Skip to main content
Log in

Design and biosynthesis of functional protein nanostructures

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Proteins are one of the major classes of biomolecules that execute biological functions for maintenance of life. Various kinds of nanostructures self-assembled from proteins have been created in nature over millions of years of evolution, including protein nanowires, layers and nanocages. These protein nanostructures can be reconstructed and equipped with desired new functions. Learning from and manipulating the self-assembly of protein nanostructures not only help to deepen our understanding of the nature of life but also offer new routes to fabricate novel nanomaterials for diverse applications. This review summarizes the recent research progress in this field, focusing on the characteristics, functionalization strategies, and applications of protein nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aljabali, A.A.A., Barclay, J.E., Lomonossoff, G.P., and Evans, D.J. (2010). Virus templated metallic nanoparticles. Nanoscale 2, 2596–2600.

    CAS  PubMed  Google Scholar 

  • Aljabali, A.A.A., Barclay, J.E., Cespedes, O., Rashid, A., Staniland, S.S., Lomonossoff, G.P., and Evans, D.J. (2011). Charge modified cowpea mosaic virus particles for templated mineralization. Adv Funct Mater 21, 4137–4142.

    CAS  Google Scholar 

  • Allen, M., Bulte, J.W.M., Liepold, L., Basu, G., Zywicke, H.A., Frank, J. A., Young, M., and Douglas, T. (2005). Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents. Magn Reson Med 54, 807–812.

    CAS  PubMed  Google Scholar 

  • Almirón, M., Link, A.J., Furlong, D., and Kolter, R. (1992). A novel DNAbinding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6, 2646–2654.

    PubMed  Google Scholar 

  • Aniagyei, S.E., Kennedy, C.J., Stein, B., Willits, D.A., Douglas, T., Young, M.J., De, M., Rotello, V.M., Srisathiyanarayanan, D., Kao, C.C., et al. (2009). Synergistic effects of mutations and nanoparticle templating in the self-assembly of cowpea chlorotic mottle virus capsids. Nano Lett 9, 393–398.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arosio, P., and Levi, S. (2002). Ferritin, iron homeostasis, and oxidative damage. Free Radical Biol Med 33, 457–463.

    CAS  Google Scholar 

  • Barnhill, H.N., Claudel-Gillet, S., Ziessel, R., Charbonnière, L.J., and Wang, Q. (2007). Prototype protein assembly as scaffold for timeresolved fluoroimmuno assays. J Am Chem Soc 129, 7799–7806.

    CAS  PubMed  Google Scholar 

  • Baxa, U., Speransky, V., Steven, A.C., and Wickner, R.B. (2002). Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc Natl Acad Sci USA 99, 5253–5260.

    CAS  PubMed  Google Scholar 

  • Blum, A.S., Soto, C.M., Wilson, C.D., Brower, T.L., Pollack, S.K., Schull, T.L., Chatterji, A., Lin, T., Johnson, J.E., Amsinck, C., et al. (2005). An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale. Small 1, 702–706.

    CAS  PubMed  Google Scholar 

  • Blum, A.S., Soto, C.M., Wilson, C.D., Cole, J.D., Kim, M., Gnade, B., Chatterji, A., Ochoa, W.F., Lin, T., Johnson, J.E., et al. (2004). Cowpea mosaic virus as a scaffold for 3-D patterning of gold nanoparticles. Nano Lett 4, 867–870.

    CAS  Google Scholar 

  • Buell, A.K., White, D.A., Meier, C., Welland, M.E., Knowles, T.P.J., and Dobson, C.M. (2010). Surface attachment of protein fibrils via covalent modification strategies. J Phys Chem B 114, 10925–10938.

    CAS  PubMed  Google Scholar 

  • Cao, Y., and Mezzenga, R. (2019). Food protein amyloid fibrils: Origin, structure, formation, characterization, applications and health implications. Adv Colloid Interface Sci 269, 334–356.

    CAS  PubMed  Google Scholar 

  • Capehart, S.L., Coyle, M.P., Glasgow, J.E., and Francis, M.B. (2013). Controlled integration of gold nanoparticles and organic fluorophores using synthetically modified MS2 viral capsids. J Am Chem Soc 135, 3011–3016.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran, A.R. (2016). Programmable DNA scaffolds for spatiallyordered protein assembly. Nanoscale 8, 4436–4446.

    CAS  PubMed  Google Scholar 

  • Chatterji, A., Ochoa, W.F., Ueno, T., Lin, T., and Johnson, J.E. (2005). A virus-based nanoblock with tunable electrostatic properties. Nano Lett 5, 597–602.

    CAS  PubMed  Google Scholar 

  • Chen, C., Daniel, M.C., Quinkert, Z.T., De, M., Stein, B., Bowman, V.D., Chipman, P.R., Rotello, V.M., Kao, C.C., and Dragnea, B. (2006). Nanoparticle-templated assembly of viral protein cages. Nano Lett 6, 611–615.

    CAS  PubMed  Google Scholar 

  • Comellas-Aragonès, M., Engelkamp, H., Claessen, V.I., Sommerdijk, N.A. J.M., Rowan, A.E., Christianen, P.C.M., Maan, J.C., Verduin, B.J.M., Cornelissen, J.J.L.M., and Nolte, R.J.M. (2007). A virus-based singleenzyme nanoreactor. Nat Nanotech 2, 635–639.

    Google Scholar 

  • Damiati, S., Küpcü, S., Peacock, M., Eilenberger, C., Zamzami, M., Qadri, I., Choudhry, H., Sleytr, U.B., and Schuster, B. (2017). Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2). Biosens Bioelectron 94, 500–506.

    CAS  PubMed  Google Scholar 

  • Damiati, S., Peacock, M., Leonhardt, S., Damiati, L., Baghdadi, M.A., Becker, H., Kodzius, R., and Schuster, B. (2018a). Embedded disposable functionalized electrochemical biosensor with a 3D-printed flow cell for detection of hepatic oval cells (HOCs). Genes 9, 89.

