Skip to main content
Log in

Architectural proteins for the formation and maintenance of the 3D genome

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Eukaryotic genomes are densely packaged into hierarchical three-dimensional (3D) structures that contain information about gene regulation and many other biological processes. With the development of imaging and sequencing-based technologies, 3D genome studies have revealed that the high-order chromatin structure is composed of hierarchical levels, including chromosome territories, A/B compartments, topologically associated domains, and chromatin loops. However, how this chromatin architecture is formed and maintained is not completely clear. In this review, we introduce experimental methods to investigate the 3D genome, review major architectural proteins that regulate 3D chromatin organization in mammalian cells, such as CTCF (CCCTC-binding factor), cohesin, lamins, and transcription factors, and discuss relevant mechanisms such as phase separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandru, G., Uhlmann, F., Mechtler, K., Poupart, M.A., and Nasmyth, K. (2001). Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell 105, 459–472.

    Article  CAS  PubMed  Google Scholar 

  • Alipour, E., and Marko, J.F. (2012). Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res 40, 11202–11212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apostolou, E., and Thanos, D. (2008). Virus infection induces NF-κB-dependent interchromosomal associations mediating monoallelic IFN-α gene expression. Cell 134, 85–96.

    Article  CAS  PubMed  Google Scholar 

  • Arumugam, P., Gruber, S., Tanaka, K., Haering, C.H., Mechtler, K., and Nasmyth, K. (2003). ATP hydrolysis is required for cohesin’s association with chromosomes. Curr Biol 13, 1941–1953.

    Article  CAS  PubMed  Google Scholar 

  • Bantignies, F., Roure, V., Comet, I., Leblanc, B., Schuettengruber, B., Bonnet, J., Tixier, V., Mas, A., and Cavalli, G. (2011). Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 144, 214–226.

    Article  CAS  PubMed  Google Scholar 

  • Bao, L., Zhou, M., and Cui, Y. (2008). CTCFBSDB: a CTCF-binding site database for characterization of vertebrate genomic insulators. Nucleic Acids Res 36, D83–D87.

    Article  CAS  PubMed  Google Scholar 

  • Beagan, J.A., Gilgenast, T.G., Kim, J., Plona, Z., Norton, H.K., Hu, G., Hsu, S.C., Shields, E.J., Lyu, X., Apostolou, E., et al. (2016). Local genome topology can exhibit an incompletely rewired 3D-folding state during somatic cell reprogramming. Cell Stem Cell 18, 611–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beagrie, R.A., Scialdone, A., Schueler, M., Kraemer, D.C.A., Chotalia, M., Xie, S.Q., Barbieri, M., de Santiago, I., Lavitas, L.M., Branco, M.R., et al. (2017). Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boija, A., Klein, I.A., Sabari, B.R., Dall’Agnese, A., Coffey, E.L., Zamudio, A.V., Li, C.H., Shrinivas, K., Manteiga, J.C., Hannett, N. M., et al. (2018). Transcription factors activate genes through the phaseseparation capacity of their activation domains. Cell 175, 1842–1855.e16.

    Article  CAS  PubMed  Google Scholar 

  • Boulay, G., Sandoval, G.J., Riggi, N., Iyer, S., Buisson, R., Naigles, B., Awad, M.E., Rengarajan, S., Volorio, A., McBride, M.J., et al. (2017). Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell 171, 163–178.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bronshtein, I., Kepten, E., Kanter, I., Berezin, S., Lindner, M., Redwood, A.B., Mai, S., Gonzalo, S., Foisner, R., Shav-Tal, Y., et al. (2015). Loss of lamin A function increases chromatin dynamics in the nuclear interior. Nat Commun 6, 8044.

    Article  CAS  PubMed  Google Scholar 

  • Chang, L., Li, M., Shao, S., Xue, B., Hou, Y., Zhang, Y., Li, R., Li, C., and Sun, Y. (2019). Chromatin-lamin B1 interaction promotes genomic compartmentalization and constrains chromatin dynamics. bioRxiv, 601849.

