Skip to main content
Log in

Nematode-induced trap formation regulated by the histone H3K4 methyltransferase AoSET1 in the nematode-trapping fungus Arthrobotrys oligospora

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The methylation of lysine 4 of histone H3 (H3K4), catalyzed by the histone methyltransferase KMT2/SET1, has been functionally identified in many pathogenic fungi but remains unexplored in nematode-trapping fungi (NTFs). Here, we report a regulatory mechanism of an H3K4-specific SET1 orthologue, AoSET1, in the typical nematode-trapping fungus Arthrobotrys oligospora. When the fungus is induced by the nematode, the expression of AoSET1 is up-regulated. Disruption of AoSet1 led to the abolishment of H3K4me. Consequently, the yield of traps and conidia of ΔAoSet1 was significantly lower than that of the WT strain, and the growth rate and pathogenicity were also compromised. Moreover, H3K4 trimethylation was enriched mainly in the promoter of two bZip transcription factor genes (AobZip129 and AobZip350) and ultimately up-regulated the expression level of these two transcription factor genes. In the ΔAoSet1 and AoH3K4A strains, the H3K4me modification level was significantly decreased at the promoter of transcription factor genes AobZip129 and AobZip350. These results suggest that AoSET1-mediated H3KEme serves as an epigenetic marker of the promoter region of the targeted transcription factor genes. Furthermore, we found that AobZip129 negatively regulates the formation of adhesive networks and the pathogenicity of downstream AoPABP1 and AoCPR1. Our findings confirm that the epigenetic regulatory mechanism plays a pivotal role in regulating trap formation and pathogenesis in NTFs, and provide novel insights into the mechanisms of interaction between NTFs and nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad, P., Gouzy, J., Aury, J.M., Castagnone-Sereno, P., Danchin, E.G.J., Deleury, E., Perfus-Barbeoch, L., Anthouard, V., Artiguenave, F., Blok, V.C., et al. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26, 909–915.

    Article  CAS  PubMed  Google Scholar 

  • Adhvaryu, K.K., Morris, S.A., Strahl, B.D., and Selker, E.U. (2005). Methylation of histone H3 lysine 36 is required for normal development in Neurospora crassa. Eukaryot Cell 4, 1455–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afonina, E., Stauber, R., and Pavlakis, G.N. (1998). The human poly(A)-binding protein 1 shuttles between the nucleus and the cytoplasm. J Biol Chem 273, 13015–13021.

    Article  CAS  PubMed  Google Scholar 

  • Allshire, R.C., and Madhani, H.D. (2018). Ten principles of heterochromatin formation and function. Nat Rev Mol Cell Biol 19, 229–244.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W., and Noble, W.S. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37, W202–W208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briggs, S.D., Bryk, M., Strahl, B.D., Cheung, W.L., Davie, J.K., Dent, S.Y.R., Winston, F., and Allis, C.D. (2001). Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 15, 3286–3295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheon, S.A., Jung, K.W., Chen, Y.L., Heitman, J., Bahn, Y.S., and Kang, H. A. (2011). Unique evolution of the UPR pathway with a novel bZIP transcription factor, Hxl1, for controlling pathogenicity of Cryptococcus neoformans. PloS Pathog 7, e1002177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury, R., Singh, S., Arumugam, S., Roguev, A., and Stewart, A.F. (2019). The Set1 complex is dimeric and acts with Jhd2 demethylation to convey symmetrical H3K4 trimethylation. Genes Dev 33, 550–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cottier, F., Raymond, M., Kurzai, O., Bolstad, M., Leewattanapasuk, W., Jimenez-Lopez, C., Lorenz, M.C., Sanglard, D., Vachova, L., Pavelka, N., et al., (2012). The bZIP transcription factor Rca1p is a central regulator of a novel CO2 sensing pathway in yeast. PLoS Pathog 8, e1002485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du, W., Shi, G., Shan, C.M., Li, Z., Zhu, B., Jia, S., Li, Q., and Zhang, Z. (2022). Mechanisms of chromatin-based epigenetic inheritance. Sci China Life Sci 65, 2162–2190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etzerodt, T., Wetterhorn, K., Dionisio, G., and Rayment, I. (2017). Functional characterization of a soluble NADPH-cytochrome P450 reductase from Fusarium graminearum. Protein Expr Purif 138, 69–75.

