Skip to main content
Log in

Identification and validation of key biomarkers and potential therapeutic targets for primary open-angle glaucoma

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Primary open-angle glaucoma (POAG) is a prevalent cause of blindness worldwide, resulting in degeneration of retinal ganglion cells and permanent damage to the optic nerve. However, the underlying pathogenetic mechanisms of POAG are currently indistinct, and there has been no effective nonsurgical treatment regimen. The objective of this study is to identify novel biomarkers and potential therapeutic targets for POAG. The mRNA expression microarray datasets GSE27276 and GSE138125, as well as the single-cell high-throughput RNA sequencing (scRNA-seq) dataset GSE148371 were utilized to screen POAG-related differentially expressed genes (DEGs). Functional enrichment analyses, protein-protein interaction (PPI) analysis, and weighted gene co-expression network analysis (WGCNA) of the DEGs were performed. Subsequently, the hub genes were validated at a single-cell level, where trabecular cells were annotated, and the mRNA expression levels of target genes in different cell clusters were analyzed. Immunofluorescence and quantitative real-time PCR (qPCR) were performed for further validation. DEGs analysis identified 43 downregulated and 32 upregulated genes in POAG, which were mainly enriched in immune-related pathways, oxidative stress, and endoplasmic reticulum (ER) stress. PPI networks showed that FN1 and DUSP1 were the central hub nodes, while GPX3 and VAV3 were screened out as hub genes through WGCNA and subsequently validated by qPCR. Finally, FN1, GPX3, and VAV3 were determined to be pivotal core genes via single-cell validation. The relevant biomarkers involved in the pathogenesis of POAG, may serve as potential therapeutic targets. Further studies are necessary to unveil the mechanisms underlying the expression variations of these genes in POAG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article (and its supplementary information files), further inquiries can be directed to the corresponding authors.

References

  • Babizhayev, M.A., and Brodskaya, M.W. (1989). Fibronectin detection in drainage outflow system of human eyes in ageing and progression of open-angle glaucoma. Mech Ageing Dev 47, 145–157.

    PubMed  CAS  Google Scholar 

  • Baneyx, G., Baugh, L., and Vogel, V. (2001). Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer. Proc Natl Acad Sci USA 98, 14464–14468.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Basseri, S., and Austin, R.C. (2012). Endoplasmic reticulum stress and lipid metabolism: mechanisms and therapeutic potential. Biochem Res Int 2012, 1–13.

    Google Scholar 

  • Beykin, G., Norcia, A.M., Srinivasan, V.J., Dubra, A., and Goldberg, J.L. (2021). Discovery and clinical translation of novel glaucoma biomarkers. Prog Retinal Eye Res 80, 100875.

    Google Scholar 

  • Bindea, G., Mlecnik, B., Tosolini, M., Kirilovsky, A., Waldner, M., Obenauf, A.C., Angell, H., Fredriksen, T., Lafontaine, L., Berger, A., et al. (2013). Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795.

    PubMed  CAS  Google Scholar 

  • Birke, K., Lütjen-Drecoll, E., Kerjaschki, D., and Birke, M.T. (2010). Expression of podoplanin and other lymphatic markers in the human anterior eye segment. Invest Ophthalmol Vis Sci 51, 344–354.

    PubMed  Google Scholar 

  • Borras, T. (2003). Gene expression in the trabecular meshwork and the influence of intraocular pressure. Prog Retinal Eye Res 22, 435–463.

    CAS  Google Scholar 

  • Brigelius-Flohé, R., and Maiorino, M. (2013). Glutathione peroxidases. Biochim Biophys Acta 1830, 3289–3303.

    PubMed  Google Scholar 

  • Chen, Y., Zardi, L., and Peters, D.M.P. (1997). High-resolution cryo-scanning electron microscopy study of the macromolecular structure of fibronectin fibrils. Scanning 19, 349–355.

    PubMed  CAS  Google Scholar 

  • Chu, B.X., Fan, R.F., Lin, S.Q., Yang, D.B., Wang, Z.Y., and Wang, L. (2018). Interplay between autophagy and apoptosis in lead(II)-induced cytotoxicity of primary rat proximal tubular cells. J Inorg Biochem 182, 184–193.

    PubMed  CAS  Google Scholar 

  • Dong, Z., Liu, Y., Levin, L., Oleksowicz, L., Wang, J., and Lu, S. (2011). Vav3 oncogene is involved in regulation of secretory phospholipase A2-IIa expression in prostate cancer. Oncol Rep 25, 1511–1516.