    PubMed Central  Google Scholar 

  • Damiati, S., Peacock, M., Mhanna, R., Søpstad, S., Sleytr, U.B., and Schuster, B. (2018b). Bioinspired detection sensor based on functional nanostructures of S-proteins to target the folate receptors in breast cancer cells. Sens Actuat B Chem 267, 224–230.

    CAS  Google Scholar 

  • Daniel, M.C., Tsvetkova, I.B., Quinkert, Z.T., Murali, A., De, M., Rotello, V.M., Kao, C.C., and Dragnea, B. (2010). Role of surface charge density in nanoparticle-templated assembly of bromovirus protein cages. ACS Nano 4, 3853–3860.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das, S., Kumar, R., Jha, N.N., and Maji, S.K. (2017). Controlled exposure of bioactive growth factor in 3D amyloid hydrogel for stem cells differentiation. Adv Healthcare Mater 6, 1700368.

    Google Scholar 

  • Dixit, S.K., Goicochea, N.L., Daniel, M.C., Murali, A., Bronstein, L., De, M., Stein, B., Rotello, V.M., Kao, C.C., and Dragnea, B. (2006). Quantum dot encapsulation in viral capsids. Nano Lett 6, 1993–1999.

    CAS  PubMed  Google Scholar 

  • Douglas, T., and Young, M. (1998). Host–guest encapsulation of materials by assembled virus protein cages. Nature 393, 152–155.

    CAS  Google Scholar 

  • Douglas, T., and Young, M. (2006). Viruses: Making friends with old foes. Science 312, 873–875.

    CAS  PubMed  Google Scholar 

  • Dragnea, B., Chen, C., Kwak, E.S., Stein, B., and Kao, C.C. (2003). Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses. J Am Chem Soc 125, 6374–6375.

    CAS  PubMed  Google Scholar 

  • Edwardson, T.G.W., and Hilvert, D. (2019). Virus-inspired function in engineered protein cages. J Am Chem Soc 141, 9432–9443.

    CAS  PubMed  Google Scholar 

  • Enomoto, T., Kawano, M., Fukuda, H., Sawada, W., Inoue, T., Haw, K.C., Kita, Y., Sakamoto, S., Yamaguchi, Y., Imai, T., et al. (2013). Viral protein-coating of magnetic nanoparticles using simian virus 40 VP1. J Biotech 167, 8–15.

    CAS  Google Scholar 

  • Everts, M., Saini, V., Leddon, J.L., Kok, R.J., Stoff-Khalili, M., Preuss, M. A., Millican, C.L., Perkins, G., Brown, J.M., Bagaria, H., et al. (2006). Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett 6, 587–591.

    CAS  PubMed  Google Scholar 

  • Ferner-Ortner-Bleckmann, J., Gelbmann, N., Tesarz, M., Egelseer, E.M., and Sleytr, U.B. (2013). Surface-layer lattices as patterning element for multimeric extremozymes. Small 9, 3887–3894.

    CAS  PubMed  Google Scholar 

  • Ferraz, H.C., Guimarães, J.A., Alves, T.L.M., and Constantino, C.J.L. (2011). Monomolecular films of cholesterol oxidase and S-Layer proteins. Appl Surf Sci 257, 6535–6539.

    CAS  Google Scholar 

  • Flenniken, M.L., Uchida, M., Liepold, L.O., Kang, S., Young, M.J., and Douglas, T. (2009). A library of protein cage architectures as nanomaterials. Curr Top Microbiol 327, 71–93.

    CAS  Google Scholar 

  • Gao, D., Zhang, Z.P., Li, F., Men, D., Deng, J.Y., Wei, H.P., Zhang, X.E., and Cui, Z.Q. (2013). Quantum dot-induced viral capsid assembling in dissociation buffer. Int J Nanomed 8, 2119–2128.

    Google Scholar 

  • Glasgow, J.E., Capehart, S.L., Francis, M.B., and Tullman-Ercek, D. (2012). Osmolyte-mediated encapsulation of proteins inside MS2 viral capsids. ACS Nano 6, 8658–8664.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goicochea, N.L., De, M., Rotello, V.M., Mukhopadhyay, S., and Dragnea, B. (2007). Core-like particles of an enveloped animal virus can selfassemble efficiently on artificial templates. Nano Lett 7, 2281–2290.

    CAS  PubMed  Google Scholar 

  • Guimarães, J.A., Ferraz, H.C., and Alves, T.L.M. (2014). Langmuir–Blodgett films of cholesterol oxidase and S-layer proteins onto screenprinted electrodes. Appl Surf Sci 298, 68–74.

    Google Scholar 

  • Gupta, S., Chatni, M.R., Rao, A.L.N., Vullev, V.I., Wang, L.V., and Anvari, B. (2013). Virus-mimicking nano-constructs as a contrast agent for near infrared photoacoustic imaging. Nanoscale 5, 1772–1776.

    CAS  PubMed  PubMed Central  Google Scholar 

  • He, J., Fan, K., and Yan, X. (2019). Ferritin drug carrier (FDC) for tumor targeting therapy. J Control Release 311-312, 288–300.

    CAS  PubMed  Google Scholar 

  • Hollmann, A., Delfederico, L., Glikmann, G., De Antoni, G., Semorile, L., and Disalvo, E.A. (2007). Characterization of liposomes coated with Slayer proteins from lactobacilli. Biochim Biophys Acta Biomembranes 1768, 393–400.

    CAS  Google Scholar 

  • Hollmann, A., Delfederico, L., Santos, N.C., Disalvo, E.A., and Semorile, L. (2018). Interaction of S-layer proteins of Lactobacillus kefir with model membranes and cells. J Liposome Res 28, 117–125.

