Skip to main content
Log in

The resurgent landscape of xenotransplantation of pig organs in nonhuman primates

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Organ shortage is a major bottleneck in allotransplantation and causes many wait-listed patients to die or become too sick for transplantation. Genetically engineered pigs have been discussed as a potential alternative to allogeneic donor organs. Although xenotransplantation of pig-derived organs in nonhuman primates (NHPs) has shown sequential advances in recent years, there are still underlying problems that need to be completely addressed before clinical applications, including (i) acute humoral xenograft rejection; (ii) acute cellular rejection; (iii) dysregulation of coagulation and inflammation; (iv) physiological incompatibility; and (v) cross-species infection. Moreover, various genetic modifications to the pig donor need to be fully characterized, with the aim of identifying the ideal transgene combination for upcoming clinical trials. In addition, suitable pretransplant screening methods need to be confirmed for optimal donor-recipient matching, ensuring a good outcome from xenotransplantation. Herein, we summarize the understanding of organ xenotransplantation in pigs-to-NHPs and highlight the current status and recent progress in extending the survival time of pig xenografts and recipients. We also discuss practical strategies for overcoming the obstacles to xenotransplantation mentioned above to further advance transplantation of pig organs in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abouna, G.M. (2008). Organ shortage crisis: problems and possible solutions. Transplant Proc 40, 34–38.

    CAS  PubMed  Google Scholar 

  • Adams, A.B., Kim, S.C., Martens, G.R., Ladowski, J.M., Estrada, J.L., Reyes, L.M., Breeden, C., Stephenson, A., Eckhoff, D.E., Tector, M., et al. (2018). Xenoantigen deletion and chemical immunosuppression can prolong renal xenograft survival. Ann Surg 268, 564–573.

    PubMed  PubMed Central  Google Scholar 

  • Argaw, T., Colon-Moran, W., and Wilson, C. (2016). Susceptibility of porcine endogenous retrovirus to anti-retroviral inhibitors. Xenotransplantation 23, 151–158.

    PubMed  PubMed Central  Google Scholar 

  • Aron Badin, R., Vadori, M., Vanhove, B., Nerriere-Daguin, V., Naveilhan, P., Neveu, I., Jan, C., Lévèque, X., Venturi, E., Mermillod, P., et al. (2016). Cell therapy for Parkinson’s disease: A translational approach to assess the role of local and systemic immunosuppression. Am J Transplant 16, 2016–2029.

    CAS  PubMed  Google Scholar 

  • Barclay, A.N., and van den Berg, T.K. (2014). The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Annu Rev Immunol 32, 25–50.

    CAS  PubMed  Google Scholar 

  • Bennet, W., Sundberg, B., Groth, C.G., Brendel, M.D., Brandhorst, D., Brandhorst, H., Bretzel, R.G., Elgue, G., Larsson, R., Nilsson, B., et al. (1999). Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation? Diabetes 48, 1907–1914.

    CAS  PubMed  Google Scholar 

  • Bühler, L., Awwad, M., Basker, M., Gojo, S., Watts, A., Treter, S., Nash, K., Oravec, G., Chang, Q., Thall, A., et al. (2000). High-dose porcine hematopoietic cell transplantation combined with CD40 ligand blockade in baboons prevents an induced anti-pig humoral response. Transplantation 69, 2296–2304.

    PubMed  Google Scholar 

  • Burdorf, L., Azimzadeh, A.M., and Pierson Iii, R.N. (2018). Progress and challenges in lung xenotransplantation. Curr Opin Organ Transplant 23, 621–627.

    CAS  PubMed  Google Scholar 

  • Burdorf, L., Laird, C., Sendil, S., O’Neill, N., Zhang, T., Parsell, D., Tatarov, I., Abady, Z., Cerel, B.M., Pratts, S., et al. (2019). 31 Day xeno lung recipient survival—Progress towards the clinic. J Heart Lung Transplant 38, S39.

    Google Scholar 

  • Byrne, G.W., Du, Z., Sun, Z., Asmann, Y.W., and McGregor, C.G.A. (2011). Changes in cardiac gene expression after pig-to-primate orthotopic xenotransplantation. Xenotransplantation 18, 14–27.