    Article  CAS  PubMed  Google Scholar 

  • Feng, Q., Wang, H., Ng, H.H., Erdjument-Bromage, H., Tempst, P., Struhl, K., and Zhang, Y. (2002). Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12, 1052–1058.

    Article  CAS  PubMed  Google Scholar 

  • Fingerman, I.M., Wu, C.L., Wilson, B.D., and Briggs, S.D. (2005). Global loss of Set1-mediated H3 Lys4 trimethylation is associated with silencing defects in Saccharomyces cerevisiae. J Biol Chem 280, 28761–28765.

    Article  CAS  PubMed  Google Scholar 

  • Freitag, M. (2017). Histone methylation by SET domain proteins in fungi. Annu Rev Microbiol 71, 413–439.

    Article  CAS  PubMed  Google Scholar 

  • Gorgoni, B., and Gray, N.K. (2004). The roles of cytoplasmic poly(A)-binding proteins in regulating gene expression: a developmental perspective. Brief Funct Genomic Proteomic 3, 125–141.

    Article  CAS  PubMed  Google Scholar 

  • Gray, N.K., Hrabálková, L., Scanlon, J.P., and Smith, R.W.P. (2015). Poly (A)-binding proteins and mRNA localization: who rules the roost? Biochem Soc Trans 43, 1277–1284.

    Article  CAS  PubMed  Google Scholar 

  • Gu, Q., Tahir, H., Zhang, H., Huang, H., Ji, T., Sun, X., Wu, L., Wu, H., and Gao, X. (2017). Involvement of FvSet1 in Fumonisin B1 biosynthesis, vegetative growth, fungal virulence, and environmental stress responses in Fusarium verticillioides. Toxins 9, 43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R., and Young, R.A. (2007). A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, D., Feng, Z., Gao, S., Wei, Y., Han, S., and Wang, L. (2021). Contribution of NADPH-cytochrome P450 reductase to azole resistance in Fusarium oxysporum. Front Microbiol 12.

  • He, F., Umehara, T., Saito, K., Harada, T., Watanabe, S., Yabuki, T., Kigawa, T., Takahashi, M., Kuwasako, K., Tsuda, K., et al. (2010). Structural insight into the zinc finger CW domain as a histone modification reader. Structure 18, 1127–1139.

    Article  CAS  PubMed  Google Scholar 

  • Hohn, T.M., and Desjardins, A.E. (1992). Isolation and gene disruption of the Tox5 gene encoding trichodiene synthase in Gibberella pulicaris. Mol Plant Microbe Interact 5, 249.

    Article  CAS  PubMed  Google Scholar 

  • Hsueh, Y.P., Mahanti, P., Schroeder, F.C., and Sternberg, P.W. (2013). Nematode-trapping fungi eavesdrop on nematode pheromones. Curr Biol 23, 83–86.

    Article  CAS  PubMed  Google Scholar 

  • Huang, W., Shang, Y., Chen, P., Cen, K., and Wang, C. (2015). Basic leucine zipper (bZIP) domain transcription factor MBZ1 regulates cell wall integrity, spore adherence, and virulence in Metarhizium robertsii. J Biol Chem 290, 8218–8231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Y., Bai, X., Cheng, N., Xiao, J., Li, X., and Xing, Y. (2020). Wide Grain 7 increases grain width by enhancing H3K4me3 enrichment in the OsMADS1 promoter in rice (Oryza sativa L.). Plant J 102, 517–528.

    Article  CAS  PubMed  Google Scholar 

  • Hyde, K., Swe, A., and Zhang, K.Q. (2014). Nematode-trapping fungi. In: Zhang, K.Q., and Hyde, K., eds. Nematode-Trapping Fungi. Fungal Diversity Research Series. Dordrecht: Springer. 1–12.

    Google Scholar 

  • Jenuwein, T., Laible, G., Dorn, R., and Reuter, G. (1998). SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell Mol Life Sci 54, 80–93.