    CAS  PubMed  Google Scholar 

  • Hooker, J.M., Datta, A., Botta, M., Raymond, K.N., and Francis, M.B. (2007). Magnetic resonance contrast agents from viral capsid shells: a comparison of exterior and interior cargo strategies. Nano Lett 7, 2207–2210.

    CAS  PubMed  Google Scholar 

  • Hou, C., Li, J., Zhao, L., Zhang, W., Luo, Q., Dong, Z., Xu, J., and Liu, J. (2013). Construction of protein nanowires through cucurbit[8]uril-based highly specific host-guest interactions: an approach to the assembly of functional proteins. Angew Chem Int Ed 52, 5590–5593.

    CAS  Google Scholar 

  • Hou, C., Luo, Q., Liu, J., Miao, L., Zhang, C., Gao, Y., Zhang, X., Xu, J., Dong, Z., and Liu, J. (2012). Construction of GPx active centers on natural protein nanodisk/nanotube: a new way to develop artificial nanoenzyme. ACS Nano 6, 8692–8701.

    CAS  PubMed  Google Scholar 

  • Hu, B., Shen, Y., Adamcik, J., Fischer, P., Schneider, M., Loessner, M.J., and Mezzenga, R. (2018). Polyphenol-binding amyloid fibrils selfassemble into reversible hydrogels with antibacterial activity. ACS Nano 12, 3385–3396.

    CAS  PubMed  Google Scholar 

  • Huang, X., Bronstein, L.M., Retrum, J., Dufort, C., Tsvetkova, I., Aniagyei, S., Stein, B., Stucky, G., McKenna, B., Remmes, N., et al. (2007). Selfassembled virus-like particles with magnetic cores. Nano Lett 7, 2407–2416.

    CAS  PubMed  Google Scholar 

  • Huang, X., Stein, B.D., Cheng, H., Malyutin, A., Tsvetkova, I.B., Baxter, D.V., Remmes, N.B., Verchot, J., Kao, C., Bronstein, L.M., et al. (2011). Magnetic virus-like nanoparticles in N. benthamiana plants: a new paradigm for environmental and agronomic biotechnological research. ACS Nano 5, 4037–4045.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ilk, N., Küpcü, S., Moncayo, G., Klimt, S., Ecker, R.C., Hofer-Warbinek, R., Egelseer, E.M., Sleytr, U.B., and Sára, M. (2004). A functional chimaeric S-layer-enhanced green fluorescent protein to follow the uptake of S-layer-coated liposomes into eukaryotic cells. Biochem J 379, 441–448.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob, R.S., Ghosh, D., Singh, P.K., Basu, S.K., Jha, N.N., Das, S., Sukul, P.K., Patil, S., Sathaye, S., Kumar, A., et al. (2015). Self healing hydrogels composed of amyloid nano fibrils for cell culture and stem cell differentiation. Biomaterials 54, 97–105.

    CAS  PubMed  Google Scholar 

  • Jayarajan, R., Kumar, R., Gupta, J., Dev, G., Kadu, P., Chatterjee, D., Bahadur, D., Maiti, D., and Maji, S.K. (2019). Fabrication of an amyloid fibril-palladium nanocomposite: a sustainable catalyst for C–H activation and the electrooxidation of ethanol. J Mater Chem A 7, 4486–4493.

    CAS  Google Scholar 

  • Kim, R., Lai, L., Lee, H.H., Cheong, G.W., Kim, K.K., Wu, Z., Yokota, H., Marqusee, S., and Kim, S.H. (2003). On the mechanism of chaperone activity of the small heat-shock protein of Methanococcus jannaschii. Proc Natl Acad Sci USA 100, 8151–8155.

    CAS  PubMed  Google Scholar 

  • Kimchi-Sarfaty, C., Ben-Nun-Shaul, O., Rund, D., Oppenheim, A., and Gottesman, M.M. (2002). In vitro-packaged SV40 pseudovirions as highly efficient vectors for gene transfer. Hum Gene Ther 13, 299–310.

    CAS  PubMed  Google Scholar 

  • Klem, M.T., Young, M., and Douglas, T. (2008). Biomimetic synthesis of β-TiO2 inside a viral capsid. J Mater Chem 18, 3821–3823.

    CAS  Google Scholar 

  • Kosuge, H., Uchida, M., Lucon, J., Qazi, S., Douglas, T., and McConnell, M.V. (2013). High-Gd-Payload P22 protein cage nanoparticles for imaging vascular inflammation. J Cardiovasc Magn Reson 15, O66.

    PubMed Central  Google Scholar 

  • Kuan, S.L., Bergamini, F.R.G., and Weil, T. (2018). Functional protein nanostructures: a chemical toolbox. Chem Soc Rev 47, 9069–9105.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, D.S., Park, J.S., Lee, E.J., Kim, H.J., and Lee, J. (2013). A protein nanofiber hydrogel for sensitive immunoassays. Analyst 138, 4786–4794.

    CAS  PubMed  Google Scholar 

  • Lewis, J.D., Destito, G., Zijlstra, A., Gonzalez, M.J., Quigley, J.P., Manchester, M., and Stuhlmann, H. (2006). Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12, 354–360.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, C., Adamcik, J., and Mezzenga, R. (2012a). Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nat Nanotech 7, 421–427.

    CAS  Google Scholar 

  • Li, C., Li, F., Zhang, Y., Zhang, W., Zhang, X.E., and Wang, Q. (2015). Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot. ACS Nano 9, 12255–12263.

    CAS  PubMed  Google Scholar 

  • Li, F., Chen, H., Zhang, Y., Chen, Z., Zhang, Z.P., Zhang, X.E., and Wang, Q. (2012b). Three-dimensional gold nanoparticle clusters with tunable cores templated by a viral protein scaffold. Small 8, 3832–3838.