  • Chen, H., Tian, Y., Shu, W., Bo, X., and Wang, S. (2012). Comprehensive identification and annotation of cell type-specific and ubiquitous CTCF-binding sites in the human genome. PLoS ONE 7, e41374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, W.K., Spille, J.H., Hecht, M., Lee, C., Li, C., Grube, V., and Cisse, I.I. (2018). Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong, S., Dugast-Darzacq, C., Liu, Z., Dong, P., Dailey, G.M., Cattoglio, C., Heckert, A., Banala, S., Lavis, L., Darzacq, X., et al. (2018). Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chowdhary, S., Kainth, A.S., Pincus, D., and Gross, D.S. (2019). Heat shock factor 1 drives intergenic association of its target gene loci upon heat shock. Cell Rep 26, 18–28.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colognori, D., Sunwoo, H., Kriz, A.J., Wang, C.Y., and Lee, J.T. (2019). Xist deletional analysis reveals an interdependency between Xist RNA and polycomb complexes for spreading along the inactive X. Mol Cell 74, 101–117.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corces, M.R., Buenrostro, J.D., Wu, B., Greenside, P.G., Chan, S.M., Koenig, J.L., Snyder, M.P., Pritchard, J.K., Kundaje, A., Greenleaf, W. J., et al. (2016). Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet 48, 1193–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz-Molina, S., Respuela, P., Tebartz, C., Kolovos, P., Nikolic, M., Fueyo, R., van Ijcken, W.F.J., Grosveld, F., Frommolt, P., Bazzi, H., et al. (2017). PRC2 facilitates the regulatory topology required for poised enhancer function during pluripotent stem cell differentiation. Cell Stem Cell 20, 689–705.e9.

    Article  CAS  PubMed  Google Scholar 

  • Dall’Agnese, A., Caputo, L., Nicoletti, C., di Iulio, J., Schmitt, A., Gatto, S., Diao, Y., Ye, Z., Forcato, M., Perera, R., et al. (2019). Transcription factor-directed re-wiring of chromatin architecture for somatic cell nuclear reprogramming toward trans-differentiation. Mol Cell 76, 453–472.e8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dekker, J., Belmont, A.S., Guttman, M., Leshyk, V.O., Lis, J.T., Lomvardas, S., Mirny, L.A., O’Shea, C.C., Park, P.J., Ren, B., et al. (2017). The 4D nucleome project. Nature 549, 219–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekker, J., and Mirny, L. (2016). The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome conformation. Science 295, 1306–1311.

    Article  CAS  PubMed  Google Scholar 

  • Deng, W., Lee, J., Wang, H., Miller, J., Reik, A., Gregory, P.D., Dean, A., and Blobel, G.A. (2012). Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denisenko, O., and Bomsztyk, K. (2002). Yeast hnRNP K-like genes are involved in regulation of the telomeric position effect and telomere length. Mol Cell Biol 22, 286–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., and Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolgin, E. (2017). DNA’s secret weapon against knots and tangles. Nature 544, 284–286.

    Article  CAS  PubMed  Google Scholar 

  • Falk, M., Feodorova, Y., Naumova, N., Imakaev, M., Lajoie, B.R., Leonhardt, H., Joffe, B., Dekker, J., Fudenberg, G., Solovei, I., et al. (2019). Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570, 395–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, H., Lv, P., Huo, X., Wu, J., Wang, Q., Cheng, L., Liu, Y., Tang, Q.Q., Zhang, L., Zhang, F., et al. (2018). The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes. Genome Res 28, 192–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, R., Yu, M., Li, G., Chee, S., Liu, T., Schmitt, A.D., and Ren, B. (2016). Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res 26, 1345–1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, Z., Chen, X., Wu, X., and Zhang, M. (2019). Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications. J Biol Chem 294, 14823–14835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filippova, G.N., Fagerlie, S., Klenova, E.M., Myers, C., Dehner, Y., Goodwin, G., Neiman, P.E., Collins, S.J., and Lobanenkov, V.V. (1996). An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol Cell Biol 16, 2802–2813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flavahan, W.A., Drier, Y., Liau, B.B., Gillespie, S.M., Venteicher, A.S., Stemmer-Rachamimov, A.O., Suvà, M.L., and Bernstein, B.E. (2016). Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114.