    PubMed  CAS  Google Scholar 

  • Evangelho, K., Mogilevskaya, M., Losada-Barragan, M., and Vargas-Sanchez, J.K. (2019). Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: a review of the literature. Int Ophthalmol 39, 259–271.

    PubMed  Google Scholar 

  • Fernández, A., Ordóñez, R., Reiter, R.J., González-Gallego, J., and Mauriz, J.L. (2015). Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res 59, 292–307.

    PubMed  Google Scholar 

  • Fonseca, A.C.R.G., Ferreiro, E., Oliveira, C.R., Cardoso, S.M., and Pereira, C.F. (2013). Activation of the endoplasmic reticulum stress response by the amyloid-beta 1–40 peptide in brain endothelial cells. Biochim Biophys Acta Mol Basis Dis 1832, 2191–2203.

    CAS  Google Scholar 

  • Fox, S., Leitch, A.E., Duffin, R., Haslett, C., and Rossi, A.G. (2010). Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun 2, 216–227.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fritsch, K., Finke, J., and Grüllich, C. (2013). Suppression of granzyme B activity and caspase-3 activation in leukaemia cells constitutively expressing the protease inhibitor 9. Ann Hematol 92, 1603–1609.

    PubMed  CAS  Google Scholar 

  • Fujikawa, K., Iwata, T., Inoue, K., Akahori, M., Kadotani, H., Fukaya, M., Watanabe, M., Chang, Q., Barnett, E.M., and Swat, W. (2010). VAV2 and VAV3 as candidate disease genes for spontaneous glaucoma in mice and humans. PLoS ONE 5, e9050.

    PubMed  PubMed Central  Google Scholar 

  • Halliwell, B. (2012). Free radicals and antioxidants: updating a personal view. Nutr Rev 70, 257–265.

    PubMed  Google Scholar 

  • Han, J., and Kaufman, R.J. (2016). The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 57, 1329–1338.

    PubMed  PubMed Central  CAS  Google Scholar 

  • He, R., Cui, M., Lin, H., Zhao, L., Wang, J., Chen, S., and Shao, Z. (2018). Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells. Life Sci 199, 122–130.

    PubMed  CAS  Google Scholar 

  • Higuchi, M., Honda, T., Proske, R.J., and Yeh, E.T. (1998). Regulation of reactive oxygen species-induced apoptosis and necrosis by caspase 3-like proteases. Oncogene 17, 2753–2760.

    PubMed  CAS  Google Scholar 

  • Huang, L., Li, R., Ye, L., Zhang, S., Tian, H., Du, M., Qu, C., Li, S., Li, J., Yang, M., et al. (2022). Deep Sc-RNA sequencing decoding the molecular dynamic architecture of the human retina. Sci China Life Sci 66, 496–515.

    PubMed  Google Scholar 

  • Jonas, J.B., Aung, T., Bourne, R.R., Bron, A.M., Ritch, R., and Panda-Jonas, S. (2017). Glaucoma. Lancet 390, 2183–2193.

    PubMed  Google Scholar 

  • Kho, C.W., Lee, P.Y., Bae, K.H., Kang, S., Cho, S., Lee, D.H., Sun, C.H., Yi, G.S., Park, B.C., and Park, S.G. (2008). Gpx3-dependent responses against oxidative stress in Saccharomyces cerevisiae. J Microbiol Biotechnol 18, 270–282.

    PubMed  CAS  Google Scholar 

  • Kwon, Y.H., Fingert, J.H., Kuehn, M.H., and Alward, W.L.M. (2009). Primary open-angle glaucoma. N Engl J Med 360, 1113–1124.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liton, P.B., Luna, C., Challa, P., Epstein, D.L., and Gonzalez, P. (2006). Genome-wide expression profile of human trabecular meshwork cultured cells, nonglaucomatous and primary open angle glaucoma tissue. Mol Vis 12, 774–790.

    PubMed  CAS  Google Scholar 

  • Liu, X., Khodeiry, M.M., Lin, D., Sun, Y., Zhang, Q., Wang, J., Lee, R.K., and Wang, N. (2022). The association of cerebrospinal fluid pressure with optic nerve head and macular vessel density. Sci China Life Sci 65, 1171–1180.

    PubMed  Google Scholar 

  • Luo, S., and Rubinsztein, D.C. (2010). Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ 17, 268–277.

    PubMed  CAS  Google Scholar 

  • Moreno, M.C., Campanelli, J., Sande, P., Sáenz, D.A., Keller Sarmiento, M.I., and Rosenstein, R.E. (2004). Retinal oxidative stress induced by high intraocular pressure. Free Radic Biol Med 37, 803–812.

    PubMed  CAS  Google Scholar 

  • Nathan, C., and Ding, A. (2010). Nonresolving inflammation. Cell 140, 871–882.