    CAS  PubMed  Google Scholar 

  • Li, F., Chen, Y., Chen, H., He, W., Zhang, Z.P., Zhang, X.E., and Wang, Q. (2011a). Monofunctionalization of protein nanocages. J Am Chem Soc 133, 20040–20043.

    CAS  PubMed  Google Scholar 

  • Li, F., Gao, D., Zhai, X., Chen, Y., Fu, T., Wu, D., Zhang, Z.P., Zhang, X.E., and Wang, Q. (2011b). Tunable, discrete, three-dimensional hybrid nanoarchitectures. Angew Chem Int Ed 50, 4202–4205.

    CAS  Google Scholar 

  • Li, F., Li, K., Cui, Z.Q., Zhang, Z.P., Wei, H.P., Gao, D., Deng, J.Y., and Zhang, X.E. (2010). Viral coat proteins as flexible nano-building-blocks for nanoparticle encapsulation. Small 6, 2301–2308.

    CAS  PubMed  Google Scholar 

  • Li, F., and Wang, Q. (2014). Fabrication of nanoarchitectures templated by virus-based nanoparticles: strategies and applications. Small 10, 230–245.

    CAS  PubMed  Google Scholar 

  • Li, F., Zhang, Z.P., Peng, J., Cui, Z.Q., Pang, D.W., Li, K., Wei, H.P., Zhou, Y.F., Wen, J.K., and Zhang, X.E. (2009). Imaging viral behavior in mammalian cells with self-assembled capsid-quantum-dot hybrid particles. Small 5, 718–726.

    CAS  PubMed  Google Scholar 

  • Li, J., Pylypchuk, I., Johansson, D.P., Kessler, V.G., Seisenbaeva, G.A., and Langton, M. (2019a). Self-assembly of plant protein fibrils interacting with superparamagnetic iron oxide nanoparticles. Sci Rep 9, 8939.

    PubMed  PubMed Central  Google Scholar 

  • Li, L., Xu, C., Zhang, W., Secundo, F., Li, C., Zhang, Z.P., Zhang, X.E., and Li, F. (2019b). Cargo-compatible encapsulation in virus-based nanoparticles. Nano Lett 19, 2700–2706.

    CAS  PubMed  Google Scholar 

  • Li, P., Li, Y., Zhou, Z.K., Tang, S., Yu, X.F., Xiao, S., Wu, Z., Xiao, Q., Zhao, Y., Wang, H., et al. (2016). Evaporative self-assembly of gold nanorods into macroscopic 3D plasmonic superlattice arrays. Adv Mater 28, 2511–2517.

    CAS  PubMed  Google Scholar 

  • Liu, J., Mao, Y., Lan, E., Banatao, D.R., Forse, G.J., Lu, J., Blom, H.O., Yeates, T.O., Dunn, B., and Chang, J.P. (2008). Generation of oxide nanopatterns by combining self-assembly of S-layer proteins and area-selective atomic layer deposition. J Am Chem Soc 130, 16908–16913.

    CAS  PubMed  Google Scholar 

  • Liu, Y., Yang, R., Liu, J., Meng, D., Zhou, Z., Zhang, Y., and Blanchard, C. (2019). Fabrication, structure, and function evaluation of the ferritin based nano-carrier for food bioactive compounds. Food Chem 299, 125097.

    CAS  PubMed  Google Scholar 

  • Loo, L.N., Guenther, R.H., Basnayake, V.R., Lommel, S.A., and Franzen, S. (2006). Controlled encapsidation of gold nanoparticles by a viral protein shell. J Am Chem Soc 128, 4502–4503.

    CAS  PubMed  Google Scholar 

  • Loo, L.N., Guenther, R.H., Lommel, S.A., and Franzen, S. (2007). Encapsidation of nanoparticles by Red clover necrotic mosaic virus. J Am Chem Soc 129, 11111–11117.

    CAS  PubMed  Google Scholar 

  • Lopez, A.E., Moreno-Flores, S., Pum, D., Sleytr, U.B., and Toca-Herrera, J. L. (2010). Surface dependence of protein nanocrystal formation. Small 6, 396–403.

    CAS  PubMed  Google Scholar 

  • Lucon, J., Qazi, S., Uchida, M., Bedwell, G.J., LaFrance, B., Prevelige Jr, P.E., and Douglas, T. (2012). Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading. Nat Chem 4, 781–788.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, Q., Hou, C., Bai, Y., Wang, R., and Liu, J. (2016). Protein assembly: versatile approaches to construct highly ordered nanostructures. Chem Rev 116, 13571–13632.

    CAS  PubMed  Google Scholar 

  • Makam, S.S., Kingston, J.J., Harischandra, M.S., and Batra, H.V. (2014). Protective antigen and extractable antigen 1 based chimeric protein confers protection against Bacillus anthracis in mouse model. Mol Immunol 59, 91–99.

    CAS  PubMed  Google Scholar 

  • Malay, A.D., Miyazaki, N., Biela, A., Chakraborti, S., Majsterkiewicz, K., Stupka, I., Kaplan, C.S., Kowalczyk, A., Piette, B.M.A.G., Hochberg, G.K.A., et al. (2019). An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature 569, 438–442.

    CAS  PubMed  Google Scholar 

  • Mark, S.S., Bergkvist, M., Yang, X., Teixeira, L.M., Bhatnagar, P., Angert, E.R., and Batt, C.A. (2006). Bionanofabrication of metallic and semiconductor nanoparticle arrays using S-layer protein lattices with different lateral spacings and geometries. Langmuir 22, 3763–3774.

    CAS  PubMed  Google Scholar 

  • McCoy, K., Uchida, M., Lee, B., and Douglas, T. (2018). Templated assembly of a functional ordered protein macromolecular framework from P22 virus-like particles. ACS Nano 12, 3541–3550.