    Article  CAS  PubMed  Google Scholar 

  • Ji, X., Li, H., Zhang, W., Wang, J., Liang, L., Zou, C., Yu, Z., Liu, S., and Zhang, K.Q. (2020a). The lifestyle transition of Arthrobotrys oligospora is mediated by microRNA-like RNAs. Sci China Life Sci 63, 543–551.

    Article  CAS  PubMed  Google Scholar 

  • Ji, X., Yu, Z., Yang, J., Xu, J., Zhang, Y., Liu, S., Zou, C., Li, J., Liang, L., and Zhang, K.Q. (2020b). Expansion of adhesion genes drives pathogenic adaptation of nematode-trapping fungi. iScience 23, 101057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaczmarek Michaels, K., Mohd Mostafa, S., Ruiz Capella, J., and Moore, C.L. (2020). Regulation of alternative polyadenylation in the yeast Saccharomyces cerevisiae by histone H3K4 and H3K36 methyltransferases. Nucleic Acids Res 48, 5407–5425.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller, N.P., and Hohn, T.M. (1997). Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21, 17–29.

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693–705.

    Article  CAS  PubMed  Google Scholar 

  • Krogan, N.J., Dover, J., Khorrami, S., Greenblatt, J.F., Schneider, J., Johnston, M., and Shilatifard, A. (2002). COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem 277, 10753–10755.

    Article  CAS  PubMed  Google Scholar 

  • Kühn, U., and Wahle, E. (2004). Structure and function of poly(A) binding proteins. Biochim Biophys Acta 1678, 67–84.

    Article  PubMed  Google Scholar 

  • Kumar, G.R., and Glaunsinger, B.A. (2010). Nuclear import of cytoplasmic poly(A) binding protein restricts gene expression via hyperadenylation and nuclear retention of mRNA. Mol Cell Biol 30, 4996–5008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, G.R., Shum, L., and Glaunsinger, B.A. (2011). Importin α-mediated nuclear import of cytoplasmic poly(A) binding protein occurs as a direct consequence of cytoplasmic mRNA depletion. Mol Cell Biol 31, 3113–3125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai, Y., Cao, X., Chen, J., Wang, L., Wei, G., and Wang, S. (2020). Coordinated regulation of infection-related morphogenesis by the KMT2-Cre1-Hyd4 regulatory pathway to facilitate fungal infection. Sci Adv 6, eaaz1659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemay, J.F., Lemieux, C., St-André, O., and Bachand, F. (2010). Crossing the borders: poly(A)-binding proteins working on both sides of the fence. RNA Biol 7, 291–295.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Wu, R., Wang, M., Borneman, J., Yang, J., and Zhang, K.Q. (2019). The pH sensing receptor AopalH plays important roles in the nematophagous fungus Arthrobotrys oligospora. Fungal Biol 123, 547–554.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Zou, C., Xu, J., Ji, X., Niu, X., Yang, J., Huang, X., and Zhang, K.Q. (2015). Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annu Rev Phytopathol 53, 67–95.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Foley, E.A., Molloy, K.R., Li, Y., Chait, B.T., and Kapoor, T.M. (2012). Quantitative chemical proteomics approach to identify post-translational modification-mediated protein-protein interactions. J Am Chem Soc 134, 1982–1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, L., Shen, R., Mo, Y., Yang, J., Ji, X., and Zhang, K.Q. (2015). A proposed adhesin AoMad1 helps nematode-trapping fungus Arthrobotrys oligospora recognizing host signals for life-style switching. Fungal Genet Biol 81, 172–181.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., Guo, X., Jiang, G., Wu, G., Miao, H., Liu, K., Chen, S., Sakamoto, N., Kuno, T., Yao, F., et al. (2020). NADPH-cytochrome P450 reductase Ccr1 is a target of tamoxifen and participates in its antifungal activity via regulating cell wall integrity in fission yeast. Antimicrob Agents Chemother 64.

  • Liu, Q., Li, D., Jiang, K., Zhang, K.Q., and Yang, J. (2022a). AoPEX1 and AoPEX6 are required for mycelial growth, conidiation, stress response, fatty acid utilization, and trap formation in Arthrobotrys oligospora. Microbiol Spectr 10, e0027522.

