2022). Ancient grasslands guide ambitious goals in grassland restoration. Science 377, 594–598.

    Article  CAS  PubMed  Google Scholar 

  • Cadotte, M.W., Carscadden, K., and Mirotchnick, N. (2011). Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48, 1079–1087.

    Article  Google Scholar 

  • Cai, L., Kreft, H., Taylor, A., Denelle, P., Schrader, J., Essl, F., van Kleunen, M., Pergl, J., Pyšek, P., Stein, A., et al. (2023). Global models and predictions of plant diversity based on advanced machine learning techniques. New Phytol 237, 1432–1445.

    Article  PubMed  Google Scholar 

  • CBD. (2022). Kunming-Montreal Global Biodiversity Framework. Convention on Biological Diversity CBD/COP/DEC/15/4.

  • Cernansky, R. (2017). Biodiversity moves beyond counting species. Nature 546, 22–24.

    Article  CAS  PubMed  Google Scholar 

  • Coelho, M.T.P., Dambros, C., Rosauer, D.F., Pereira, E.B., and Rangel, T.F. (2019). Effects of neutrality and productivity on mammal richness and evolutionary history in Australia. Ecography 42, 478–487.

    Article  Google Scholar 

  • Currie, D.J., Mittelbach, G.G., Cornell, H.V., Field, R., Guégan, J.C., Hawkins, B.A., Kaufman, D.M., Kerr, J.T., Oberdorff, T., O’Brien, E., et al. (2004). Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol Lett 7, 1121–1134.

    Article  Google Scholar 

  • Currie, D.J., and Paquin, V. (1987). Large-scale biogeographical patterns of species richness of trees. Nature 329, 326–327.

    Article  Google Scholar 

  • De Mazancourt, C., Johnson, E., and Barraclough, T.G. (2008). Biodiversity inhibits species’ evolutionary responses to changing environments. Ecol Lett 11, 380–388.

    Article  CAS  PubMed  Google Scholar 

  • DeMalach, N., Ron, R., and Kadmon, R. (2019). Mechanisms of seed mass variation along resource gradients. Ecol Lett 22, 181–189.

    Article  PubMed  Google Scholar 

  • Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W., and Mouquet, N. (2010). Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 13, 1030–1040.

    Article  PubMed  Google Scholar 

  • Dias, A.T., Berg, M.P., de Bello, F., Van Oosten, A.R., Bílá, K., and Moretti, M. (2013). An experimental framework to identify community functional components driving ecosystem processes and services delivery. J Ecol 101, 29–37.

    Article  Google Scholar 

  • Diaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., et al. (2016). The global spectrum of plant form and function. Nature 529, 167–171.

    Article  CAS  PubMed  Google Scholar 

  • Diniz-Filho, J.A.F., Bini, L.M., and Hawkins, B.A. (2003). Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12, 53–64.

    Article  Google Scholar 

  • Droissart, V., Dauby, G., Hardy, O.J., Deblauwe, V., Harris, D.J., Janssens, S., Mackinder, B.A., Blach-Overgaard, A., Sonké, B., Sosef, M.S.M., et al. (2018). Beyond trees: biogeographical regionalization of tropical Africa. J Biogeogr 45, 1153–1167.

    Article  Google Scholar 

  • Echeverría-Londoño, S., Enquist, B.J., Neves, D.M., Violle, C., Boyle, B., Kraft, N.J.B., Maitner, B.S., McGill, B., Peet, R.K., Sandel, B., et al. (2018). Plant functional diversity and the biogeography of biomes in North and South America. Front Ecol Evol 6, 219.

    Article  Google Scholar 

  • Eisenhauer, N. (2022). The shape that matters: how important is biodiversity for ecosystem functioning? Sci China Life Sci 65, 651–653.

    Article  PubMed  Google Scholar 

  • Eriksson, O., Friis, E.M., and Löfgren, P. (2000). Seed size, fruit size, and dispersal systems in angiosperms from the Early Cretaceous to the Late Tertiary. Am Nat 156, 47–58.

    Article  PubMed  Google Scholar 

  • Faith, D.P. (1992). Conservation evaluation and phylogenetic diversity. Biol Conserv 61, 1–10.

    Article  Google Scholar 

  • Falster, D.S., and Westoby, M. (2003). Plant height and evolutionary games. Trends Ecol Evol 18, 337–343.

    Article  Google Scholar 

  • Fang, J., Tang, Z., and Wang, Z. (2011). Atlas of Woody Plants in China: Distribution And Climate. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Field, R., O’Brien, E.M., and Whittaker, R.J. (2005). Global models for predicting woody plant richness from climate: development and evaluation. Ecology 86, 2263–2277.

