Skip to main content
Log in

Genetic lineage tracing identifies adaptive mechanisms of pancreatic islet β cells in various mouse models of diabetes with distinct age of initiation

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

During the pathogenesis of type 1 diabetes (T1D) and type 2 diabetes (T2D), pancreatic islets, especially the β cells, face significant challenges. These insulin-producing cells adopt a regeneration strategy to compensate for the shortage of insulin, but the exact mechanism needs to be defined. High-fat diet (HFD) and streptozotocin (STZ) treatment are well-established models to study islet damage in T2D and T1D respectively. Therefore, we applied these two diabetic mouse models, triggered at different ages, to pursue the cell fate transition of islet β cells. Cre-LoxP systems were used to generate islet cell type-specific (α, β, or δ) green fluorescent protein (GFP)-labeled mice for genetic lineage tracing, thereinto β-cell GFP-labeled mice were tamoxifen induced. Single-cell RNA sequencing (scRNA-seq) was used to investigate the evolutionary trajectories and molecular mechanisms of the GFP-labeled β cells in STZ-treated mice. STZ-induced diabetes caused extensive dedifferentiation of β cells and some of which transdifferentiated into a or δ cells in both youth- and adulthood-initiated mice while this phenomenon was barely observed in HFD models. β cells in HFD mice were expanded via self-replication rather than via transdifferentiation from α or δ cells, in contrast, α or δ cells were induced to transdifferentiate into β cells in STZ-treated mice (both youth- and adulthood-initiated). In addition to the re-dedifferentiation of β cells, it is also highly likely that these “α or δ” cells transdifferentiated from pre-existing β cells could also re-trans-differentiate into insulin-producing β cells and be beneficial to islet recovery. The analysis of ScRNA-seq revealed that several pathways including mitochondrial function, chromatin modification, and remodeling are crucial in the dynamic transition of β cells. Our findings shed light on how islet β cells overcome the deficit of insulin and the molecular mechanism of islet recovery in T1D and T2D pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agathocleous, M., Love, N.K., Randlett, O., Harris, J.J., Liu, J., Murray, A.J., and Harris, W.A. (2012). Metabolic differentiation in the embryonic retina. Nat Cell Biol 14, 859–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atanes, P., Ashik, T., and Persaud, S.J. (2021). Obesity-induced changes in human islet G protein-coupled receptor expression: implications for metabolic regulation. Pharmacol Ther 228, 107928.

    Article  CAS  PubMed  Google Scholar 

  • Blum, B., Hrvatin, S., Schuetz, C., Bonal, C., Rezania, A., and Melton, D.A. (2012). Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3. Nat Biotechnol 30, 261–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bock, T., Pakkenberg, B., and Buschard, K. (2003). Increased islet volume but unchanged islet number in ob/ob mice. Diabetes 52, 1716–1722.

    Article  CAS  PubMed  Google Scholar 

  • Brereton, M.F., Iberl, M., Shimomura, K., Zhang, Q., Adriaenssens, A.E., Proks, P., Spiliotis, Dace, W., Mattis, K.K., Ramracheya, R., et al. (2014). Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nat Commun 5, 4639.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Butler, A.E., Cao-Minh, L., Galasso, R., Rizza, R.A., Corradin, A., Cobelli, C., and Butler, P.C. (2010). Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy. Diabetologia 53, 2167–2176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler, A.E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R.A., and Butler, P.C. (2003). β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102–110.

    Article  CAS  PubMed  Google Scholar 

  • Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos, S., Christiansen, L., Steemers, F.J., et al. (2019). The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Chera, S., Baronnier, D., Ghila, L., Cigliola, V., Jensen, J.N., Gu, G., Furuyama, K., Thorel, F., Gribble, F.M., Reimann, F., et al. (2014). Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature 514, 503–507.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cinti, F., Bouchi, R., Kim-Muller, J.Y., Ohmura, Y., Sandoval, P.R., Masini, M., Marselli, L., Suleiman, M., Ratner, L.E., Marchetti, P., et al. (2016). Evidence of β-cell dedifferentiation in human type 2 diabetes. J Clin Endocrinol Metab 101, 1044–1054.