    PubMed  Google Scholar 

  • Candinas, D., and Adams, D.H. (2000). Xenotransplantation: postponed by a millennium? QJM 93, 63–66.

    CAS  PubMed  Google Scholar 

  • Charlesworth, C.T., Deshpande, P.S., Dever, D.P., Camarena, J., Lemgart, V.T., Cromer, M.K., Vakulskas, C.A., Collingwood, M.A., Zhang, L., Bode, N.M., et al. (2019). Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 25, 249–254.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, H.J., Lee, J.J., Kim, D.H., Kim, M.K., Lee, H.J., Ko, A.Y., Kang, H. J., Park, C., and Wee, W.R. (2015). Blockade of CD40-CD154 costimulatory pathway promotes long-term survival of full-thickness porcine corneal grafts in nonhuman primates: clinically applicable xenocorneal transplantation. Am J Transplant 15, 628–641.

    CAS  PubMed  Google Scholar 

  • Cooper, D.K.C. (2012). A brief history of cross-species organ transplantation. Bayl Univ Med Cent Proc 25, 49–57.

    Google Scholar 

  • Cooper, D.K.C., Ekser, B., Ramsoondar, J., Phelps, C., and Ayares, D. (2016a). The role of genetically engineered pigs in xenotransplantation research. J Pathol 238, 288–299.

    PubMed  Google Scholar 

  • Cooper, D.K.C., Matsumoto, S., Abalovich, A., Itoh, T., Mourad, N.I., Gianello, P.R., Wolf, E., and Cozzi, E. (2016b). Progress in clinical encapsulated islet xenotransplantation. Transplantation 100, 2301–2308.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper, D.K.C., Ezzelarab, M., Iwase, H., and Hara, H. (2018a). Perspectives on the optimal genetically engineered pig in 2018 for initial clinical trials of kidney or heart xenotransplantation. Transplantation 102, 1974–1982.

    PubMed  PubMed Central  Google Scholar 

  • Cooper, D.K.C., Gaston, R., Eckhoff, D., Ladowski, J., Yamamoto, T., Wang, L., Iwase, H., Hara, H., Tector, M., and Tector, A.J. (2018b). Xenotransplantation—The current status and prospects. Br Med Bull 125, 5–14.

    CAS  PubMed  Google Scholar 

  • Cooper, D.K.C., Hara, H., Iwase, H., Yamamoto, T., Li, Q., Ezzelarab, M., Federzoni, E., Dandro, A., and Ayares, D. (2019). Justification of specific genetic modifications in pigs for clinical organ xenotransplantation. Xenotransplantation 26, e12516.

    PubMed  Google Scholar 

  • Cowan, P.J., Robson, S.C., and d’Apice, A.J. (2011). Controlling coagulation dysregulation in xenotransplantation. Curr Opin Organ Transplant 16, 214–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cullot, G., Boutin, J., Toutain, J., Prat, F., Pennamen, P., Rooryck, C., Teichmann, M., Rousseau, E., Lamrissi-Garcia, I., Guyonnet-Duperat, V., et al. (2019). CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat Commun 10, 1136.

    PubMed  PubMed Central  Google Scholar 

  • Del Toro-Arreola, A., Robles-Murillo, A.K., Daneri-Navarro, A., and Rivas-Carrillo, J.D. (2016). The role of endothelial cells on islet function and revascularization after islet transplantation. Organogenesis 12, 28–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denner, J. (2018). Why was PERV not transmitted during preclinical and clinical xenotransplantation trials and after inoculation of animals? Retrovirology 15, 28.

    PubMed  PubMed Central  Google Scholar 

  • Ekser, B., Ezzelarab, M., Hara, H., van der Windt, D.J., Wijkstrom, M., Bottino, R., Trucco, M., and Cooper, D.K. (2012a). Clinical xenotransplantation: the next medical revolution? Lancet 379, 672–683.

    PubMed  Google Scholar 

  • Ekser, B., Lin, C.C., Long, C., Echeverri, G.J., Hara, H., Ezzelarab, M., Bogdanov, V.Y., Stolz, D.B., Enjyoji, K., Robson, S.C., et al. (2012b). Potential factors influencing the development of thrombocytopenia and consumptive coagulopathy after genetically modified pig liver xenotransplantation. Transplant Int 25, 882–896.