    Article  CAS  PubMed  Google Scholar 

  • Flyamer, I.M., Gassler, J., Imakaev, M., Brandão, H.B., Ulianov, S.V., Abdennur, N., Razin, S.V., Mirny, L.A., and Tachibana-Konwalski, K. (2017). Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N., and Mirny, L.A. (2016). Formation of chromosomal domains by loop extrusion. Cell Rep 15, 2038–2049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fullwood, M.J., Liu, M.H., Pan, Y.F., Liu, J., Xu, H., Mohamed, Y.B., Orlov, Y.L., Velkov, S., Ho, A., Mei, P.H., et al. (2009). An oestrogen-receptor-α-bound human chromatin interactome. Nature 462, 58–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, P., Xia, J.H., Sipeky, C., Dong, X.M., Zhang, Q., Yang, Y., Zhang, P., Cruz, S.P., Zhang, K., Zhu, J., et al. (2018). Biology and clinical implications of the 19q13 aggressive prostate cancer susceptibility locus. Cell 174, 576–589.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garee, J.P., and Oesterreich, S. (2010). SAFB1’s multiple functions in biological control-lots still to be done! J Cell Biochem 109, 312–319.

    Article  CAS  PubMed  Google Scholar 

  • Gassler, J., Brandão, H.B., Imakaev, M., Flyamer, I.M., Ladstätter, S., Bickmore, W.A., Peters, J.M., Mirny, L.A., and Tachibana, K. (2017). A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J 36, 3600–3618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatewood, J.M., Cook, G.R., Balhorn, R., Schmid, C.W., and Bradbury, E. M. (1990). Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem 265, 20662–20666.

    Article  CAS  PubMed  Google Scholar 

  • Geeven, G., Zhu, Y., Kim, B.J., Bartholdy, B.A., Yang, S.M., Macfarlan, T. S., Gifford, W.D., Pfaff, S.L., Verstegen, M.J.A.M., Pinto, H., et al. (2015). Local compartment changes and regulatory landscape alterations in histone H1-depleted cells. Genome Biol 16, 289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gesson, K., Rescheneder, P., Skoruppa, M.P., von Haeseler, A., Dechat, T., and Foisner, R. (2016). A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha. Genome Res 26, 462–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Getzenberg, R.H., Pienta, K.J., Ward, W.S., and Coffey, D.S. (1991). Nuclear structure and the three-dimensional organization of DNA. J Cell Biochem 47, 289–299.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, B.A., Doolittle, L.K., Schneider, M.W.G., Jensen, L.E., Gamarra, N., Henry, L., Gerlich, D.W., Redding, S., and Rosen, M.K. (2019). Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgetti, L., and Heard, E. (2016). Closing the loop: 3C versus DNA FISH. Genome Biol 17, 215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gruenbaum, Y., and Foisner, R. (2015). Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem 84, 131–164.

    Article  CAS  PubMed  Google Scholar 

  • Gu, Z., Jin, K., Crabbe, M.J.C., Zhang, Y., Liu, X., Huang, Y., Hua, M., Nan, P., Zhang, Z., and Zhong, Y. (2016). Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome. Protein Cell 7, 250–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M.B., Talhout, W., Eussen, B.H., de Klein, A., Wessels, L., de Laat, W., et al. (2008). Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D.U., Jung, I., Wu, H., Zhai, Y., Tang, Y., et al. (2015). CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162, 900–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haarhuis, J.H.I., van der Weide, R.H., Blomen, V.A., Yáñez-Cuna, J.O., Amendola, M., van Ruiten, M.S., Krijger, P.H.L., Teunissen, H., Medema, R.H., van Steensel, B., et al. (2017). The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen, A.S., Hsieh, T.H.S., Cattoglio, C., Pustova, I., Saldaña-Meyer, R., Reinberg, D., Darzacq, X., and Tjian, R. (2019). Distinct classes of chromatin loops revealed by deletion of an RNA-binding region in CTCF. Mol Cell 76, 395–411.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao, N., Shearwin, K.E., and Dodd, I.B. (2019). Positive and negative control of enhancer-promoter interactions by other DNA loops generates specificity and tunability. Cell Rep 26, 2419–2433.e3.

