Skip to main content
Log in

Ferritin nanocages for early theranostics of tumors via inflammation-enhanced active targeting

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Engineered nanocarriers have been widely developed for tumor theranostics. However, the delivery of imaging probes or therapeutic drugs to the tumor pre-formation site for early and accurate detection and therapy remains a major challenge. Here, by using tailor-functionalized human H-ferritin (HFn), we developed a triple-modality nanoprobe IRdye800-M-HFn and achieved the early imaging of tumor cells before the formation of solid tumor tissues. Then, we developed an HFn-doxorubicin (Dox) drug delivery system by loading Dox into the HFn protein cage and achieved early-stage tumor therapy. The intravenous injection of HFn nanoprobes enabled the imaging of tumor cells as early as two days after tumor implantation, and the triple-modality imaging techniques, namely, near-infrared fluorescence molecular imaging (NIR-FMI), magnetic resonance imaging (MRI), and photoacoustic imaging (PAI), ensured the accuracy of detection. Further exploration indicated that HFn could specifically penetrate into pre-solid tumor sites by tumor-associated inflammation-mediated blood vessel leakage, followed by effective accumulation in tumor cells by the specific targeting property of HFn to transferrin receptor 1. Thus, the HFn-Dox drug delivery system delivered Dox into the tumor pre-formation site and effectively killed tumor cells at early stage. IRDye800-M-HFn nanoprobes and HFn-Dox provide promising strategies for early-stage tumor diagnosis and constructive implications for early-stage tumor treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexiou, A., Vairaktarakis, C., Tsiamis, V., and Ashraf, G.M. (2015). Application of efficient nanoparticles for early diagnosis and treatment of cancer. Curr Drug Metab 16, 662–675.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Neriah, Y., and Karin, M. (2011). Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol 12, 715–723.

    Article  CAS  PubMed  Google Scholar 

  • Chinen, A.B., Guan, C.M., Ferrer, J.R., Barnaby, S.N., Merkel, T.J., and Mirkin, C.A. (2015). Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115, 10530–10574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coussens, L.M., and Werb, Z. (2002). Inflammation and cancer. Nature 420, 860–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Méndez-Huergo, S.P., Mascanfroni, I.D., Dergan-Dylon, S., Toscano, M.A., Caramelo, J.J., García-Vallejo, J.J., Ouyang, J., et al. (2014). Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell 156, 744–758.

    Article  CAS  PubMed  Google Scholar 

  • Daniels, T.R., Delgado, T., Helguera, G., and Penichet, M.L. (2006a). The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol 121, 159–176.

    Article  CAS  PubMed  Google Scholar 

  • Daniels, T.R., Delgado, T., Rodriguez, J.A., Helguera, G., and Penichet, M. L. (2006b). The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol 121, 144–158.

    Article  CAS  PubMed  Google Scholar 

  • Falvo, E., Tremante, E., Fraioli, R., Leonetti, C., Zamparelli, C., Boffi, A., Morea, V., Ceci, P., and Giacomini, P. (2013). Antibody-drug conjugates: targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin. Nanoscale 5, 12278–12285.

    Article  CAS  PubMed  Google Scholar 

  • Fan, K., Cao, C., Pan, Y., Lu, D., Yang, D., Feng, J., Song, L., Liang, M., and Yan, X. (2012). Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotech 7, 459–464.

    Article  CAS  Google Scholar 

  • Fan, K., Gao, L., and Yan, X. (2013). Human ferritin for tumor detection and therapy. WIREs Nanomed Nanobiotechnol 5, 287–298.

    Article  CAS  Google Scholar 

  • Fan, K., Jia, X., Zhou, M., Wang, K., Conde, J., He, J., Tian, J., and Yan, X. (2018). Ferritin nanocarrier traverses the blood brain barrier and kills Glioma. ACS Nano 12, 4105–4115.

    Article  CAS  PubMed  Google Scholar 

  • Fan, K., Zhou, M., and Yan, X. (2017). Questions about horse spleen ferritin crossing the blood brain barrier via mouse transferrin receptor 1. Protein Cell 8, 788–790.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng, M., Gao, W., Wang, R., Chen, W., Man, Y.G., Figg, W.D., Wang, X. W., Dimitrov, D.S., and Ho, M. (2013). Therapeutically targeting glypican-3 via a conformation-specific single-domain antibody in hepatocellular carcinoma. Proc Natl Acad Sci USA 110, E1083–E1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frangioni, J.V. (2008). New technologies for human cancer imaging. J Clin Oncol 26, 4012–4021.

