Skip to main content
Log in

A novel hybrid seed production technology based on a unilateral cross-incompatibility gene in maize

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Hybrid seed production technology (SPT) using genic recessive male sterility is of great importance in maize breeding. Here, we report a novel SPT based on a maize unilateral cross-incompatibility gene ZmGa1F with an extremely low transgene transmission rate (TTR). Proper pollen-specific ZmGa1F expression severely inhibits pollen tube growth leading to no fertilization. The maintainer line harbors a transgene cassette in an ipe1 male sterile background containing IPE1 to restore ipe1 male fertility, ZmGa1F to prevent transgenic pollen escape, the red fluorescence protein encoding gene DsRed2 for the separation of male sterile and fertile seeds, and the herbicide-resistant gene Bar for transgenic plant selection. When the maintainer line is selfed, gametes of ipe1/transgene and ipe1/- genotypes are produced, and pollen of the ipe1/transgene genotype is not able to fertilize female gametes due to pollen tube growth inhibition by ZmGa1F. Subsequently, seeds of ipe1/ipe1 and ipe1/transgene genotypes are produced at a 1:1 ratio and could be separated easily by fluorescence-based seed sorting. Not a single seed emitting fluorescence is detected in more than 200,000 seeds examined demonstrating that the pollen-tube-inhibition (PTI)-based TTR is lower than what has been reported for similar technologies to date. This PTI-based SPT shows promising potential for future maize hybrid seed production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R.L., and Lonsdale, D.M. (1993). Molecular characterization of one of the maize polygalacturonase gene family members which are expressed during late pollen development. Plant J 3, 261–271.

    Article  CAS  PubMed  Google Scholar 

  • An, X., Ma, B., Duan, M., Dong, Z., Liu, R., Yuan, D., Hou, Q., Wu, S., Zhang, D., Liu, D., et al. (2020). Molecular regulation of ZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species. Proc Natl Acad Sci USA 117, 23499–23509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, Z., Chen, Z., Wang, N., Xie, G., Lu, J., Yan, W., Zhou, J., Tang, X., and Deng, X.W. (2016). Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc Natl Acad Sci USA 113, 14145–14150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., and Liu, Y.G. (2014). Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65, 579–606.

    Article  CAS  PubMed  Google Scholar 

  • Chen, R., Deng, Y., Ding, Y., Guo, J., Qiu, J., Wang, B., Wang, C., Xie, Y., Zhang, Z., Chen, J., et al. (2022). Rice functional genomics: decades’ efforts and roads ahead. Sci China Life Sci 65, 33–92.

    Article  PubMed  Google Scholar 

  • Chen, X., Zhang, H., Sun, H., Luo, H., Zhao, L., Dong, Z., Yan, S., Zhao, C., Liu, R., Xu, C., et al. (2017). Irregular pollen exine1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiol 173, 307–325.

    Article  CAS  PubMed  Google Scholar 

  • Dobnik, D., Spilsberg, B., Bogožalec Košir, A., Štebih, D., Morisset, D., Holst-Jensen, A., and Šel, J. (2018). Multiplex droplet digital PCR protocols for quantification of GM maize events. In Digital PCR: Methods and Protocols, G. Karlin-Neumann and F. Bizouarn, ed. (New York: Springer), pp. 69–98.

    Chapter  Google Scholar 

  • Duvick, D.N. (2001). Biotechnology in the 1930s: the development of hybrid maize. Nat Rev Genet 2, 69–74.

    Article  CAS  PubMed  Google Scholar 

  • Fang, X., Sun, X., Yang, X., Li, Q., Lin, C., Xu, J., Gong, W., Wang, Y., Liu, L., Zhao, L., et al. (2021). MS1 is essential for male fertility by regulating the microsporocyte cell plate expansion in soybean. Sci China Life Sci 64, 1533–1545.