    Article  PubMed  Google Scholar 

  • Liu, X., Miao, Q., Zhou, Z., Lu, S., and Li, J. (2022b). Identification of three novel conidiogenesis-related genes in the nematode-trapping fungus Arthrobotrys oligospora. Pathogens 11, 717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X.H., Lu, J.P., Zhang, L., Dong, B., Min, H., and Lin, F.C. (2007). Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell 6, 997–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, T., Krogan, N.J., Dover, J., Erdjument-Bromage, H., Tempst, P., Johnston, M., Greenblatt, J.F., and Shilatifard, A. (2001). COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci USA 98, 12902–12907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moosavi, M.R., and Zare, R. (2012). Fungi as biological control agents of plant-parasitic nematodes. In: Mérillon, J.M., and Ramawat, K.G., eds. Plant Defence: Biological Control. Progress in Biological Control. Cham: Springer. 67–107.

    Chapter  Google Scholar 

  • Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D., and Grewal, S.I.S. (2001). Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113.

    Article  CAS  PubMed  Google Scholar 

  • Ng, H.H., Feng, Q., Wang, H., Erdjument-Bromage, H., Tempst, P., Zhang, Y., and Struhl, K. (2002). Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 16, 1518–1527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noma, K., Allis, C.D., and Grewal, S.I.S. (2001). Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150–1155.

    Article  CAS  Google Scholar 

  • Park, H.G., Lim, Y.R., Eun, C.Y., Han, S., Han, J.S., Cho, K.S., Chun, Y.J., and Kim, D. (2010). Candida albicans NADPH-P450 reductase: expression, purification, and characterization of recombinant protein. Biochem Biophys Res Commun 396, 534–538.

    Article  CAS  PubMed  Google Scholar 

  • Peters, A.H.F.M., O’Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schöfer, C., Weipoltshammer, K., Pagani, M., Lachner, M., Kohlmaier, A., et al. (2001). Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337.

    Article  CAS  PubMed  Google Scholar 

  • Pham, K.T., Inoue, Y., Vu, B.V., Nguyen, H.H., Nakayashiki, T., Ikeda, K., and Nakayashiki, H. (2015). MoSET1 (histone H3K4 methyltransferase in Magnaporthe oryzae) regulates global gene expression during infection-related morphogenesis. PLoS Genet 11, e1005385.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan, S., Pokhrel, S., Palani, S., Pflueger, C., Parnell, T.J., Cairns, B.R., Bhaskara, S., and Chandrasekharan, M.B. (2016). Counteracting H3K4 methylation modulators Set1 and Jhd2 co-regulate chromatin dynamics and gene transcription. Nat Commun 7, 11949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, K., Mou, Y.N., Tong, S.M., Ying, S.H., and Feng, M.G. (2021). SET1/KMT2-governed histone H3K4 methylation coordinates the lifecycle in vivo and in vitro of the fungal insect pathogen Beauveria bassiana. Environ Microbiol 23, 5541–5554.

    Article  CAS  PubMed  Google Scholar 

  • Roguev, A., Schaft, D., Shevchenko, A., Pijnappel, W.W., Wilm, M., Aasland, R., and Stewart, A.F. (2001). The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 20, 7137–7148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider, J., Wood, A., Lee, J.S., Schuster, R., Dueker, J., Maguire, C., Swanson, S.K., Florens, L., Washburn, M.P., and Shilatifard, A. (2005). Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol Cell 19, 849–856.

    Article  CAS  PubMed  Google Scholar 

  • Seo, J.A., Proctor, R.H., and Plattner, R.D. (2001). Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol 34, 155–165.

    Article  CAS  PubMed  Google Scholar 

  • Shan, P., Fan, G., Sun, L., Liu, J., Wang, W., Hu, C., Zhang, X., Zhai, Q., Song, X., Cao, L., et al. (2017). SIRT1 functions as a negative regulator of eukaryotic Poly(A)RNA transport. Curr Biol 27, 2271–2284.e5.

    Article  CAS  PubMed  Google Scholar 

  • Shilatifard, A. (2008). Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 20, 341–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shilatifard, A. (2012). The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81, 65–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sims, R.J., and Reinberg, D. (2006). Histone H3 Lys 4 methylation: caught in a bind? Genes Dev 20, 2779–2786.