    CAS  Google Scholar 

  • Enache, O.M., Rendo, V., Abdusamad, M., Lam, D., Davison, D., Pal, S., Currimjee, N., Hess, J., Pantel, S., Nag, A., et al. (2020). Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat Genet 52, 662–668.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ezzelarab, C., Ayares, D., Cooper, D.K.C., and Ezzelarab, M.B. (2012). Human T-cell proliferation in response to thrombin-activated GTKO pig endothelial cells. Xenotransplantation 19, 311–316.

    PubMed  PubMed Central  Google Scholar 

  • Fiebig, U., Fischer, K., Bähr, A., Runge, C., Schnieke, A., Wolf, E., and Denner, J. (2018). Porcine endogenous retroviruses: Quantification of the copy number in cell lines, pig breeds, and organs. Xenotransplantation 25, e12445.

    PubMed  Google Scholar 

  • French, B.M., Sendil, S., Pierson Iii, R.N., and Azimzadeh, A.M. (2017). The role of sialic acids in the immune recognition of xenografts. Xenotransplantation 24, e12345.

    Google Scholar 

  • Haapaniemi, E., Botla, S., Persson, J., Schmierer, B., and Taipale, J. (2018). CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24, 927–930.

    CAS  PubMed  Google Scholar 

  • Hawthorne, W.J., Cowan, P.J., Bühler, L.H., Yi, S., Bottino, R., Pierson Iii, R.N., Ahn, C., Azimzadeh, A., Cozzi, E., Gianello, P., et al. (2019). Third WHO Global Consultation on Regulatory Requirements for Xenotransplantation Clinical Trials, Changsha, Hunan, China December 12–14, 2018: “The 2018 Changsha Communique” The 10-Year Anniversary of The International Consultation on Xenotransplantation. Xenotransplantation 26, e12513.

    PubMed  Google Scholar 

  • Higginbotham, L., Mathews, D., Breeden, C.A., Song, M., Farris Iii, A.B., Larsen, C.P., Ford, M.L., Lutz, A.J., Tector, M., Newell, K.A., et al. (2015). Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model. Xenotransplantation 22, 221–230.

    PubMed  PubMed Central  Google Scholar 

  • Hinrichs, A., Kessler, B., Kurome, M., Blutke, A., Kemter, E., Bernau, M., Scholz, A.M., Rathkolb, B., Renner, S., Bultmann, S., et al. (2018). Growth hormone receptor-deficient pigs resemble the pathophysiology of human Laron syndrome and reveal altered activation of signaling cascades in the liver. Mol Metab 11, 113–128.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hinrichs, A., Klymiuk, N., Dahlhoff, M., Kessler, B., Kurome, M., Zakhartchenko, V., Kemter, E., Jemiller, E.M., Längin, M., Abicht, J.M., et al. (2019). Growth hormone receptor knockout in GTKO/hCD46/hTM pigs as a strategy to prevent overgrowth of orthotopic xenohearts in baboons. Xenotransplantation 26, e12553 (abstract 12225.12553).

    Google Scholar 

  • Hryhorowicz, M., Zeyland, J., Słomski, R., and Lipiński, D. (2017). Genetically modified pigs as organ donors for xenotransplantation. Mol Biotechnol 59, 435–444.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim, Z., Busch, J., Awwad, M., Wagner, R., Wells, K., and Cooper, D. K.C. (2006). Selected physiologic compatibilities and incompatibilities between human and porcine organ systems. Xenotransplantation 13, 488–499.

    PubMed  Google Scholar 

  • Ide, K., Wang, H., Tahara, H., Liu, J., Wang, X., Asahara, T., Sykes, M., Yang, Y.G., and Ohdan, H. (2007). Role for CD47-SIRPα signaling in xenograft rejection by macrophages. Proc Natl Acad Sci USA 104, 5062–5066.

    CAS  PubMed  Google Scholar 

  • Iwase, H., Hara, H., Ezzelarab, M., Li, T., Zhang, Z., Gao, B., Liu, H., Long, C., Wang, Y., Cassano, A., et al. (2017). Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts. Xenotransplantation 24, e12293.