    CAS  PubMed  Google Scholar 

  • Men, D., Guo, Y.C., Zhang, Z.P., Wei, H.P., Zhou, Y.F., Cui, Z.Q., Liang, X. S., Li, K., Leng, Y., You, X.Y., et al. (2009). Seeding-induced selfassembling protein nanowires dramatically increase the sensitivity of immunoassays. Nano Lett 9, 2246–2250.

    CAS  PubMed  Google Scholar 

  • Men, D., Zhang, Z.P., Guo, Y.C., Zhu, D.H., Bi, L.J., Deng, J.Y., Cui, Z.Q., Wei, H.P., and Zhang, X.E. (2010). An auto-biotinylated bifunctional protein nanowire for ultra-sensitive molecular biosensing. Biosens Bioelectron 26, 1137–1141.

    CAS  PubMed  Google Scholar 

  • Men, D., Zhou, J., Li, W., Leng, Y., Chen, X., Tao, S., and Zhang, X.E. (2016). Fluorescent protein nanowire-mediated protein microarrays for multiplexed and highly sensitive pathogen detection. ACS Appl Mater Interfaces 8, 17472–17477.

    CAS  PubMed  Google Scholar 

  • Men, D., Zhou, J., Li, W., Wei, C.H., Chen, Y.Y., Zhou, K., Zheng, Y., Xu, K., Zhang, Z.P., and Zhang, X.E. (2018). Self-assembly of antigen proteins into nanowires greatly enhances the binding affinity for highefficiency target capture. ACS Appl Mater Interfaces 10, 41019–41025.

    CAS  PubMed  Google Scholar 

  • Minten, I.J., Claessen, V.I., Blank, K., Rowan, A.E., Nolte, R.J.M., and Cornelissen, J.J.L.M. (2011). Catalytic capsids: the art of confinement. Chem Sci 2, 358–362.

    CAS  Google Scholar 

  • Minten, I.J., Hendriks, L.J.A., Nolte, R.J.M., and Cornelissen, J.J.L.M. (2009). Controlled encapsulation of multiple proteins in virus capsids. J Am Chem Soc 131, 17771–17773.

    CAS  PubMed  Google Scholar 

  • Molino, N.M., and Wang, S.W. (2014). Caged protein nanoparticles for drug delivery. Curr Opin Biotech 28, 75–82.

    CAS  PubMed  Google Scholar 

  • Moll, D., Huber, C., Schlegel, B., Pum, D., Sleytr, U.B., and Sára, M. (2002). S-layer-streptavidin fusion proteins as template for nanopatterned molecular arrays. Proc Natl Acad Sci USA 99, 14646–14651.

    CAS  PubMed  Google Scholar 

  • Moore, A.N., and Hartgerink, J.D. (2017). Self-assembling multidomain peptide nanofibers for delivery of bioactive molecules and tissue regeneration. Acc Chem Res 50, 714–722.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neubauer, A., Pum, D., and Sleytr, U.B. (1993). An amperometric glucose sensor based on isoporous crystalline protein membranes as immobilization matrix. Anal Lett 26, 1347–1360.

    CAS  Google Scholar 

  • Neubauer, A., Pum, D., Sleytr, U.B., Klimant, I., and Wolfbeis, O.S. (1996). Fibre-optic glucose biosensor using enzyme membranes with 2- D crystalline structure. Biosens Bioelectron 11, 317–325.

    CAS  Google Scholar 

  • Nyström, G., Fong, W.K., and Mezzenga, R. (2017). Ice-templated and cross-linked amyloid fibril aerogel scaffolds for cell growth. Biomacromolecules 18, 2858–2865.

    PubMed  Google Scholar 

  • Nyström, G., Roder, L., Fernández-Ronco, M.P., and Mezzenga, R. (2018). Amyloid Templated Organic-Inorganic Hybrid Aerogels. Adv Funct Mater 28, 1703609.

    Google Scholar 

  • Omichi, M., Asano, A., Tsukuda, S., Takano, K., Sugimoto, M., Saeki, A., Sakamaki, D., Onoda, A., Hayashi, T., and Seki, S. (2014). Fabrication of enzyme-degradable and size-controlled protein nanowires using single particle nano-fabrication technique. Nat Commun 5, 3718.

    PubMed  PubMed Central  Google Scholar 

  • Paavonen, J., Jenkins, D., Bosch, F.X., Naud, P., Salmerón, J., Wheeler, C. M., Chow, S.N., Apter, D.L., Kitchener, H.C., Castellsague, X., et al. (2007). Efficacy of a prophylactic adjuvanted bivalent L1 virus-likeparticle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet 369, 2161–2170.

    CAS  PubMed  Google Scholar 

  • Patterson, D.P., Schwarz, B., Waters, R.S., Gedeon, T., and Douglas, T. (2014). Encapsulation of an enzyme cascade within the bacteriophage P22 virus-like particle. ACS Chem Biol 9, 359–365.

    CAS  PubMed  Google Scholar 

  • Petrescu, D.S., and Blum, A.S. (2018). Viral-based nanomaterials for plasmonic and photonic materials and devices. WIREs Nanomed Nanobiotechnol 10, e1508.

    Google Scholar 

  • Picher, M.M., Küpcü, S., Huang, C.J., Dostalek, J., Pum, D., Sleytr, U.B., and Ertl, P. (2013). Nanobiotechnology advanced antifouling surfaces for the continuous electrochemical monitoring of glucose in whole blood using a lab-on-a-chip. Lab Chip 13, 1780–1789.

    CAS  PubMed  Google Scholar 

  • Pleschberger, M., Saerens, D., Weigert, S., Sleytr, U.B., Muyldermans, S., Sára, M., and Egelseer, E.M. (2004). An S-layer heavy chain camel antibody fusion protein for generation of a nanopatterned sensing layer to detect the prostate-specific antigen by surface plasmon resonance technology. Bioconjug Chem 15, 664–671.