    Article  CAS  PubMed  Google Scholar 

  • Hark, A.T., Schoenherr, C.J., Katz, D.J., Ingram, R.S., Levorse, J.M., and Tilghman, S.M. (2000). CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489.

    Article  CAS  PubMed  Google Scholar 

  • Hauf, S., Waizenegger, I.C., and Peters, J.M. (2001). Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293, 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  • Hnisz, D., Day, D.S., and Young, R.A. (2016). Insulated neighborhoods: structural and functional units of mammalian gene control. Cell 167, 1188–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hnisz, D., Shrinivas, K., Young, R.A., Chakraborty, A.K., and Sharp, P.A. (2017). A phase separation model for transcriptional control. Cell 169, 13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou, Y., Guo, H., Cao, C., Li, X., Hu, B., Zhu, P., Wu, X., Wen, L., Tang, F., Huang, Y., et al. (2016). Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res 26, 304–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh, T.H.S., Weiner, A., Lajoie, B., Dekker, J., Friedman, N., and Rando, O.J. (2015). Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162, 108–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, B., Wang, N., Bi, X., Karaaslan, E.S., Weber, A.L., Zhu, W., Berendzen, K.W., and Liu, C. (2019). Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery. Genome Biol 20, 87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hug, C.B., Grimaldi, A.G., Kruse, K., and Vaquerizas, J.M. (2017). Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell 169, 216–228.e19.

    Article  CAS  PubMed  Google Scholar 

  • Huo, X., Ji, L., Zhang, Y., Lv, P., Cao, X., Wang, Q., Yan, Z., Dong, S., Du, D., Zhang, F., et al. (2020). The nuclear matrix protein SAFB cooperates with major satellite RNAs to stabilize heterochromatin architecture partially through phase separation. Mol Cell 77, 368–383.e7.

    Article  CAS  PubMed  Google Scholar 

  • Hyman, A.A., Weber, C.A., and Jülicher, F. (2014). Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30, 39–58.

    Article  CAS  PubMed  Google Scholar 

  • Jäger, R., Migliorini, G., Henrion, M., Kandaswamy, R., Speedy, H.E., Heindl, A., Whiffin, N., Carnicer, M.J., Broome, L., Dryden, N., et al. (2015). Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. Nat Commun 6, 6178.

    Article  PubMed  CAS  Google Scholar 

  • Kaaij, L.J.T., Mohn, F., van der Weide, R.H., de Wit, E., and Bühler, M. (2019). The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse. Cell 178, 1437–1451.e14.

    Article  CAS  PubMed  Google Scholar 

  • Khanna, N., Hu, Y., and Belmont, A.S. (2014). HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr Biol 24, 1138–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, T.H., Abdullaev, Z.K., Smith, A.D., Ching, K.A., Loukinov, D.I., Green, R.D., Zhang, M.Q., Lobanenkov, V.V., and Ren, B. (2007). Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128, 1231–1245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby, T.J., and Lammerding, J. (2018). Emerging views of the nucleus as a cellular mechanosensor. Nat Cell Biol 20, 373–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojic, A., Cuadrado, A., De Koninck, M., Giménez-Llorente, D., Rodríguez-Corsino, M., Gómez-López, G., Le Dily, F., Marti-Renom, M.A., and Losada, A. (2018). Distinct roles of cohesin-SA1 and cohesin-SA2 in 3D chromosome organization. Nat Struct Mol Biol 25, 496–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafont, A.L., Song, J., and Rankin, S. (2010). Sororin cooperates with the acetyltransferase Eco2 to ensure DNA replication-dependent sister chromatid cohesion. Proc Natl Acad Sci USA 107, 20364–20369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langer-Safer, P.R., Levine, M., and Ward, D.C. (1982). Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA 79, 4381–4385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson, A.G., Elnatan, D., Keenen, M.M., Trnka, M.J., Johnston, J.B., Burlingame, A.L., Agard, D.A., Redding, S., and Narlikar, G.J. (2017). Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levasseur, D.N., Wang, J., Dorschner, M.O., Stamatoyannopoulos, J.A., and Orkin, S.H. (2008). Oct4 dependence of chromatin structure within the extended Nanog locus in ES cells. Genes Dev 22, 575–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, T., Jia, L., Cao, Y., Chen, Q., and Li, C. (2018). OCEAN-C: mapping hubs of open chromatin interactions across the genome reveals gene regulatory networks. Genome Biol 19, 54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, Z., Li, G., Wang, Z., Djekidel, M.N., Li, Y., Qian, M.P., Zhang, M. Q., and Chen, Y. (2017). BL-Hi-C is an efficient and sensitive approach for capturing structural and regulatory chromatin interactions. Nat Commun 8, 1622.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, D., Hong, P., Zhang, S., Xu, W., Jamal, M., Yan, K., Lei, Y., Li, L., Ruan, Y., Fu, Z.F., et al. (2018). Digestion-ligation-only Hi-C is an efficient and cost-effective method for chromosome conformation capture. Nat Genet 50, 754–763.