    Google Scholar 

  • Iwase, H., Klein, E.C., and Cooper, D.K. (2018). Physiologic aspects of pig kidney transplantation in nonhuman primates. Comp Med 68, 332–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwase, H., and Kobayashi, T. (2015). Current status of pig kidney xenotransplantation. Int J Surg 23, 229–233.

    PubMed  PubMed Central  Google Scholar 

  • Iwase, H., Liu, H., Wijkstrom, M., Zhou, H., Singh, J., Hara, H., Ezzelarab, M., Long, C., Klein, E., Wagner, R., et al. (2015). Pig kidney graft survival in a baboon for 136 days: longest life-supporting organ graft survival to date. Xenotransplantation 22, 302–309.

    PubMed  PubMed Central  Google Scholar 

  • Ji, H., Li, X., Yue, S., Li, J., Chen, H., Zhang, Z., Ma, B., Wang, J., Pu, M., Zhou, L., et al. (2015). Pig BMSCs transfected with human TFPI combat species incompatibility and regulate the human TF pathway in vitro and in a rodent model. Cell Physiol Biochem 36, 233–249.

    CAS  PubMed  Google Scholar 

  • Kim, S.C., Mathews, D.V., Breeden, C.P., Higginbotham, L.B., Ladowski, J., Martens, G., Stephenson, A., Farris, A.B., Strobert, E.A., Jenkins, J., et al. (2019). Long-term survival of pig-to-rhesus macaque renal xenografts is dependent on CD4 T cell depletion. Am J Transplant 19, 2174–2185.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S.C., Wakwe, W., Higginbotham, L.B., Mathews, D.V., Breeden, C.P., Stephenson, A.C., Jenkins, J., Strobert, E., Price, K., Price, L., et al. (2017). Fc-silent anti-CD154 domain antibody effectively prevents nonhuman primate renal allograft rejection. Am J Transplant 17, 1182–1192.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knosalla, C., Yazawa, K., Behdad, A., Bodyak, N., Shang, H., Bühler, L., Houser, S., Gollackner, B., Griesemer, A., Schmitt-Knosalla, I., et al. (2009). Renal and cardiac endothelial heterogeneity impact acute vascular rejection in pig-to-baboon xenotransplantation. Am J Transplant 9, 1006–1016.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Längin, M., Mayr, T., Reichart, B., Michel, S., Buchholz, S., Guethoff, S., Dashkevich, A., Baehr, A., Egerer, S., Bauer, A., et al. (2018). Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 564, 430–433.

    PubMed  Google Scholar 

  • Lilienfeld, B.G., Crew, M.D., Forte, P., Baumann, B.C., and Seebach, J.D. (2007). Transgenic expression of HLA-E single chain trimer protects porcine endothelial cells against human natural killer cell-mediated cytotoxicity. Xenotransplantation 14, 126–134.

    PubMed  Google Scholar 

  • Lin, C.C., Ezzelarab, M., Hara, H., Long, C., Lin, C.W., Dorling, A., and Cooper, D.K.C. (2010). Atorvastatin or transgenic expression of TFPI inhibits coagulation initiated by anti-nonGal IgG binding to porcine aortic endothelial cells. J Thromb Haemost 8, 2001–2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z., Hu, W., He, T., Dai, Y., Hara, H., Bottino, R., Cooper, D.K.C., Cai, Z., and Mou, L. (2017). Pig-to-primate islet xenotransplantation: past, present, and future. Cell Transplant 26, 925–947.

    PubMed  PubMed Central  Google Scholar 

  • Long, A.T., Kenne, E., Jung, R., Fuchs, T.A., and Renné, T. (2016). Contact system revisited: an interface between inflammation, coagulation, and innate immunity. J Thromb Haemost 14, 427–437.

    CAS  PubMed  Google Scholar 

  • McGregor, C.G.A., Takeuchi, Y., Scobie, L., and Byrne, G. (2018). PERVading strategies and infectious risk for clinical xenotransplantation. Xenotransplantation 25, e12402.

    PubMed  PubMed Central  Google Scholar 

  • Meier, R.P.H., Muller, Y.D., Balaphas, A., Morel, P., Pascual, M., Seebach, J.D., and Buhler, L.H. (2017). Xenotransplantation: back to the future? Transpl Int 31, 465–477.