    Article  CAS  PubMed  Google Scholar 

  • Courty, E., Besseiche, A., Do, T.T.H., Liboz, A., Aguid, F.M., Quilichini, E., Buscato, M., Gourdy, P., Gautier, J.F., Riveline, J.P., et al. (2019). Adaptive β-cell neogenesis in the adult mouse in response to glucocorticoid-induced insulin resistance. Diabetes 68, 95–108.

    Article  CAS  PubMed  Google Scholar 

  • Cui, M., Wang, Z., Bassel-Duby, R., and O.E.N. (2018). Genetic and epigenetic regulation of cardiomyocytes in development, regeneration and disease. Development 145, dev171983.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eizirik, D.L., Pasquali, L., and Cnop, M. (2020). Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol 16, 349–362.

    Article  CAS  PubMed  Google Scholar 

  • Elbein, S.C., Wegner, K., and Kahn, S.E. (2000). Reduced β-cell compensation to the insulin resistance associated with obesity in members of caucasian familial type 2 diabetic kindreds. Diabetes Care 23, 221–227.

    Article  CAS  PubMed  Google Scholar 

  • Fellmann, L., Nascimento, A.R., Tibiriça, E., and Bousquet, P. (2013). Murine models for pharmacological studies of the metabolic syndrome. Pharmacol Ther 137, 331–340.

    Article  CAS  PubMed  Google Scholar 

  • Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A.K., Slichter, C.K., Miller, H.W., McElrath, M.J., Prlic, M., et al. (2015). MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16, 278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, R., Fu, Q., Jiang, H.M., Shen, M., Zhao, R.L., Qian, Y., He, Y.Q., Xu, K.F., Xu, X. Y., Chen, H., et al. (2021). Temporal metabolic and transcriptomic characteristics crossing islets and liver reveal dynamic pathophysiology in diet-induced diabetes. iScience 24, 102265.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, T., McKenna, B., Li, C., Reichert, M., Nguyen, J., Singh, T., Yang, C., Pannikar, A., Doliba, N., Zhang, T., et al. (2014). Pdx1 maintains β cell identity and function by repressing an a cell program. Cell Metab 19, 259–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregg, B.E., Moore, P.C., Demozay, D., Hall, B.A., Li, M., Husain, A., Wright, A.J., Atkinson, M.A., and Rhodes, C.J. (2012). Formation of a human β-cell population within pancreatic islets is set early in life. J Clin Endocrinol Metab 97, 3197–3206. Gribben, C., Lambert, C., Messal, H.A., Hubber, E.L., Rackham, C., Evans, I., Heimberg, H., Jones, P., Sancho, R., and Behrens, A. (2021). Ductal Ngn3-expressing progenitors contribute to adult β cell neogenesis in the pancreas. Cell Stem Cell 28, 2000–2008.e4.

    Google Scholar 

  • Gu, C., Stein, G.H., Pan, N., Goebbels, S., Hürnberg, H., Nave, K.A., Herrera, P., White, P., Kaestner, K.H., Sussel, L., et al. (2010). Pancreatic β cells require neuroD to achieve and maintain functional maturity. Cell Metab 11, 298–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez, G.D., Bender, A.S., Cirulli, V., Mastracci, T.L., Kelly, S.M., Tsirigos, A., Kaestner, K.H., and Sussel, L. (2017). Pancreatic β cell identity requires continual repression of non-β cell programs. J Clin Invest 127, 244–259.

    Article  PubMed  Google Scholar 

  • Hanley, S.C., Austin, E., Assouline-Thomas, B., Kapeluto, J., Blaichman, J., Moosavi, M., Petropavlovskaia, M., and Rosenberg, L. (2010). β-Cell mass dynamics and islet cell plasticity in human type 2 diabetes. Endocrinology 151, 1462–1472.

    Article  CAS  PubMed  Google Scholar 

  • Honzawa, N., and Fujimoto, K. (2021). The plasticity of pancreatic β-cells. Metabolites 11, 218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, X., Yan, L., Meng, J., Liu, N., Zhu, S., Jiang, Z., Kou, S., Feng, T., Lin, C.P., Zhou, B., et al. (2023). Genetic lineage tracing identifies cardiac mesenchymal-to-adipose transition in an arrhythmogenic cardiomyopathy model. Sci China Life Sci 66, 51–66.