    PubMed  CAS  Google Scholar 

  • Otomo, C., Metlagel, Z., Takaesu, G., and Otomo, T. (2013). Structure of the human ATG12∼ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol 20, 59–66.

    PubMed  CAS  Google Scholar 

  • Passaia, G., Spagnolo Fonini, L., Caverzan, A., Jardim-Messeder, D., Christoff, A.P., Gaeta, M.L., de Araujo Mariath, J.E., Margis, R., and Margis-Pinheiro, M. (2013). The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci 208, 93–101.

    PubMed  CAS  Google Scholar 

  • Roy Chowdhury, U., Hann, C.R., Stamer, W.D., and Fautsch, M.P. (2015). Aqueous humor outflow: dynamics and disease. Invest Ophthalmol Vis Sci 56, 2993–3003.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rozpędek, W., Pytel, D., Popławski, T., Walczak, A., Gradzik, K., Wawrzynkiewicz, A., Wojtczak, R., Mucha, B., Diehl, J.A., and Majsterek, I. (2019). Inhibition of the PERK-dependent unfolded protein response signaling pathway involved in the pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 16, 209–218.

    PubMed  Google Scholar 

  • Saccà, S.C., Gandolfi, S., Bagnis, A., Manni, G., Damonte, G., Traverso, C. E., and Izzotti, A. (2016). From DNA damage to functional changes of the trabecular meshwork in aging and glaucoma. Ageing Res Rev 29, 26–41.

    PubMed  Google Scholar 

  • Sahay, P., Reddy, S., Prusty, B.K., Modak, R., and Rao, A. (2021). TGFβ1, MMPs and cytokines profiles in ocular surface: Possible tear biomarkers for pseudoexfoliation. PLoS ONE 16, e0249759.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sauzeau, V., Carvajal-González, J.M., Riolobos, A.S., Sevilla, M.A., Menacho-Márquez, M., Román, Á.C., Abad, A., Montero, M.J., Fernández-Salguero, P., and Bustelo, X.R. (2011). Transcriptional factor aryl hydrocarbon receptor (Ahr) controls cardiovascular and respiratory functions by regulating the expression of the Vav3 proto-oncogene. J Biol Chem 286, 2896–2909.

    PubMed  CAS  Google Scholar 

  • Sauzeau, V., Sevilla, M.A., Rivas-Elena, J.V., de Álava, E., Montero, M.J., López-Novoa, J.M., and Bustelo, X.R. (2006). Vav3 proto-oncogene deficiency leads to sympathetic hyperactivity and cardiovascular dysfunction. Nat Med 12, 841–845.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shi, D., Takano, Y., Nakazawa, T., Mengkegale, M.G., Yokokura, S., Nishida, K., and Fuse, N. (2013). Molecular genetic analysis of primary open-angle glaucoma, normal tension glaucoma, and developmental glaucoma for the VAV2 and VAV3 gene variants in Japanese subjects. Biochem Biophys Res Commun 432, 509–512.

    PubMed  CAS  Google Scholar 

  • Singh, P., Carraher, C., and Schwarzbauer, J.E. (2010). Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol 26, 397–419.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stamer, W.D., and Clark, A.F. (2017). The many faces of the trabecular meshwork cell. Exp Eye Res 158, 112–123.

    PubMed  CAS  Google Scholar 

  • Stone, E.M., Fingert, J.H., Alward, W.L.M., Nguyen, T.D., Polansky, J.R., Sunden, S.L.F., Nishimura, D., Clark, A.F., Nystuen, A., Nichols, B.E., et al. (1997). Identification of a gene that causes primary open angle glaucoma. Science 275, 668–670.

    PubMed  CAS  Google Scholar 

  • Sun, Y., Jin, Z.B., Wei, S., Jia, H., Cao, K., Hu, J., Lin, C., An, W., Guo, J., Li, H., et al. (2022). New loci for refractive errors and ocular biometric parameters in young Chinese Han adults. Sci China Life Sci 65, 2050–2061.

    PubMed  CAS  Google Scholar 

  • Tabak, S., Schreiber-Avissar, S., and Beit-Yannai, E. (2021). Crosstalk between microRNA and oxidative stress in primary open-angle glaucoma. Int J Mol Sci 22, 2421.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tan, B., Zhang, M., Li, Y., Zhao, Q., Fan, L., Liu, Y., and Wang, D. (2016). Inhibition of Vav3 gene can promote apoptosis of human gastric cancer cell line MGC803 by regulating ERK pathway. Tumor Biol 37, 7823–7833.