    Article  Google Scholar 

  • FitzJohn, R.G., Pennell, M.W., Zanne, A.E., Stevens, P.F., Tank, D.C., and Cornwell, W. K. (2014). How much of the world is woody? J Ecol 102, 1266–1272.

    Article  Google Scholar 

  • Fotheringham, A.S., Brunsdon, C., and Charlton, M. (2003). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Chichester: John Wiley & Sons.

    Google Scholar 

  • Francis, A.P., and Currie, D.J. (2003). A globally consistent richness-climate relationship for angiosperms. Am Nat 161, 523–536.

    Article  PubMed  Google Scholar 

  • Guo, W.Y., Serra-Diaz, J.M., Schrodt, F., Eiserhardt, W.L., Maitner, B.S., Merow, C., Violle, C., Anand, M., Belluau, M., Bruun, H.H., et al. (2022). High exposure of global tree diversity to human pressure. Proc Natl Acad Sci USA 119, e2026733119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J.-F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., and O’Brien, E.M. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecol 84, 3105–3117.

    Article  Google Scholar 

  • IPBES. (2019). Chapter 3. Assessing progress towards meeting major international objectives related to nature and nature’s contributions to people. In: Global Assessment Report on Biodiversity and Ecosystem Services, F. Berkes, and T.M. Brooks eds. Bonn: IPBES Secretariat.

    Google Scholar 

  • Jin, Y., and Qian, H. (2022). V.PhyloMaker2: an updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers 44, 335–339.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin, Y., and Qian, H. (2019). V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359.

    Article  Google Scholar 

  • Jung, M., Arnell, A., de Lamo, X., García-Rangel, S., Lewis, M., Mark, J., Merow, C., Miles, L., Ondo, I., Pironon, S., et al. (2021). Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat Ecol Evol 5, 1499–1509.

    Article  PubMed  Google Scholar 

  • Kass, J.M., Guénard, B., Dudley, K.L., Jenkins, C.N., Azuma, F., Fisher, B.L., Parr, C.L., Gibb, H., Longino, J.T., Ward, P.S., et al. (2022). The global distribution of known and undiscovered ant biodiversity. Sci Adv 8, 9908.

    Article  Google Scholar 

  • Kraft, N.J., Metz, M.R., Condit, R.S., and Chave, J. (2010). The relationship between wood density and mortality in a global tropical forest data set. New Phytol 188, 1124–1136.

    Article  PubMed  Google Scholar 

  • Kreft, H., and Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA 104, 5925–5930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunstler, G., Falster, D., Coomes, D.A., Hui, F., Kooyman, R.M., Laughlin, D.C., Poorter, L., Vanderwel, M., Vieilledent, G., Wright, S.J., et al. (2016). Plant functional traits have globally consistent effects on competition. Nature 529, 204–207.

    Article  CAS  PubMed  Google Scholar 

  • Lamanna, C., Blonder, B., Violle, C., Kraft, N.J., Sandel, B., Šímová, I., DonoghueIi, J. C., Svenning, J.C., McGill, B.J., Boyle, B., et al. (2014). Functional trait space and the latitudinal diversity gradient. Proc Natl Acad Sci USA 111, 13745–13750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larjavaara, M., and Muller-Landau, H.C. (2010). Rethinking the value of high wood density. Funct Ecol 24, 701–705.

    Article  Google Scholar 

  • Latham, R.E., and Ricklefs, R.E. (1993). Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in species richness. Oikos 67, 325–333.

    Article  Google Scholar 

  • Luo, A., Xu, X., Liu, Y., Li, Y., Su, X., Li, Y., Lyu, T., Dimitrov, D., Larjavaara, M., and Peng, S. (2022). Spatio theory does not account for variation in specie plants. Glob Ecol Biogeogr, 1–13.

  • Mace, G.M., Gittleman, J.L., and Purvis, A. (2003). Preserving the tree of life. Science 300, 1707–1709.

    Article  CAS  PubMed  Google Scholar 

  • Mazel, F., Guilhaumon, F., Mouquet, N., Devictor, V., Gravel, D., Renaud, J., Cianciaruso, M.V., Loyola, R., Diniz-Filho, J.A.F., Mouillot, D., et al. (2014). Multifaceted diversity-area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Glob Ecol Biogeogr 23, 836–847.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittermeier, R.A., Mittermeier, C.G., Brooks, T.M., Pilgrim, J.D., Konstant, W.R., da Fonseca, G.A.B., and Kormos, C. (2003). Wilderness and biodiversity conservation. Proc Natl Acad Sci USA 100, 10309–10313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moilanen, A., Kujala, H., and Leathwick, J.R. (2009). The Zonation framework and software for conservation prioritization. In: Atte Moilanen, Kerrie A Wilson, and Hugh P Possingham, eds. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools. United Kingdom: Oxford University Press, 196–210.