    Article  CAS  PubMed  Google Scholar 

  • Hull, R.L., Kodama, K., Utzschneider, K.M., Carr, D.B., Prigeon, R.L., and Kahn, S.E. (2005). Dietary-fat-induced obesity in mice results in β-cell hyperplasia but not increased insulin release: evidence for specificity of impaired β-cell adaptation. Diabetologia 48, 1350–1358.

    Article  CAS  PubMed  Google Scholar 

  • Ji, Y., Sun, S., Shrestha, N., Darragh, L.B., Shirakawa, J., Xing, Y., He, Y., Carboneau, B.A., Kim, H., An, D., et al. (2019). Toll-like receptors TLR2 and TLR4 block the replication of pancreatic β cells in diet-induced obesity. Nat Immunol 20, 677–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, H., Liu, K., and Zhou, B. (2021). Dual recombinases-based genetic lineage tracing for stem cell research with enhanced precision. Sci China Life Sci 64, 2060–2072.

    Article  ADS  PubMed  Google Scholar 

  • Kahn, S.E., Hull, R.L., and Utzschneider, K.M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kataoka, M., Kawamuro, Y., Shiraki, N., Miki, R., Sakano, D., Yoshida, T., Yasukawa, T., Kume, K., and Kume, S. (2013). Recovery from diabetes in neonatal mice after a low-dose streptozotocin treatment. Biochem Biophys Res Commun 430, 1103–1108.

    Article  CAS  PubMed  Google Scholar 

  • Khacho, M., Clark, A., Svoboda, D.S., Azzi, J., MacLaurin, J.G., Meghaizel, C., Sesaki, H., Lagace, D.C., Germain, M., Harper, M.E., et al. (2016). Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19, 232–247.

    Article  CAS  PubMed  Google Scholar 

  • Kim-Muller, J.Y., Fan, J., Kim, Y.J.R., Lee, S.A., Ishida, E., Blaner, W.S., and Accili, D. (2016). Aldehyde dehydrogenase 1a3 defines a subset of failing pancreatic β-cells in diabetic mice. Nat Commun 7, 12631.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Krentz, N.A.J., Shea, L.D., Huising, M.O., and Shaw, J.A.M. (2021). Restoring normal islet mass and function in type 1 diabetes through regenerative medicine and tissue engineering. Lancet Diabetes Endocrinol 9, 708–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam, C.J., Chatterjee, A., Shen, E., Cox, A.R., and Kushner, J.A. (2019). Low-level insulin content within abundant non-β islet endocrine cells in long-standing type 1 diabetes. Diabetes 68, 598–608.

    Article  CAS  PubMed  Google Scholar 

  • Lam, C.J., Jacobson, D.R., Rankin, M.M., Cox, A.R., and Kushner, J.A. (2017). β cells persist in T1D pancreata without evidence of ongoing β-cell turnover or neogenesis. J Clin Endocrinol Metab 102, 2647–2659.

    Article  PubMed  PubMed Central  Google Scholar 

  • Le, D.T., Durham, J.N., Smith, K.N., Wang, H., Bartlett, B.R., Aulakh, L.K., Lu, S., Kemberling, H., Wilt, C., Luber, B.S., et al. (2017). Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Yang, K.Y., Chan, V.W., Leung, K.T., Zhang, X.B., Wong, A.S., Chong, C.C.N., Wang, C.C., Ku, M., and Lui, K.O. (2020). Single-cell RNA-seq reveals that CD9 is a negative marker of glucose-responsive pancreatic β-like cells derived from human pluripotent stem cells. Stem Cell Reports 15, 1111–1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Like, A.A., and Rossini, A.A. (1976). Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193, 415–417.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Linnemann, A.K., Baan, M., and Davis, D.B. (2014). Pancreatic β-cell proliferation in obesity. Adv Nutr 5, 278–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Redondo, P., and Izpisua Belmonte, J.C. (2020). Tailored chromatin modulation to promote tissue regeneration. Semin Cell Dev Biol 97, 3–15.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, N.G., and Richardson, S.J. (2018). Fifty years of pancreatic islet pathology in human type 1 diabetes: insights gained and progress made. Diabetologia 61, 2499–2506.