    Google Scholar 

  • Mohiuddin, M.M., Singh, A.K., Corcoran, P.C., Hoyt, R.F., Thomas Iii, M. L., Lewis, B.G.T., Eckhaus, M., Reimann, K.A., Klymiuk, N., Wolf, E., et al. (2014). One-year heterotopic cardiac xenograft survival in a pig to baboon model. Am J Transplant 14, 488–489.

    CAS  PubMed  Google Scholar 

  • Mohiuddin, M.M., Singh, A.K., Corcoran, P.C., Thomas Marvin L. I., Clark, T., Lewis, B.G., Hoyt, R.F., Eckhaus, M., Pierson Richard N. I., Belli, A.J., et al. (2016). Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun 7, 11138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu, D., Wei, H.J., Lin, L., George, H., Wang, T., Lee, I.H., Zhao, H.Y., Wang, Y., Kan, Y., Shrock, E., et al. (2017). Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357, 1303–1307.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, D., Liu, T., Lei, T., Zhu, H., Wang, Y., and Deng, S. (2019). Progress in multiple genetically modified minipigs for xenotransplantation in China. Xenotransplantation 26, e12492.

    PubMed  Google Scholar 

  • Platt, J.L., Lin, S.S., and McGregor, C.G.A. (1998). Acute vascular rejection. Xenotransplantation 5, 169–175.

    CAS  PubMed  Google Scholar 

  • Ramackers, W., Klose, J., Vondran, F.W.R., Schrem, H., Kaltenborn, A., Klempnauer, J., and Kleine, M. (2014). Species-specific regulation of fibrinogen synthesis with implications for porcine hepatocyte xenotransplantation. Xenotransplantation 21, 444–453.

    PubMed  Google Scholar 

  • Reemtsma, K. (1989). Xenografts. Transpl Proc 21, 517–518.

    CAS  Google Scholar 

  • Reemtsma, K. (1995). Xenotransplantation: A historical perspective. ILAR J 37, 9–12.

    PubMed  Google Scholar 

  • Scobie, L., Crossan, C., Mourad, N.I., Galli, C., Perota, A., and Gianello, P. (2018). Viral pathogens: What are they and do they matter? Xenotransplantation 25, e12412.

    PubMed  Google Scholar 

  • Shah, J.A., Navarro-Alvarez, N., DeFazio, M., Rosales, I.A., Elias, N., Yeh, H., Colvin, R.B., Cosimi, A.B., Markmann, J.F., Hertl, M., et al. (2016). A bridge to somewhere: 25-day survival after pig-to-baboon liver xenotransplantation. Ann Surg 263, 1069–1071.

    PubMed  Google Scholar 

  • Shah, J.A., Patel, M.S., Elias, N., Navarro-Alvarez, N., Rosales, I., Wilkinson, R.A., Louras, N.J., Hertl, M., Fishman, J.A., Colvin, R.B., et al. (2017). Prolonged survival following pig-to-primate liver xenotransplantation utilizing exogenous coagulation factors and costimulation blockade. Am J Transplant 17, 2178–2185.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimoda, M., and Matsumoto, S. (2017). Microencapsulation in clinical islet xenotransplantation. In: Opara, E., ed. Cell Microencapsulation. Methods in Molecular Biology. New York: Humana Press. 335–345.

    Google Scholar 

  • Shin, J.S., Min, B.H., Kim, J.M., Kim, J.S., Yoon, I.H., Kim, H.J., Kim, Y. H., Jang, J.Y., Kang, H.J., Lim, D.G., et al. (2016). Failure of transplantation tolerance induction by autologous regulatory T cells in the pig-to-non-human primate islet xenotransplantation model. Xenotransplantation 23, 300–309.

    PubMed  Google Scholar 

  • Starzl, T.E., Murase, N., Tzakis, A., Fung, J.J., Todo, S., Demetris, A.J., Manez, R., Marino, I.R., and Valdivia, L. (1994). Clinical xenotransplantation. Xenotransplantation 1, 3–7.