    Chapter  Google Scholar 

  • Moles, A.T., Ackerly, D.D., Tweddle, J.C., Dickie, J.B., Smith, R., Leishman, M.R., Mayfield, M.M., Pitman, A., Wood, J.T., and Westoby, M. (2007). Global patterns in seed size. Glob Ecol Biogeogr 16, 109–116.

    Article  Google Scholar 

  • Moles, A.T., Ackerly, D.D., Webb, C.O., Tweddle, J.C., Dickie, J.B., Pitman, A.J., and Westoby, M. (2005). Factors that shape seed mass evolution. Proc Natl Acad Sci USA 102, 10540–10544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moles, A.T., Perkins, S.E., Laffan, S.W., Flores-Moreno, H., Awasthy, M., Tindall, M.L., Sack, L., Pitman, A., Kattge, J., Aarssen, L.W., et al. (2014). Which is a better predictor of plant traits: temperature or precipitation? J Veg Sci 25, 1167–1180.

    Article  Google Scholar 

  • Montaño-Centellas, F., Baiser, B., McGrew, A., Trotta, L., and Li, D. (2023). Global patterns and drivers of raptor phylogenetic and functional diversity. Glob Ecol Biogeogr 32, 281–294.

    Article  Google Scholar 

  • Mouchet, M.A., Villéger, S., Mason, N.W.H., and Mouillot, D. (2010). Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24, 867–876.

    Article  Google Scholar 

  • Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Niu, Y., Stevens, M., and Sun, H. (2021). Commercial harvesting has driven the evolution of camouflage in an alpine plant. Curr Biol 31, 446–449.e4.

    Article  CAS  PubMed  Google Scholar 

  • O’Brien, E. (1998). Water-energy dynamics, climate, and prediction of woody plant species richness: an interim general model. J Biogeogr 25, 379–398.

    Article  Google Scholar 

  • O’Brien, E.M., Field, R., and Whittaker, R.J. (2000). Climatic gradients in woody plant (tree and shrub) diversity: water-energy dynamics, residual variation, and topography. Oikos 89, 588–600.

    Article  Google Scholar 

  • Oliveira, B.F., Machac, A., Costa, G.C., Brooks, T.M., Davidson, A.D., Rondinini, C., and Graham, C.H. (2016). Species and functional diversity accumulate differently in mammals. Glob Ecol Biogeogr 25, 1119–1130.

    Article  Google Scholar 

  • Olson, M.E., Soriano, D., Rosell, J.A., Anfodillo, T., Donoghue, M.J., Edwards, E.J., León-Gómez, C., Dawson, T., Camarero Martínez, J.J., Castorena, M., et al. (2018). Plant height and hydraulic vulnerability to drought and cold. Proc Natl Acad Sci USA 115, 7551–7556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips, H.R.P., Guerra, C.A., Bartz, M.L.C., Briones, M.J.I., Brown, G., Crowther, T. W., Ferlian, O., Gongalsky, K.B., van den Hoogen, J., Krebs, J., et al. (2019). Global distribution of earthworm diversity. Science 366, 480–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimm, S.L. (2021). What is biodiversity conservation? Ambio 50, 976–980.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollock, L.J., Thuiller, W., and Jetz, W. (2017). Large conservation gains possible for global biodiversity facets. Nature 546, 141–144.

    Article  CAS  PubMed  Google Scholar 

  • Pontarp, M., Bunnefeld, L., Cabral, J.S., Etienne, R.S., Fritz, S.A., Gillespie, R., Graham, C.H., Hagen, O., Hartig, F., Huang, S., et al. (2019). The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol Evol 34, 211–223.

    Article  PubMed  Google Scholar 

  • Qian, H., Zhang, J., and Jiang, M. (2023). Global patterns of taxonomic and phylogenetic diversity of flowering plants: biodiversity hotspots and coldspots. Plant Divers 45, 265–271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahbek, C., Borregaard, M.K., Antonelli, A., Colwell, R.K., Holt, B.G., Nogues-Bravo, D., Rasmussen, C.M., Richardson, K., Rosing, M.T., Whittaker, R.J., et al. (2019). Building mountain biodiversity: geological and evolutionary processes. Science 365, 1114–1119.