    Article  PubMed  PubMed Central  Google Scholar 

  • Greish, K. (2010). Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. In: Grobmyer, S., and Moudgil, B., eds. Cancer Nanotechnology. Methods in Molecular Biology (Methods and Protocols). New York: Humana Press. 25–37.

    Chapter  Google Scholar 

  • Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  • He, J., Fan, K., and Yan, X. (2019). Ferritin Drug Carrier (FDC) for tumor targeting therapy. J Control Release 311–312, 288–300.

    Article  PubMed  Google Scholar 

  • Headley, M.B., Bins, A., Nip, A., Roberts, E.W., Looney, M.R., Gerard, A., and Krummel, M.F. (2016). Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature 531, 513–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins, C.R. (1983). Intracellular routing of transferrin and transferrin receptors in epidermoid carcinoma A431 cells. Cell 35, 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, B., Chen, X., Sun, G., Chen, X., Yin, Y., Jin, Y., Mi, Q., Ma, L., Yang, Y., Yan, X., et al. (2020). A natural drug entry channel in the ferritin nanocage. Nano Today 35, 100948.

    Article  CAS  Google Scholar 

  • Jiang, B., Yan, L., Zhang, J., Zhou, M., Shi, G., Tian, X., Fan, K., Hao, C., and Yan, X. (2019a). Biomineralization synthesis of the cobalt nanozyme in SP94-ferritin nanocages for prognostic diagnosis of hepatocellular carcinoma. ACS Appl Mater Interfaces 11, 9747–9755.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, B., Zhang, R., Zhang, J., Hou, Y., Chen, X., Zhou, M., Tian, X., Hao, C., Fan, K., and Yan, X. (2019b). GRP78-targeted ferritin nanocaged ultra-high dose of doxorubicin for hepatocellular carcinoma therapy. Theranostics 9, 2167–2182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kircher, M.F., de la Zerda, A., Jokerst, J.V., Zavaleta, C.L., Kempen, P.J., Mittra, E., Pitter, K., Huang, R., Campos, C., Habte, F., et al. (2012). A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18, 829–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labelle, M., Begum, S., and Hynes, R.O. (2014). Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci USA 111, E3053–E3061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Fang, C.J., Ryan, J.C., Niemi, E.C., Lebrón, J.A., Björkman, P.J., Arase, H., Torti, F.M., Torti, S.V., Nakamura, M.C., et al. (2010). Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci USA 107, 3505–3510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Qiu, L., Zhu, P., Tao, X., Imanaka, T., Zhao, J., Huang, Y., Tu, Y., and Cao, X. (2012). Epidermal growth factor-ferritin H-chain protein nanoparticles for tumor active targeting. Small 8, 2505–2514.

    Article  CAS  PubMed  Google Scholar 

  • Liang, M., Fan, K., Zhou, M., Duan, D., Zheng, J., Yang, D., Feng, J., and Yan, X. (2014). H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci USA 111, 14900–14905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima, L.G., and Monteiro, R.Q. (2013). Activation of blood coagulation in cancer: implications for tumour progression. Biosci Rep 33.

  • Maru, Y. (2016). Inflammation and Metastasis. Tokyo: Springer Japan.

    Book  Google Scholar 

  • Peng, D., Du, Y., Shi, Y., Mao, D., Jia, X., Li, H., Zhu, Y., Wang, K., and Tian, J. (2016). Precise diagnosis in different scenarios using photoacoustic and fluorescence imaging with dual-modality nanoparticles. Nanoscale 8, 14480–14488.

    Article  CAS  PubMed  Google Scholar 

  • Smith, R.A., Cokkinides, V., and Eyre, H.J. (2006). American Cancer Society guidelines for the early detection of cancer, 2006. CA Cancer J Clin 56, 11–25.

    Article  PubMed  Google Scholar 

  • Sun, T., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M., and Xia, Y. (2014). Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53, 12320–12364.

    CAS  Google Scholar 

  • Swann, J.B., and Smyth, M.J. (2007). Immune surveillance of tumors. J Clin Invest 117, 1137–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teicher, B.A. (2006). Tumor models for efficacy determination. Mol Cancer Ther 5, 2435–2443.