    Article  PubMed  PubMed Central  Google Scholar 

  • Noguchi, G.M., and Huising, M.O. (2019). Integrating the inputs that shape pancreatic islet hormone release. Nat Metab 1, 1189–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagliuca, F.W., Millman, J.R., Gürtler, M., Segel, M., Van Dervort, A., Ryu, J.H., Peterson, Q.P., Greiner, D., and Melton, D.A. (2014). Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepin, M.E., Bickerton, H.H., Bethea, M., Hunter, C.S., Wende, A.R., and Banerjee, R. R. (2019). Prolactin receptor signaling regulates a pregnancy-specific transcriptional program in mouse islets. Endocrinology 160, 1150–1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers, A.C. (2021). Type 1 diabetes mellitus: much progress, many opportunities. J Clin Invest 131, e142242.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu, Y., Buffonge, S., Ramnath, R., Jenner, S., Fawaz, S., Arkill, K.P., Neal, C., Verkade, P., White, S.J., Hezzell, M., et al. (2022). Endothelial glycocalyx is damaged in diabetic cardiomyopathy: angiopoietin 1 restores glycocalyx and improves diastolic function in mice. Diabetologia 65, 879–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rankin, M.M., and Kushner, J.A. (2009). Adaptive β-cell proliferation is severely restricted with advanced age. Diabetes 58, 1365–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rorsman, P., and Huising, M.O. (2018). The somatostatin-secreting pancreatic δ-cell in health and disease. Nat Rev Endocrinol 14, 404–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosselot, C., Kumar, A., Lakshmipathi, J., Zhang, P., Lu, G., Katz, L.S., Prochownik, E. V., Stewart, A.F., Lambertini, L., Scott, D.K., et al. (2019). Myc is required for adaptive β-cell replication in young mice but is not sufficient in one-year-old mice fed with a high-fat diet. Diabetes 68, 1934–1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan, Z., Haley, E., Orozco, I.J., Sabat, M., Myers, R., Roth, R., Du, J., and Lü, W. (2021). Structures of the TRPM5 channel elucidate mechanisms of activation and inhibition. Nat Struct Mol Biol 28, 604–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachs, S., Bastidas-Ponce, A., Tritschler, S., Bakhti, M., Böttcher, A., Sánchez-Garrido, M.A., Tarquis-Medina, M., Kleinert, M., Fischer, K., Jall, S., et al. (2020). Targeted pharmacological therapy restores β-cell function for diabetes remission. Nat Metab 2, 192–209.

    Article  CAS  PubMed  Google Scholar 

  • Saisho, Y., Butler, A.E., Manesso, E., Elashoff, D., Rizza, R.A., and Butler, P.C. (2013). β-cell mass and turnover in humans. Diabetes Care 36, 111–117.

    Article  PubMed  Google Scholar 

  • Salinno, C., Büttner, M., Cota, P., Tritschler, S., Tarquis-Medina, M., Bastidas-Ponce, A., Scheibner, K., Burtscher, I., Böttcher, A., Theis, F.J., et al. (2021). CD81 marks immature and dedifferentiated pancreatic β-cells. Mol Metab 49, 101188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., and Regev, A. (2015). Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33, 495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmughapriya, S., Tomar, D., Dong, Z., Slovik, K.J., Nemani, N., Natarajaseenivasan, K., Carvalho, E., Lu, C., Corrigan, K., Garikipati, V.N.S., et al. (2018). FOXD1-dependent MICU1 expression regulates mitochondrial activity and cell differentiation. Nat Commun 9, 3449.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Shrivastava, V., Lee, M., Lee, D., Pretorius, M., Radford, B., Makkar, G., and Huang, C. (2021). β-cell adaptation to pregnancy requires prolactin action on both beta and non-β cells. Sci Rep 11, 10372.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck Iii, W.M., Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, J., Ni, Q., Xie, J., Xu, M., Zhang, J., Kuang, J., Wang, Y., Ning, G., and Wang, Q. (2019). β-cell dedifferentiation in patients with T2D with adequate glucose control and nondiabetic chronic pancreatitis. J Clin Endocrinol Metab 104, 83–94.