    CAS  Google Scholar 

  • Tang, B., Li, S., Cao, W., and Sun, X. (2019). The association of oxidative stress status with open-angle glaucoma and exfoliation glaucoma: a systematic review and meta-analysis. J Ophthalmol 2019, 1–14.

    CAS  Google Scholar 

  • van Zyl, T., Yan, W., McAdams, A., Peng, Y.R., Shekhar, K., Regev, A., Juric, D., and Sanes, J.R. (2020). Cell atlas of aqueous humor outflow pathways in eyes of humans and four model species provides insight into glaucoma pathogenesis. Proc Natl Acad Sci USA 117, 10339–10349.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vernazza, S., Tirendi, S., Bassi, A.M., Traverso, C.E., and Saccà, S.C. (2020). Neuroinflammation in primary open-angle glaucoma. J Clin Med 9, 3172.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, L., Yu, T., Zhang, X., Cai, X., and Sun, H. (2021). Network integration analysis and immune infiltration analysis reveal potential biomarkers for primary open-angle glaucoma. Front Cell Dev Biol 9, 793638.

    PubMed  PubMed Central  Google Scholar 

  • Wang, R., and Wiggs, J.L. (2014). Common and rare genetic risk factors for glaucoma. Cold Spring Harb Perspect Med 4, a017244.

    PubMed  PubMed Central  Google Scholar 

  • Watanabe, Y., Hamanaka, T., Takemura, T., and Murakami, A. (2010). Involvement of platelet coagulation and inflammation in the endothelium of Schlemm’s canal. Invest Ophthalmol Vis Sci 51, 277–283.

    PubMed  Google Scholar 

  • Weinreb, R.N., and Khaw, P.T. (2004). Primary open-angle glaucoma. Lancet 363, 1711–1720.

    PubMed  Google Scholar 

  • Weinreb, R.N., Leung, C.K.S., Crowston, J.G., Medeiros, F.A., Friedman, D.S., Wiggs, J.L., and Martin, K.R. (2016). Primary open-angle glaucoma. Nat Rev Dis Primers 2, 16067.

    PubMed  Google Scholar 

  • Xue, B., Wang, P., Yu, W., Feng, J., Li, J., Zhao, R., Yang, Z., Yan, X., and Duan, H. (2022). CD146 as a promising therapeutic target for retinal and choroidal neovascularization diseases. Sci China Life Sci 65, 1157–1170.

    PubMed  CAS  Google Scholar 

  • Yang, J., Chen, Y., Zou, T., Xue, B., Yang, F., Wang, X., Huo, Y., Yan, B., Xu, Y., He, S., et al. (2023). Cholesterol homeostasis regulated by ABCA1 is critical for retinal ganglion cell survival. Sci China Life Sci 66, 211–225.

    PubMed  CAS  Google Scholar 

  • Yang, L., Li, S., Miao, L., Huang, H., Liang, F., Teng, X., Xu, L., Wang, Q., Xiao, W., Ridder Iii, W.H., et al. (2016). Rescue of glaucomatous neurodegeneration by differentially modulating neuronal endoplasmic reticulum stress molecules. J Neurosci 36, 5891–5903.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yin, R., and Chen, X. (2019). Regulatory effect of miR-144–3p on the function of human trabecular meshwork cells and fibronectin-1. Exp Ther Med 18, 647–653.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshida, H. (2007). ER stress and diseases. FEBS J 274, 630–658.

    PubMed  CAS  Google Scholar 

  • Zhou, S., Wu, W., Wang, Z., Wang, Z., Su, Q., Li, X., Yu, Y., Zhang, W., Zhu, M., and Lin, W. (2020). RelB regulates the homeostatic proliferation but not the function of Tregs. BMC Immunol 21, 37.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Traditional Chinese Medicine Technology Development Fund Project (JJ2018-50), the National Natural Science Foundation of China (81901202), Beijing Natural Science Foundation (7222217), the Capital Health Research and Development of Special (2022-4-40918), and Clinical Medicine Plus X-Young Scholars Project, Peking University, the Fundamental Research Funds for the Central Universities (PKU2021LCXQ007). Thanks to all the participants for their valuable contributions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yehong Zhuo or Ningli Wang.

Ethics declarations

The studies involving human participants were reviewed and approved by the Institutional Review Board and Ethics Committee of Beijing Tongren Hospital. Written informed consent was obtained from all participants or relatives.

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Lin, C., Yang, C. et al. Identification and validation of key biomarkers and potential therapeutic targets for primary open-angle glaucoma. Sci. China Life Sci. 66, 2837–2850 (2023). https://doi.org/10.1007/s11427-022-2344-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2344-5

Keywords

Navigation