    Article  CAS  PubMed  Google Scholar 

  • Linnemann, A.K., and Krawetz, S.A. (2009). Maintenance of a functional higher order chromatin structure: The role of the nuclear matrix in normal and disease states. Gene Ther Mol Biol 13, 231–243.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lobanenkov, V.V., Nicolas, R.H., Adler, V.V., Paterson, H., Klenova, E.M., Polotskaja, A.V., and Goodwin, G.H. (1990). A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5′-flanking sequence of the chicken c-myc gene. Oncogene 5, 1743–1753.

    CAS  PubMed  Google Scholar 

  • Lomvardas, S., Barnea, G., Pisapia, D.J., Mendelsohn, M., Kirkland, J., and Axel, R. (2006). Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413.

    Article  CAS  PubMed  Google Scholar 

  • Losada, A., Hirano, M., and Hirano, T. (1998). Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev 12, 1986–1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, H., Yu, D., Hansen, A.S., Ganguly, S., Liu, R., Heckert, A., Darzacq, X., and Zhou, Q. (2018). Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, J.Y., Chang, L., Li, T., Wang, T., Yin, Y., Zhan, G., Zhang, K., Percharde, M., Wang, L., Peng, Q., et al. (2019). L1 and B1 repeats blueprint the spatial organization of chromatin. bioRxiv, 802173.

  • Lupiáñez, D.G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, D., Kayserili, H., Opitz, J.M., Laxova, R., et al. (2015). Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma, W., Ay, F., Lee, C., Gulsoy, G., Deng, X., Cook, S., Hesson, J., Cavanaugh, C., Ware, C.B., Krumm, A., et al. (2015). Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. Nat Methods 12, 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Maass, P.G., Barutcu, A.R., Weiner, C.L., and Rinn, J.L. (2018). Inter-chromosomal contact properties in live-cell imaging and in Hi-C. Mol Cell 69, 1039–1045.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeshima, K., Ide, S., Hibino, K., and Sasai, M. (2016). Liquid-like behavior of chromatin. Curr Opin Genet Dev 37, 36–45.

    Article  CAS  PubMed  Google Scholar 

  • Mao, Y.S., Zhang, B., and Spector, D.L. (2011). Biogenesis and function of nuclear bodies. Trends Genet 27, 295–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markenscoff-Papadimitriou, E., Allen, W.E., Colquitt, B.M., Goh, T., Murphy, K.K., Monahan, K., Mosley, C.P., Ahituv, N., and Lomvardas, S. (2014). Enhancer interaction networks as a means for singular olfactory receptor expression. Cell 159, 543–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurer, M., and Lammerding, J. (2019). The driving force: nuclear mechanotransduction in cellular function, fate, and disease. Annu Rev Biomed Eng 21, 443–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meaburn, K.J., and Misteli, T. (2007). Chromosome territories. Nature 445, 379–381.

    Article  CAS  PubMed  Google Scholar 

  • Meistrich, M.L., Mohapatra, B., Shirley, C.R., and Zhao, M. (2003). Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111, 483–488.