    Article  CAS  PubMed  Google Scholar 

  • Thorsen, F., Fite, B., Mahakian, L.M., Seo, J.W., Qin, S., Harrison, V., Johnson, S., Ingham, E., Caskey, C., Sundstrøm, T., et al. (2013). Multimodal imaging enables early detection and characterization of changes in tumor permeability of brain metastases. J Control Release 172, 812–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida, M., Flenniken, M.L., Allen, M., Willits, D.A., Crowley, B.E., Brumfield, S., Willis, A.F., Jackiw, L., Jutila, M., Young, M.J., et al. (2006). Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J Am Chem Soc 128, 16626–16633.

    Article  CAS  PubMed  Google Scholar 

  • Uchida, M., Terashima, M., Cunningham, C.H., Suzuki, Y., Willits, D.A., Willis, A.F., Yang, P.C., Tsao, P.S., McConnell, M.V., Young, M.J., et al. (2008). A human ferritin iron oxide nano-composite magnetic resonance contrast agent. Magn Reson Med 60, 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  • Uchino, K., Tateishi, R., Shiina, S., Kanda, M., Masuzaki, R., Kondo, Y., Goto, T., Omata, M., Yoshida, H., and Koike, K. (2011). Hepatocellular carcinoma with extrahepatic metastasis. Cancer 117, 4475–4483.

    Article  PubMed  Google Scholar 

  • Wang, W., Knovich, M.A., Coffman, L.G., Torti, F.M., and Torti, S.V. (2010). Serum ferritin: Past, present and future. Biochim Biophys Acta 1800, 760–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Zhang, S., Zhang, R., Chen, X., Sun, G., Zhou, M., Han, Q., Zhang, B., Zhao, Y., Jiang, B., et al. (2021). Bioengineered dualtargeting protein nanocage for stereoscopical loading of synergistic hydrophilic/hydrophobic drugs to enhance anticancer efficacy. Adv Funct Mater 31, 2102004.

    Article  CAS  Google Scholar 

  • Xing, Y., Zhao, J., Conti, P.S., and Chen, K. (2014). Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 4, 290–306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Li, Y., Zhang, J., Chen, X., Zhang, R., Sun, G., Jiang, B., Fan, K., Li, Z., and Yan, X. (2021). Nanocage-based capture-detection system for the clinical diagnosis of autoimmune disease. Small 17, 2101655.

    Article  CAS  Google Scholar 

  • Zhao, Y., Liang, M., Li, X., Fan, K., Xiao, J., Li, Y., Shi, H., Wang, F., Choi, H.S., Cheng, D., et al. (2016). Bioengineered magnetoferritin nanoprobes for single-dose nuclear-magnetic resonance tumor imaging. ACS Nano 10, 4184–4191.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31900981, 62027901, and 32000996), the Strategic Priority Research Program of CAS (XDB29040101), CAS Inter-disciplinary Innovation Team (JCTD-2020-08), Chinese Academy of Sciences (YJKYYQ20180048), the Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SMC013), the National Key Research and Development Program of China (2017YFA0205501, 2017YFA0205200), Youth Innovation Promotion Association of Chinese Academy of Sciences (2019093), China Postdoctoral Science Foundation (2020M682358), the China Postdoctoral Science Special Foundation (2020TQ0280), the Grant for International Joint Research Project of the Institute of Medical Science, the University of Tokyo (Extension-2019-K3005), the Beijing-Tianjin-Hebei Basic Research Cooperation Special Program (19JCZDJC65300), and the CAS Key Laboratory of Mental Health Grant (KLMH2020K02). We thank Dr.s Xiaojun Huang and Gang Ji for their excellent technical support in cryo-EM imaging at the Transmission EM Facilities, Center for Biological Imaging, Institute of Biophysics. We also thank Jingnan Liang for technical support in TEM imaging at the Core Facility of Equipment, Institute of Microbiology. We thank Prof.s Shuaidong Huo and João Conde for their beneficial discussions and comments on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Tian, Xiyun Yan or Kelong Fan.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Jia, X., Ji, T. et al. Ferritin nanocages for early theranostics of tumors via inflammation-enhanced active targeting. Sci. China Life Sci. 65, 328–340 (2022). https://doi.org/10.1007/s11427-021-1976-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-1976-0

Keywords

Navigation