    Article  CAS  PubMed  Google Scholar 

  • Rapacciuolo, G., Graham, C.H., Marin, J., Behm, J.E., Costa, G.C., Hedges, S.B., Helmus, M.R., Radeloff, V.C., Young, B.E., and Brooks, T.M. (2019). Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nat Ecol Evol 3, 53–61.

    Article  PubMed  Google Scholar 

  • Rohde, K. (1992). Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514.

    Article  Google Scholar 

  • Rosseel, Y. (2012). Lavaan: an R package for structural equation modeling. J Stat Soft 48, 1–36.

    Article  Google Scholar 

  • Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T.A., Salas, W., Zutta, B. R., Buermann, W., Lewis, S.L., Hagen, S., et al. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci USA 108, 9899–9904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatini, F.M., Jiménez-Alfaro, B., Jandt, U., Chytrý, M., Field, R., Kessler, M., Lenoir, J., Schrodt, F., Wiser, S.K., Arfin Khan, M.A.S., et al. (2022). Global patterns of vascular plant alpha diversity. Nat Commun 13, 4683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safi, K., Cianciaruso, M.V., Loyola, R.D., Brito, D., Armour-Marshall, K., and Diniz-Filho, J.A.F. (2011). Understanding global patterns of mammalian functional and phylogenetic diversity. Phil Trans R Soc B 366, 2536–2544.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandel, B., Weigelt, P., Kreft, H., Keppel, G., van der Sande, M.T., Levin, S., Smith, S., Craven, D., and Knight, T.M. (2019). Current climate, isolation and history drive global patterns of tree phylogenetic endemism. Glob Ecol Biogeogr 29, 4–15.

    Article  Google Scholar 

  • Schrodt, F., Kattge, J., Shan, H., Fazayeli, F., Joswig, J., Banerjee, A., Reichstein, M., Bönisch, G., Díaz, S., Dickie, J., et al. (2015). BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob Ecol Biogeogr 24, 1510–1521.

    Article  Google Scholar 

  • Shrestha N, Wang Z, Su X, Xu X, Lyu L, Liu Y, Dimitrov D, Kennedy J D, Wang Q, and Tang Z. (2018). Global patterns of Rhododendron diversity: the role of evolutionary time and diversification rates. Glob Ecol Biogeogr 27, 913–924.

    Article  Google Scholar 

  • Shrestha, N., Xu, X., Meng, J., and Wang, Z. (2021). Vulnerabilities of protected lands in the face of climate and human footprint changes. Nat Commun 12, 1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Šímová, I., Violle, C., Svenning, J.C., Kattge, J., Engemann, K., Sandel, B., Peet, R.K., Wiser, S.K., Blonder, B., McGill, B.J., et al. (2018). Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species. J Biogeogr 45, 895–916.

    Article  Google Scholar 

  • Smiley, T.M., Title, P.O., Zelditch, M.L., and Terry, R.C. (2020). Multi-dimensional biodiversity hotspots and the future of taxonomic, ecological and phylogenetic diversity: a case study of North American rodents. Glob Ecol Biogeogr 29, 516–533.

    Article  Google Scholar 

  • Smith, S.A., and Beaulieu, J.M. (2009). Life history influences rates of climatic niche evolution in flowering plants. Proc R Soc B 276, 4345–4352.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, S.A., and Brown, J.W. (2018). Constructing a broadly inclusive seed plant phylogeny. Am J Bot 105, 302–314.

    Article  PubMed  Google Scholar 

  • Smith, S.A., and Donoghue, M.J. (2008). Rates of molecular evolution are linked to life history in flowering plants. Science 322, 86–89.

    Article  CAS  PubMed  Google Scholar 

  • Stein, A., Gerstner, K., and Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 17, 866–880.

    Article  PubMed  Google Scholar 

  • Storch, D., Bohdalková, E., and Okie, J. (2018). The more-individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity-diversity relationship. Ecol Lett 21, 920–937.

    Article  PubMed  Google Scholar 

  • Strecker, A.L., Olden, J.D., Whittier, J.B., and Paukert, C.P. (2011). Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecol Appl 21, 3002–3013.

    Article  Google Scholar 

  • Strömberg, C.A.E. (2011). Evolution of grasses and grassland ecosystems. Annu Rev Earth Planet Sci 39, 517–544.

    Article  Google Scholar 

  • Swenson, N.G., and Enquist, B.J. (2007). Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am J Bot 94, 451–459.