    Article  PubMed  Google Scholar 

  • Meuleman, W., Peric-Hupkes, D., Kind, J., Beaudry, J.B., Pagie, L., Kellis, M., Reinders, M., Wessels, L., and van Steensel, B. (2013). Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res 23, 270–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mifsud, B., Tavares-Cadete, F., Young, A.N., Sugar, R., Schoenfelder, S., Ferreira, L., Wingett, S.W., Andrews, S., Grey, W., Ewels, P.A., et al. (2015). Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet 47, 598–606.

    Article  CAS  PubMed  Google Scholar 

  • Monahan, K., Horta, A., and Lomvardas, S. (2019). LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice. Nature 565, 448–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mumbach, M.R., Rubin, A.J., Flynn, R.A., Dai, C., Khavari, P.A., Greenleaf, W.J., and Chang, H.Y. (2016). HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods 13, 919–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagano, T., Lubling, Y., Várnai, C., Dudley, C., Leung, W., Baran, Y., Mendelson Cohen, N., Wingett, S., Fraser, P., and Tanay, A. (2017). Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasmyth, K. (2001). Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35, 673–745.

    Article  CAS  PubMed  Google Scholar 

  • Nasmyth, K., and Haering, C.H. (2009). Cohesin: its roles and mechanisms. Annu Rev Genet 43, 525–558.

    Article  CAS  PubMed  Google Scholar 

  • Naumova, N., Imakaev, M., Fudenberg, G., Zhan, Y., Lajoie, B.R., Mirny, L.A., and Dekker, J. (2013). Organization of the mitotic chromosome. Science 342, 948–953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikitina, T., Shi, X., Ghosh, R.P., Horowitz-Scherer, R.A., Hansen, J.C., and Woodcock, C.L. (2007). Multiple modes of interaction between the methylated DNA binding protein MeCP2 and chromatin. Mol Cell Biol 27, 864–877.

    Article  CAS  PubMed  Google Scholar 

  • Niu, L., Shen, W., Huang, Y., He, N., Zhang, Y., Sun, J., Wan, J., Jiang, D., Yang, M., Tse, Y.C., et al. (2019). Amplification-free library preparation with SAFE Hi-C uses ligation products for deep sequencing to improve traditional Hi-C analysis. Commun Biol 2, 267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nora, E.P., Goloborodko, A., Valton, A.L., Gibcus, J.H., Uebersohn, A., Abdennur, N., Dekker, J., Mirny, L.A., and Bruneau, B.G. (2017). Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nora, E.P., Lajoie, B.R., Schulz, E.G., Giorgetti, L., Okamoto, I., Servant, N., Piolot, T., van Berkum, N.L., Meisig, J., Sedat, J., et al. (2012). Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, B., Kang, Y., Cui, K., Litt, M., Riberio, M.S.J., Deng, C., Salz, T., Casada, S., Fu, X., Qiu, Y., et al. (2014). Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia. Leukemia 28, 349–361.

    Article  CAS  PubMed  Google Scholar 

  • Pederson, T. (2000). Half a century of “the nuclear matrix”. Mol Biol Cell 11, 799–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pederson, T. (2011). The nucleolus. Cold Spring Harb Perspect Biol 3, a000638.