    Article  CAS  PubMed  Google Scholar 

  • Fox, T., DeBruin, J., Haug Collet, K., Trimnell, M., Clapp, J., Leonard, A., Li, B., Scolaro, E., Collinson, S., Glassman, K., et al. (2017). A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnol J 15, 942–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson, D.D., Hamilton, D.A., Travis, J.L., Bashe, D.M., and Mascarenhas, J.P. (1989). Characterization of a pollen-specific cDNA clone from Zea mays and its expression.. Plant Cell 1, 173–179.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huo, Y., Pei, Y., Tian, Y., Zhang, Z., Li, K., Liu, J., Xiao, S., Chen, H., and Liu, J. (2020). IRREGULAR POLLENEXINE2 encodes a GDSL lipase essential for male fertility in maize. Plant Physiol 184, 1438–1454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalla, R., Shimamoto, K., Potter, R., Nielsen, P.S., Linnestad, C., and Olsen, O.A. (1994). The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice. Plant J 6, 849–860.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.J., and Zhang, D. (2018). Molecular control of male fertility for crop hybrid breeding. Trends Plant Sci 23, 53–65.

    Article  CAS  PubMed  Google Scholar 

  • Lauter, A.N.M., Muszynski, M.G., Huffman, R.D., and Scott, M.P. (2017). A pectin methylesterase ZmPme3 is expressed in Gametophyte factor1-s (Ga1-s) silks and maps to that locus in maize (Zea mays L.). Front Plant Sci 8, 1926.

    Article  Google Scholar 

  • Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky, A.G., Markelov, M.L., and Lukyanov, S.A. (1999). Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17, 969–973.

    Article  CAS  PubMed  Google Scholar 

  • Qi, X., Zhang, C., Zhu, J., Liu, C., Huang, C., Li, X., and Xie, C. (2020). Genome editing enables next-generation hybrid seed production technology. Mol Plant 13, 1262–1269.

    Article  CAS  PubMed  Google Scholar 

  • Song, S., Wang, T., Li, Y., Hu, J., Kan, R., Qiu, M., Deng, Y., Liu, P., Zhang, L., Dong, H., et al. (2021). A novel strategy for creating a new system of third-generation hybrid rice technology using a cytoplasmic sterility gene and a genic male-sterile gene. Plant Biotechnol J 19, 251–260.

    Article  CAS  PubMed  Google Scholar 

  • Tian, Y., Xiao, S., Liu, J., Somaratne, Y., Zhang, H., Wang, M., Zhang, H., Zhao, L., and Chen, H. (2017). Male sterile6021 (ms6021) is required for the development of anther cuticle and pollen exine in maize. Sci Rep 7, 16736.

    Article  PubMed  PubMed Central  Google Scholar 

  • Timofejeva, L., Skibbe, D.S., Lee, S., Golubovskaya, I., Wang, R., Harper, L., Walbot, V., and Cande, W.Z. (2013). Cytological characterization and allelism testing of anther developmental mutants identified in a screen of maize male sterile lines. G3: Genes-Genomes-Genet 3, 231–249.

    Article  Google Scholar 

  • Wan, X., Wu, S., Li, Z., Dong, Z., An, X., Ma, B., Tian, Y., and Li, J. (2019). Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant 12, 321–342.

    Article  CAS  PubMed  Google Scholar 

  • Williams, M.E. (1995). Genetic engineering for pollination control. Trends Biotechnol 13, 344–349.

    Article  CAS  Google Scholar 

  • Wu, Y., Fox, T.W., Trimnell, M.R., Wang, L., Xu, R.J., Cigan, A.M., Huffman, G.A., Garnaat, C.W., Hershey, H., and Albertsen, M.C. (2016). Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J 14, 1046–1054.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, L. (1994). Purification and production of foundation seed of rice PGMS and TGMS lines. Hybrid Rice 6, 1–3.

    Google Scholar 

  • Zhang, D., Wu, S., An, X., Xie, K., Dong, Z., Zhou, Y., Xu, L., Fang, W., Liu, S., Liu, S., et al. (2018a). Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J 16, 459–471.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Zhang, B., Chen, Z., Zhang, D., Zhang, H., Wang, H., Zhang, Y.’., Cai, D., Liu, J., Xiao, S., et al. (2018b). A Pectin methylesterase gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility. Nat Commun 9, 3678.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32101725, 32172058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huabang Chen.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, D., Zhang, Z., Zhao, L. et al. A novel hybrid seed production technology based on a unilateral cross-incompatibility gene in maize. Sci. China Life Sci. 66, 595–601 (2023). https://doi.org/10.1007/s11427-022-2191-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2191-7

Navigation