    CAS  PubMed  Google Scholar 

  • Pokorski, J.K., and Steinmetz, N.F. (2011). The art of engineering viral nanoparticles. Mol Pharm 8, 29–43.

    CAS  PubMed  Google Scholar 

  • Pum, D., and Sleytr, U.B. (2014). Reassembly of S-layer proteins. Nanotechnology 25, 312001.

    PubMed  Google Scholar 

  • Qazi, S., Liepold, L.O., Abedin, M.J., Johnson, B., Prevelige, P., Frank, J. A., and Douglas, T. (2013). P22 viral capsids as nanocomposite highrelaxivity MRI contrast agents. Mol Pharm 10, 11–17.

    CAS  PubMed  Google Scholar 

  • Qiao, S., Wang, R., Yan, T., Li, X., Zhao, L., Zhang, X., Fan, X., Wang, T., Liu, Y., Hou, C., et al. (2018). Protein self-assembly driven by de novo coiled coils and constructing Ag nanoparticle-protein assembly composite with high catalytic activity. Part Part Syst Charact 35, 1700436.

    Google Scholar 

  • Reichhardt, C., Uchida, M., O’Neil, A., Li, R., Prevelige, P.E., and Douglas, T. (2011). Templated assembly of organic–inorganic materials using the core shell structure of the P22 bacteriophage. Chem Commun 47, 6326–6328.

    CAS  Google Scholar 

  • Ren, Y., Wong, S.M., and Lim, L.Y. (2007). Folic acid-conjugated protein cages of a plant virus: a novel delivery platform for doxorubicin. Bioconjug Chem 18, 836–843.

    CAS  PubMed  Google Scholar 

  • Reynolds, N.P. (2019). Amyloid-like peptide nanofibrils as scaffolds for tissue engineering: progress and challenges (review). Biointerphases 14, 040801.

    CAS  PubMed  Google Scholar 

  • Rima, S., and Lattuada, M. (2018). Protein amyloid fibrils as template for the synthesis of silica nanofibers, and their use to prepare superhydrophobic, lotus-like surfaces. Small 14, 1802854.

    Google Scholar 

  • Rohovie, M.J., Nagasawa, M., and Swartz, J.R. (2017). Virus-like particles: next-generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med 2, 43–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rothbauer, M., Küpcü, S., Sticker, D., Sleytr, U.B., and Ertl, P. (2013). Exploitation of S-layer anisotropy: pH-dependent nanolayer orientation for cellular micropatterning. ACS Nano 7, 8020–8030.

    CAS  PubMed  Google Scholar 

  • Saini, V., Martyshkin, D.V., Mirov, S.B., Perez, A., Perkins, G., Ellisman, M.H., Towner, V.D., Wu, H., Pereboeva, L., Borovjagin, A., et al. (2008). An adenoviral platform for selective self-assembly and targeted delivery of nanoparticles. Small 4, 262–269.

    CAS  PubMed  Google Scholar 

  • Salunke, D.M., Caspar, D.L., and Garcea, R.L. (1989). Polymorphism in the assembly of polyomavirus capsid protein VP1. Biophys J 56, 887–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sára, M., and Sleytr, U.B. (1987). Production and characteristics of ultrafiltration membranes with uniform pores from two-dimensional arrays of proteins. J Membrane Sci 33, 27–49.

    Google Scholar 

  • Sasso, L., Suei, S., Domigan, L., Healy, J., Nock, V., Williams, M.A.K., and Gerrard, J.A. (2014). Versatile multi-functionalization of protein nanofibrils for biosensor applications. Nanoscale 6, 1629–1634.

    CAS  PubMed  Google Scholar 

  • Schäffer, C., Novotny, R., Küpcü, S., Zayni, S., Scheberl, A., Friedmann, J., Sleytr, U.B., and Messner, P. (2007). Novel biocatalysts based on Slayer self-assembly of Geobacillus stearothermophilus NRS 2004/3a: a nanobiotechnological approach. Small 3, 1549–1559.

    PubMed  PubMed Central  Google Scholar 

  • Scheicher, S.R., Kainz, B., Köstler, S., Reitinger, N., Steiner, N., Ditlbacher, H., Leitner, A., Pum, D., Sleytr, U.B., and Ribitsch, V. (2013). 2D crystalline protein layers as immobilization matrices for the development of DNA microarrays. Biosens Bioelectron 40, 32–37.

    CAS  PubMed  Google Scholar 

  • Scheicher, S.R., Kainz, B., Köstler, S., Suppan, M., Bizzarri, A., Pum, D., Sleytr, U.B., and Ribitsch, V. (2009). Optical oxygen sensors based on Pt(II) porphyrin dye immobilized on S-layer protein matrices. Biosens Bioelectron 25, 797–802.

    CAS  PubMed  Google Scholar 

  • Schuster, B. (2018). S-layer protein-based biosensors. New Biotech 44, S21.

    Google Scholar 

  • Schuster, B., Pum, D., Sára, M., Braha, O., Bayley, H., and Sleytr, U.B. (2001). S-layer ultrafiltration membranes: a new support for stabilizing functionalized lipid membranes. Langmuir 17, 499–503.

    CAS  Google Scholar 

  • Schuster, B., and Sleytr, U.B. (2000). S-layer-supported lipid membranes. Rev Mol Biotech 74, 233–254.

    CAS  Google Scholar 

  • Schuster, B., and Sleytr, U.B. (2013). Nanotechnology with S-layer proteins. Methods Mol Biol 996, 153–175.