    PubMed  PubMed Central  Google Scholar 

  • Peric-Hupkes, D., Meuleman, W., Pagie, L., Bruggeman, S.W.M., Solovei, I., Brugman, W., Gräf, S., Flicek, P., Kerkhoven, R.M., van Lohuizen, M., et al. (2010). Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 38, 603–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qamar, S., Wang, G.Z., Randle, S.J., Ruggeri, F.S., Varela, J.A., Lin, J.Q., Phillips, E.C., Miyashita, A., Williams, D., Ströhl, F., et al. (2018). FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173, 720–734.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinodoz, S.A., Ollikainen, N., Tabak, B., Palla, A., Schmidt, J.M., Detmar, E., Lai, M.M., Shishkin, A.A., Bhat, P., Takei, Y., et al. (2018). Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramani, V., Deng, X., Qiu, R., Gunderson, K.L., Steemers, F.J., Disteche, C.M., Noble, W.S., Duan, Z., and Shendure, J. (2017). Massively multiplex single-cell Hi-C. Nat Methods 14, 263–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, S.S.P., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, S.S.P., Huang, S.C., Glenn St Hilaire, B., Engreitz, J.M., Perez, E.M., Kieffer-Kwon, K.R., Sanborn, A.L., Johnstone, S.E., Bascom, G.D., Bochkov, I.D., et al. (2017). Cohesin loss eliminates all loop domains. Cell 171, 305–320.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabari, B.R., Dall’Agnese, A., Boija, A., Klein, I.A., Coffey, E.L., Shrinivas, K., Abraham, B.J., Hannett, N.M., Zamudio, A.V., Manteiga, J.C., et al. (2018). Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saldaña-Meyer, R., Rodriguez-Hernaez, J., Escobar, T., Nishana, M., Jácome-López, K., Nora, E.P., Bruneau, B.G., Tsirigos, A., Furlan-Magaril, M., Skok, J., et al. (2019). RNA interactions are essential for CTCF-mediated genome organization. Mol Cell 76, 412–422.e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanyal, A., Lajoie, B.R., Jain, G., and Dekker, J. (2012). The long-range interaction landscape of gene promoters. Nature 489, 109–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenfelder, S., Sugar, R., Dimond, A., Javierre, B.M., Armstrong, H., Mifsud, B., Dimitrova, E., Matheson, L., Tavares-Cadete, F., Furlan-Magaril, M., et al. (2015). Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat Genet 47, 1179–1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sequeira-Mendes, J., and Gutierrez, C. (2016). Genome architecture: from linear organisation of chromatin to the 3D assembly in the nucleus. Chromosoma 125, 455–469.

    Article  CAS  PubMed  Google Scholar 

  • Shao, S., Chang, L., Sun, Y., Hou, Y., Fan, X., and Sun, Y. (2018). Multiplexed sgRNA expression allows versatile single nonrepetitive DNA labeling and endogenous gene regulation. ACS Synth Biol 7, 176–186.

    Article  CAS  PubMed  Google Scholar 

  • Shao, S., Zhang, W., Hu, H., Xue, B., Qin, J., Sun, C., Sun, Y., Wei, W., and Sun, Y. (2016). Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res 44, e86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin, Y., Chang, Y.C., Lee, D.S.W., Berry, J., Sanders, D.W., Ronceray, P., Wingreen, N.S., Haataja, M., and Brangwynne, C.P. (2019). Liquid nuclear condensates mechanically sense and restructure the genome. Cell 176, 1518.

    Article  CAS  PubMed  Google Scholar 

  • Solovei, I., Wang, A.S., Thanisch, K., Schmidt, C.S., Krebs, S., Zwerger, M., Cohen, T.V., Devys, D., Foisner, R., Peichl, L., et al. (2013). LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152, 584–598.

    Article  CAS  PubMed  Google Scholar 

  • Stadhouders, R., Vidal, E., Serra, F., Di Stefano, B., Le Dily, F., Quilez, J., Gomez, A., Collombet, S., Berenguer, C., Cuartero, Y., et al. (2018). Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nat Genet 50, 238–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens, T.J., Lando, D., Basu, S., Atkinson, L.P., Cao, Y., Lee, S.F., Leeb, M., Wohlfahrt, K.J., Boucher, W., O’Shaughnessy-Kirwan, A., et al. (2017). 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strom, A.R., Emelyanov, A.V., Mir, M., Fyodorov, D.V., Darzacq, X., and Karpen, G.H. (2017). Phase separation drives heterochromatin domain formation. Nature 547, 241–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumara, I., Vorlaufer, E., Gieffers, C., Peters, B.H., and Peters, J.M. (2000). Characterization of vertebrate cohesin complexes and their regulation in prophase. J Cell Biol 151, 749–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, L., Xing, D., Chang, C.H., Li, H., and Xie, X.S. (2018). Three-dimensional genome structures of single diploid human cells. Science 361, 924–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, Z., Luo, O.J., Li, X., Zheng, M., Zhu, J.J., Szalaj, P., Trzaskoma, P., Magalska, A., Wlodarczyk, J., Ruszczycki, B., et al. (2015). CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163, 1611–1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatavosian, R., Kent, S., Brown, K., Yao, T., Duc, H.N., Huynh, T.N., Zhen, C.Y., Ma, B., Wang, H., and Ren, X. (2019). Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. J Biol Chem 294, 1451–1463.