    Article  PubMed  Google Scholar 

  • Thomson, F.J., Letten, A.D., Tamme, R., Edwards, W., and Moles, A.T. (2018). Can dispersal investment explain why tall plant species achieve longer dispersal distances than short plant species? New Phytol 217, 407–415.

    Article  PubMed  Google Scholar 

  • Thuiller, W., Guéguen, M., Georges, D., Bonet, R., Chalmandrier, L., Garraud, L., Renaud, J., Roquet, C., Van Es, J., Zimmermann, N.E., et al. (2014). Are different facets of plant diversity well protected against climate and land cover changes? a test study in the French Alps. Ecography 37, 1254–1266.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B., and Araujo, M.B. (2011). Consequences of climate change on the tree of life in Europe. Nature 470, 531–534.

    Article  CAS  PubMed  Google Scholar 

  • Unsworth, R.K., Cullen-Unsworth, L.C., Jones, B.L.H., and Lilley, R.J. (2022). The planetary role of seagrass conservation. Science 377, 609–613.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F., Mi, X., Chen, L., Xu, W., Durka, W., Swenson, N.G., Johnson, D.J., Worthy, S.J., Xue, J., Zhu, Y., et al. (2022). Differential impacts of adult trees on offspring and non-offspring recruits in a subtropical forest. Sci China Life Sci 65, 1905–1913.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., Fang, J., Tang, Z., and Lin, X. (2011). Patterns, determinants and models of woody plant diversity in China. Proc R Soc B 278, 2122–2132.

    Article  PubMed  Google Scholar 

  • Wang, Z., Li, Y., Su, X., Tao, S., Feng, X., Wang, Q., Xu, X., Liu, Y., Michaletz, S.T., Shrestha, N., et al. (2019). Patterns and ecological determinants of woody plant height in eastern Eurasia and its relation to primary productivity. J Plant Ecol 12, 791–803.

    Article  Google Scholar 

  • Watts, M.E., Ball, I.R., Stewart, R.S., Klein, C.J., Wilson, K., Steinback, C., Lourival, R., Kircher, L., and Possingham, H.P. (2009). Marxan with Zones: software for optimal conservation based land- and sea-use zoning. Environ Modell Softw 24, 1513–1521.

    Article  Google Scholar 

  • Weigelt, P., König, C., and Kreft, H. (2019). GIFT—a global inventory of floras and traits for macroecology and biogeography. J Biogeogr 47, 16–43.

    Article  Google Scholar 

  • Wieczynski, D.J., Boyle, B., Buzzard, V., Duran, S.M., Henderson, A.N., Hulshof, C.M., Kerkhoff, A.J., McCarthy, M.C., Michaletz, S.T., Swenson, N.G., et al. (2019). Climate shapes and shifts functional biodiversity in forests worldwide. Proc Natl Acad Sci USA 116, 587–592.

    Article  CAS  PubMed  Google Scholar 

  • Willig, M.R., Kaufman, D.M., and Stevens, R.D. (2003). Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34, 273–309.

    Article  Google Scholar 

  • Winter, M., Devictor, V., and Schweiger, O. (2013). Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol 28, 199–204.

    Article  PubMed  Google Scholar 

  • Wright, D.H. (1983). Species-energy theory: an extension of species-area theory. Oikos 41, 496.

    Article  Google Scholar 

  • Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., et al. (2004). The worldwide leaf economics spectrum. Nature 428, 821–827.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Dimitrov D, Shrestha N, Rahbek C, Wang Z, and Jordan G. (2019). A consistent species richness-climate relationship for oaks across the Northern Hemisphere. Glob Ecol Biogeogr 28, 1051–1066.

    Article  Google Scholar 

  • Zanne, A.E., Pearse, W.D., Cornwell, W.K., McGlinn, D.J., Wright, I.J., and Uyeda, J.C. (2018). Functional biogeography of angiosperms: life at the extremes. New Phytol 218, 1697–1709.

    Article  PubMed  Google Scholar 

  • Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A., FitzJohn, R.G., McGlinn, D.J., O’Meara, B.C., Moles, A.T., Reich, P.B., et al. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., and Qian, H. (2023). U.Taxonstand: an R package for standardizing scientific names of plants and animals. Plant Divers 45, 1–5.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (32125026, 31988102), the National Key Research Development Program of China (2022YFF0802300), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiheng Wang.

Ethics declarations

The author(s) declare that they have no conflict of Interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, A., Li, Y., Shrestha, N. et al. Global multifaceted biodiversity patterns, centers, and conservation needs in angiosperms. Sci. China Life Sci. 67, 817–828 (2024). https://doi.org/10.1007/s11427-023-2430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-023-2430-2

Navigation