    Article  CAS  PubMed  Google Scholar 

  • Smith, R.W.P., Blee, T.K.P., and Gray, N.K. (2014). Poly(A)-binding proteins are required for diverse biological processes in metazoans. Biochem Soc Trans 42, 1229–1237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strahl, B.D., Grant, P.A., Briggs, S.D., Sun, Z.W., Bone, J.R., Caldwell, J. A., Mollah, S., Cook, R.G., Shabanowitz, J., Hunt, D.F., et al. (2002). Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol 22, 1298–1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, Y.H., and Shilatifard, A. (2010). Structural basis for H3K4 trimethylation by yeast Set1/COMPASS. Adv Enzyme Regulation 50, 104–110.

    Article  Google Scholar 

  • Tamaru, H., and Selker, E.U. (2001). A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283.

    Article  CAS  PubMed  Google Scholar 

  • Tang, W., Ru, Y., Hong, L., Zhu, Q., Zuo, R., Guo, X., Wang, J., Zhang, H., Zheng, X., Wang, P., et al. (2015). System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae. Environ Microbiol 17, 1377–1396.

    Article  CAS  PubMed  Google Scholar 

  • Xie, M., Ma, N., Bai, N., Yang, L., Yang, X., Zhang, K.Q., and Yang, J. (2022). PKC-SWI6 signaling regulates asexual development, cell wall integrity, stress response, and lifestyle transition in the nematode-trapping fungus Arthrobotrys oligospora. Sci China Life Sci 65, 2455–2471.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Wang, L., Ji, X., Feng, Y., Li, X., Zou, C., Xu, J., Ren, Y., Mi, Q., Wu, J., et al., (2011). Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog 7, e1002179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, C., McMillan, L., Telfer, E., and Scott, B. (2001). Molecular cloning and genetic analysis of an indole-diterpene gene cluster from Penicillium paxilli. Mol Microbiol 39, 754–764.

    Article  CAS  PubMed  Google Scholar 

  • Zhen, Z., Xing, X., Xie, M., Yang, L., Yang, X., Zheng, Y., Chen, Y., Ma, N., Li, Q., Zhang, K.Q., et al. (2018). MAP kinase Slt2 orthologs play similar roles in conidiation, trap formation, and pathogenicity in two nematode-trapping fungi. Fungal Genet Biol 116, 42–50.

    Article  CAS  PubMed  Google Scholar 

  • Zhen, Z., Zhang, G., Yang, L., Ma, N., Li, Q., Ma, Y., Niu, X., Zhang, K.Q., and Yang, J. (2019). Characterization and functional analysis of calcium/calmodulin-dependent protein kinases (CaMKs) in the nematode-trapping fungus Arthrobotrys oligospora. Appl Microbiol Biotechnol 103, 819–832.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, D., Zhu, Y., Bai, N., Yang, L., Xie, M., Yang, J., Zhu, M., Zhang, K. Q., and Yang, J. (2022). AoATG5 plays pleiotropic roles in vegetative growth, cell nucleus development, conidiation, and virulence in the nematode-trapping fungus Arthrobotrys oligospora. Sci China Life Sci 65, 412–425.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, M.C., Zhao, N., Liu, Y.K., Li, X.M., Zhen, Z.Y., Zheng, Y.Q., Zhang, K.Q., and Yang, J.K. (2022). The cAMP-PKA signalling pathway regulates hyphal growth, conidiation, trap morphogenesis, stress tolerance, and autophagy in Arthrobotrys oligospora. Environ Microbiol 24, 6524–6538.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke-Qin Zhang or Juan Li.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Supplementary Materials

11427_2022_2300_MOESM1_ESM.pdf

Nematode-induced trap formation regulated by the histone H3K4 methyltransferase AoSET1 in the nematode-trapping fungus Arthrobotrys oligospora

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Q., Wang, Z., Yin, Z. et al. Nematode-induced trap formation regulated by the histone H3K4 methyltransferase AoSET1 in the nematode-trapping fungus Arthrobotrys oligospora. Sci. China Life Sci. 66, 2663–2679 (2023). https://doi.org/10.1007/s11427-022-2300-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2300-2

Navigation