    PubMed  PubMed Central  Google Scholar 

  • Sykes, M., and Sachs, D.H. (2019). Transplanting organs from pigs to humans. Sci Immunol 4, eaau6298.

    PubMed  PubMed Central  Google Scholar 

  • Tadić, V., Josipović, G., Zoldoš, V., and Vojta, A. (2019). CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity. Methods 164–165, 109–119.

    PubMed  Google Scholar 

  • Trefts, E., Gannon, M., and Wasserman, D.H. (2017). The liver. Curr Biol 27, R1147–R1151.

    CAS  PubMed  PubMed Central  Google Scholar 

  • van der Windt, D.J., Bottino, R., Kumar, G., Wijkstrom, M., Hara, H., Ezzelarab, M., Ekser, B., Phelps, C., Murase, N., Casu, A., et al. (2012). Clinical islet xenotransplantation: how close are we? Diabetes 61, 3046–3055.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Cooper, D.K.C., Burdorf, L., Wang, Y., and Iwase, H. (2018). Overcoming coagulation dysregulation in pig solid organ transplantation in nonhuman primates. Transplantation 102, 1050–1058.

    PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Lei, T., Wei, L., Du, S., Girani, L., and Deng, S. (2019). Xenotransplantation in China: Present status. Xenotransplantation 26, e12490.

    PubMed  Google Scholar 

  • Watanabe, H., Ariyoshi, Y., Pomposelli, T., Takeuchi, K., Ekanayake-Alper, D.K., Boyd, L.K., Arn, S.J., Sahara, H., Shimizu, A., Ayares, D., et al. (2020). Intra-bone bone marrow transplantation from hCD47 transgenic pigs to baboons prolongs chimerism to >60 days and promotes increased porcine lung transplant survival. Xenotransplantation 27.

  • Whyte, J.J., and Prather, R.S. (2011). Genetic modifications of pigs for medicine and agriculture. Mol Reprod Dev 78, 879–891.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wijkstrom, M., Iwase, H., Paris, W., Hara, H., Ezzelarab, M., and Cooper, D.K.C. (2017). Renal xenotransplantation: experimental progress and clinical prospects. Kidney Int 91, 790–796.

    CAS  PubMed  Google Scholar 

  • Yue, Y., Kan, Y., Xu, W., Zhao, H.Y., Zhou, Y., Song, X., Wu, J., Xiong, J., Goswami, D., Yang, M., et al. (2019). Extensive mammalian germline genome engineering. bioRxiv 2019, 876862.

    Google Scholar 

  • Yau, J.W., Teoh, H., and Verma, S. (2015). Endothelial cell control of thrombosis. BMC Cardiovasc Disord 15, 130.

    PubMed  PubMed Central  Google Scholar 

  • Zelaya, H., Rothmeier, A.S., and Ruf, W. (2018). Tissue factor at the crossroad of coagulation and cell signaling. J Thromb Haemost 16, 1941–1952.

    CAS  PubMed  Google Scholar 

  • Zhang, X., Li, X., Yang, Z., Tao, K., Wang, Q., Dai, B., Qu, S., Peng, W., Zhang, H., Cooper, D.K.C., et al. (2019). A review of pig liver xenotransplantation: Current problems and recent progress. Xenotransplantation 26, e12497.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Li, X., Zhang, H., Zhang, X., Chen, H., Pan, D., Ji, H., Zhou, L., Ling, J., Zhou, J., et al. (2017). Cytokine profiles in Tibetan macaques following α-1,3-galactosyltransferase-knockout pig liver xenotransplantation. Xenotransplantation 24, e12321.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2015CB554100), the National Key Research and Development Program of China (2017YFC1103703), the National Natural Science Foundation of China (81870446, 81671838, 81670593, 81900571), Natural Science Foundation of Shaanxi Province (2016JM8026, 2020JQ-451), and Academic Assistant Program of Xijing Hospital (XJZT18MJ29, XJZT18MJ27).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaishan Tao or Kefeng Dou.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, Q., Zhao, J. et al. The resurgent landscape of xenotransplantation of pig organs in nonhuman primates. Sci. China Life Sci. 64, 697–708 (2021). https://doi.org/10.1007/s11427-019-1806-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1806-2

Keywords

Navigation