    CAS  PubMed  Google Scholar 

  • Shen, L., Zhou, J., Wang, Y., Kang, N., Ke, X., Bi, S., and Ren, L. (2015). Efficient encapsulation of Fe3O4 nanoparticles into genetically engineered hepatitis B core virus-like particles through a specific interaction for potential bioapplications. Small 11, 1190–1196.

    CAS  PubMed  Google Scholar 

  • Shen, Y., Nyström, G., and Mezzenga, R. (2017a). Amyloid fibrils form hybrid colloidal gels and aerogels with dispersed CaCO3 nanoparticles. Adv Funct Mater 27, 1700897.

    Google Scholar 

  • Shen, Y., Posavec, L., Bolisetty, S., Hilty, F.M., Nyström, G., Kohlbrecher, J., Hilbe, M., Rossi, A., Baumgartner, J., Zimmermann, M.B., et al. (2017b). Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron. Nat Nanotech 12, 642–647.

    CAS  Google Scholar 

  • Sheng, X., He, D., Yang, J., Zhu, K., and Feng, X. (2014). Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties. Nano Lett 14, 1848–1852.

    CAS  PubMed  Google Scholar 

  • Shenton, W., Pum, D., Sleytr, U.B., and Mann, S. (1997). Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 389, 585–587.

    CAS  Google Scholar 

  • Shlyakhov, E., Shoenfeld, Y., Gilburd, B., and Rubinstein, E. (2004). Evaluation of Bacillus anthracis extractable antigen for testing anthrax immunity. Clin Microbiol Infect 10, 421–424.

    CAS  PubMed  Google Scholar 

  • Sleytr, U.B., Messner, P., Pum, D., and Sara, M. (1996). Crystalline Bacterial Cell Surface Proteins (Biotechnology Intelligence Unit), pp. 116.

    Google Scholar 

  • Sleytr, U.B., and Sára, M. (1997). Bacterial and archaeal S-layer proteins: structure-function relationships and their biotechnological applications. Trends Biotech 15, 20–26.

    CAS  Google Scholar 

  • Sleytr, U.B., Sára, M., Messner, P., and Pum, D. (1994). Two-dimensional protein crystals (S-layers): fundamentals and applications. J Cell Biochem 56, 171–176.

    CAS  PubMed  Google Scholar 

  • Sleytr, U.B., Schuster, B., Egelseer, E.M., Pum, D., Horejs, C.M., Tscheliessnig, R., and Ilk, N. (2011). Nanobiotechnology with S-layer proteins as building blocks. Prog Mol Biol Transl 103, 277–352.

    CAS  Google Scholar 

  • Sun, H., Miao, L., Li, J., Fu, S., An, G., Si, C., Dong, Z., Luo, Q., Yu, S., Xu, J., et al. (2015). Self-assembly of cricoid proteins induced by “soft nanoparticles”: an approach to design multienzyme-cooperative antioxidative systems. ACS Nano 9, 5461–5469.

    CAS  PubMed  Google Scholar 

  • Sun, H., Zhang, X., Miao, L., Zhao, L., Luo, Q., Xu, J., and Liu, J. (2016a). Micelle-induced self-assembling protein nanowires: versatile supramolecular scaffolds for designing the light-harvesting system. ACS Nano 10, 421–428.

    CAS  PubMed  Google Scholar 

  • Sun, J., DuFort, C., Daniel, M.C., Murali, A., Chen, C., Gopinath, K., Stein, B., De, M., Rotello, V.M., Holzenburg, A., et al. (2007). Corecontrolled polymorphism in virus-like particles. Proc Natl Acad Sci USA 104, 1354–1359.

    CAS  PubMed  Google Scholar 

  • Sun, X., Li, W., Zhang, X., Qi, M., Zhang, Z., Zhang, X.E., and Cui, Z. (2016b). In vivo targeting and imaging of atherosclerosis using multifunctional virus-like particles of simian virus 40. Nano Lett 16, 6164–6171.

    CAS  PubMed  Google Scholar 

  • Sun, Y.L., Tang, H.Y., Ribbe, A., Duzhko, V., Woodard, T.L., Ward, J.E., Bai, Y., Nevin, K.P., Nonnenmann, S.S., Russell, T., et al. (2018). Conductive composite materials fabricated from microbially produced protein nanowires. Small 14, 1802624.

    Google Scholar 

  • Tan, Y., Adhikari, R.Y., Malvankar, N.S., Pi, S., Ward, J.E., Woodard, T.L., Nevin, K.P., Xia, Q., Tuominen, M.T., and Lovley, D.R. (2016). Synthetic biological protein nanowires with high conductivity. Small 12, 4481–4485.

    CAS  PubMed  Google Scholar 

  • Tang, J., Badelt-Lichtblau, H., Ebner, A., Preiner, J., Kraxberger, B., Gruber, H.J., Sleytr, U.B., Ilk, N., and Hinterdorfer, P. (2008). Fabrication of highly ordered gold nanoparticle arrays templated by crystalline lattices of bacterial S-layer protein. ChemPhysChem 9, 2317–2320.

    CAS  PubMed  Google Scholar 

  • Toca-Herrera, J.L., Krastev, R., Bosio, V., Küpcü, S., Pum, D., Fery, A., Sára, M., and Sleytr, U.B. (2005). Recrystallization of bacterial S-layers on flat polyelectrolyte surfaces and hollow polyelectrolyte capsules. Small 1, 339–348.

    CAS  PubMed  Google Scholar 

  • Tsvetkova, I., Chen, C., Rana, S., Kao, C.C., Rotello, V.M., and Dragnea, B. (2012). Pathway switching in templated virus-like particle assembly. Soft Matter 8, 4571–4577.

    Google Scholar 

  • Ucisik, M.H., Küpcü, S., Debreczeny, M., Schuster, B., and Sleytr, U.B. (2013). S-layer coated emulsomes as potential nanocarriers. Small 9, 2895–2904.