    Article  PubMed  Google Scholar 

  • Talchai, C., Xuan, S., Lin, H.V., Sussel, L., and Accili, D. (2012). Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 150, 1223–1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, G., Ma, C., Li, L., Zhang, S., Li, F., Wu, J., Yin, Y., Zhu, Q., Liang, Y., Wang, R., et al. (2022). PITPNC1 promotes the thermogenesis of brown adipose tissue under acute cold exposure. Sci China Life Sci 65, 2287–2300.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, B.L., Liu, F.F., and Sander, M. (2013). Nkx6.1 is essential for maintaining the functional state of pancreatic β-cells. Cell Rep 4, 1262–1275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorel, F., Népote, V., Avril, I., Kohno, K., Desgraz, R., Chera, S., and Herrera, P.L. (2010). Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464, 1149–1154.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Warshauer, J.T., Bluestone, J.A., and Anderson, M.S. (2020). New frontiers in the treatment of type 1 diabetes. Cell Metab 31, 46–61.

    Article  CAS  PubMed  Google Scholar 

  • Xue, X., Shu, M., Xiao, Z., Zhao, Y., Li, X., Zhang, H., Fan, Y., Wu, X., Chen, B., Xu, B., et al. (2022). Lineage tracing reveals the origin of Nestin-positive cells are heterogeneous and rarely from ependymal cells after spinal cord injury. Sci China Life Sci 65, 757–769.

    Article  CAS  PubMed  Google Scholar 

  • Yoneda, S., Uno, S., Iwahashi, H., Fujita, Y., Yoshikawa, A., Kozawa, J., Okita, K., Takiuchi, D., Eguchi, H., Nagano, H., et al. (2013). Predominance of β-cell neogenesis rather than replication in humans with an impaired glucose tolerance and newly diagnosed diabetes. J Clin Endocrinol Metab 98, 2053–2061.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Mack, R., Breslin, P., and Zhang, J. (2020a). Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J Hematol Oncol 13, 157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Wang, S., Zhang, L., Zhou, F., Zhu, K., Zhu, Q., Liu, Q., Liu, Y., Jiang, L., Ning, G., et al. (2020b). Protein acetylation derepresses serotonin synthesis to potentiate pancreatic β-cell function through HDAC1-PKA-Tph1 signaling. Theranostics 10, 7351–7368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, H., Huang, X., Liu, Z., Pu, W., Lv, Z., He, L., Li, Y., Zhou, Q., Lui, K.O., and Zhou, B. (2021). Pre-existing β-cells but not progenitors contribute to new beta cells in the adult pancreas. Nat Metab 3, 352–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, L., He, X., Cai, P., Li, T., Peng, R., Dang, J., Li, Y., Li, H., Huang, F., Shi, G., et al. (2021). Induced regulatory T cells suppress Tc1 cells through TGF-β signaling to ameliorate STZ-induced type 1 diabetes mellitus. Cell Mol Immunol 18, 698–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Q., and Melton, D.A. (2018). Pancreas regeneration. Nature 557, 351–358.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (81830023, 82070803, 82100838, 82100837, 81900708). The authors wish to thank all research staff in Department of Endocrinology of the First Affiliated Hospital of Nanjing Medical University who participated in this work. We would like to thank the Core Facility of the First Affiliated Hospital of Nanjing Medical University for its help in the experiment. Part of the graphical abstract was created by Figdraw.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuanfeng Xu or Tao Yang.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Qian, Y., Jiang, H. et al. Genetic lineage tracing identifies adaptive mechanisms of pancreatic islet β cells in various mouse models of diabetes with distinct age of initiation. Sci. China Life Sci. 67, 504–517 (2024). https://doi.org/10.1007/s11427-022-2372-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2372-y

Navigation