    CAS  PubMed  Google Scholar 

  • Völlenkle, C., Weigert, S., Ilk, N., Egelseer, E., Weber, V., Loth, F., Falkenhagen, D., Sleytr, U.B., and Sára, M. (2004). Construction of a functional S-layer fusion protein comprising an immunoglobulin Gbinding domain for development of specific adsorbents for extracorporeal blood purification. Appl Environ Microbiol 70, 1514–1521.

    PubMed  PubMed Central  Google Scholar 

  • Wahl, R., Mertig, M., Raff, J., Selenska-Pobell, S., and Pompe, W. (2001). Electron-beam induced formation of highly ordered palladium and platinum nanoparticle arrays on the S layer of Bacillus sphaericus NCTC 9602. Adv Mater 13, 736–740.

    CAS  Google Scholar 

  • Wang, D.B., Yang, R., Zhang, Z.P., Bi, L.J., You, X.Y., Wei, H.P., Zhou, Y. F., Yu, Z., and Zhang, X.E. (2009). Detection of B. anthracis spores and vegetative cells with the same monoclonal antibodies. PLoS ONE 4, e7810.

    PubMed  PubMed Central  Google Scholar 

  • Wang, J., Fang, T., Li, M., Zhang, W., Zhang, Z.P., Zhang, X.E., and Li, F. (2018). Intracellular delivery of peptide drugs using viral nanoparticles of bacteriophage P22: covalent loading and cleavable release. J Mater Chem B 6, 3716–3726.

    CAS  PubMed  Google Scholar 

  • Wang, Q., Lin, T., Tang, L., Johnson, J.E., and Finn, M.G. (2002). Icosahedral virus particles as addressable nanoscale building blocks. Angew Chem Int Ed 41, 459–462.

    CAS  Google Scholar 

  • Wang, T., Zhang, Z., Gao, D., Li, F., Wei, H., Liang, X., Cui, Z., and Zhang, X.E. (2011). Encapsulation of gold nanoparticles by simian virus 40 capsids. Nanoscale 3, 4275–4282.

    CAS  PubMed  Google Scholar 

  • Wang, X.Y., Wang, D.B., Zhang, Z.P., Bi, L.J., Zhang, J.B., Ding, W., and Zhang, X.E. (2015). A S-layer protein of Bacillus anthracis as a building block for functional protein arrays by in vitro self-assembly. Small 11, 5826–5832.

    CAS  PubMed  Google Scholar 

  • Wei, G., Su, Z., Reynolds, N.P., Arosio, P., Hamley, I.W., Gazit, E., and Mezzenga, R. (2017). Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 46, 4661–4708.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weigert, S., and Sára, M. (1995). Surface modification of an ultrafiltration membrane with crystalline structure and studies on interactions with selected protein molecules. J Membrane Sci 106, 147–159.

    CAS  Google Scholar 

  • Xie, C., and Yan, F. (2017). Flexible photodetectors based on novel functional materials. Small 13, 1701822.

    Google Scholar 

  • Yang, L., Li, H., Yao, L., Yu, Y., and Ma, G. (2019). Amyloid-based injectable hydrogel derived from hydrolyzed hen egg white lysozyme. ACS Omega 4, 8071–8080.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeates, T.O., Kerfeld, C.A., Heinhorst, S., Cannon, G.C., and Shively, J.M. (2008). Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nat Rev Microbiol 6, 681–691.

    CAS  PubMed  Google Scholar 

  • Zhang, Q., Bolisetty, S., Cao, Y., Handschin, S., Adamcik, J., Peng, Q., and Mezzenga, R. (2019). Selective and efficient removal of fluoride from water: in situ engineered amyloid Fibril/ZrO2 hybrid membranes. Angew Chem Int Ed 58, 6012–6016.

    CAS  Google Scholar 

  • Zhang, Y., Ke, X., Zheng, Z., Zhang, C., Zhang, Z., Zhang, F., Hu, Q., He, Z., and Wang, H. (2013). Encapsulating quantum dots into enveloped virus in living cells for tracking virus infection. ACS Nano 7, 3896–3904.

    CAS  PubMed  Google Scholar 

  • Zhou, X.M., Entwistle, A., Zhang, H., Jackson, A.P., Mason, T.O., Shimanovich, U., Knowles, T.P.J., Smith, A.T., Sawyer, E.B., and Perrett, S. (2014a). Self-assembly of amyloid fibrils that display active enzymes. ChemCatChem 6, 1961–1968.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, X.M., Shimanovich, U., Herling, T.W., Wu, S., Dobson, C.M., Knowles, T.P.J., and Perrett, S. (2015a). Enzymatically active microgels from self-assembling protein nanofibrils for microflow chemistry. ACS Nano 9, 5772–5781.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Z., Bedwell, G.J., Li, R., Bao, N., Prevelige, P.E., and Gupta, A. (2015b). P22 virus-like particles constructed Au/CdS plasmonic photocatalytic nanostructures for enhanced photoactivity. Chem Commun 51, 1062–1065.

    CAS  Google Scholar 

  • Zhou, Z., Bedwell, G.J., Li, R., Prevelige, P.E., and Gupta, A. (2014b). Formation mechanism of chalcogenide nanocrystals confined inside genetically engineered virus-like particles. Sci Rep 4, 3832.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21890743, 31771103, and 91527302), the National Key Research and Development Program of China (2017YFA0205503), the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (XDB29050100), CAS Emergency Project of ASF Research (KJZD-SWL06 and KJZD-SWL07), Youth Innovation Promotion Association of CAS (2014308), and Wuhan Huanghe Talents Program of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Li or Xian-En Zhan.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Wang, D., Zhou, J. et al. Design and biosynthesis of functional protein nanostructures. Sci. China Life Sci. 63, 1142–1158 (2020). https://doi.org/10.1007/s11427-019-1641-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1641-6

Keywords

Navigation