    Article  CAS  PubMed  Google Scholar 

  • Tedeschi, A., Wutz, G., Huet, S., Jaritz, M., Wuensche, A., Schirghuber, E., Davidson, I.F., Tang, W., Cisneros, D.A., Bhaskara, V., et al. (2013). Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 501, 564–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur, J., Fang, H., Llagas, T., Disteche, C.M., and Henikoff, S. (2019). Architectural RNA is required for heterochromatin organization. bioRxiv, 784835.

  • Toth, A., Ciosk, R., Uhlmann, F., Galova, M., Schleiffer, A., and Nasmyth, K. (1999). Yeast cohesin complex requires a conserved protein, Eco1p (Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev 13, 320–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulianov, S.V., Doronin, S.A., Khrameeva, E.E., Kos, P.I., Luzhin, A.V., Starikov, S.S., Galitsyna, A.A., Nenasheva, V.V., Ilyin, A.A., Flyamer, I.M., et al. (2019). Nuclear lamina integrity is required for proper spatial organization of chromatin in Drosophila. Nat Commun 10, 1176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vietri Rudan, M., Barrington, C., Henderson, S., Ernst, C., Odom, D.T., Tanay, A., and Hadjur, S. (2015). Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep 10, 1297–1309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Gao, Y., Zheng, X., Liu, C., Dong, S., Li, R., Zhang, G., Wei, Y., Qu, H., Li, Y., et al. (2019). Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol Cell 76, 646–659.e6.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Sawyer, I.A., Sung, M.H., Sturgill, D., Shevtsov, S.P., Pegoraro, G., Hakim, O., Baek, S., Hager, G.L., and Dundr, M. (2016a). Cajal bodies are linked to genome conformation. Nat Commun 7, 10966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Su, J.H., Beliveau, B.J., Bintu, B., Moffitt, J.R., Wu, C., and Zhuang, X. (2016b). Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, Z., Gao, F., Kim, S., Yang, H., Lyu, J., An, W., Wang, K., and Lu, W. (2013). Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency. Cell Stem Cell 13, 36–47.

    Article  CAS  PubMed  Google Scholar 

  • Weintraub, A.S., Li, C.H., Zamudio, A.V., Sigova, A.A., Hannett, N.M., Day, D.S., Abraham, B.J., Cohen, M.A., Nabet, B., Buckley, D.L., et al. (2017). YY1 is a structural regulator of enhancer-promoter loops. Cell 171, 1573–1588.e28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson, I., Berlivet, S., Eskeland, R., Boyle, S., Illingworth, R.S., Paquette, D., Dostie, J., and Bickmore, W.A. (2014). Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev 28, 2778–2791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wutz, G., Várnai, C., Nagasaka, K., Cisneros, D.A., Stocsits, R.R., Tang, W., Schoenfelder, S., Jessberger, G., Muhar, M., Hossain, M.J., et al. (2017). Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J 36, 3573–3599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, F., Wang, X., and Zeng, Y. (2019). 3D genomic regulation of lncRNA and Xist in X chromosome. Semin Cell Dev Biol 90, 174–180.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Lin, C., Jin, C., Yang, J.C., Tanasa, B., Li, W., Merkurjev, D., Ohgi, K.A., Meng, D., Zhang, J., et al. (2013). lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500, 598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshizawa, T., Ali, R., Jiou, J., Fung, H.Y.J., Burke, K.A., Kim, S.J., Lin, Y., Peeples, W.B., Saltzberg, D., Soniat, M., et al. (2018). Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites. Cell 173, 693–705.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeitz, M.J., Malyavantham, K.S., Seifert, B., and Berezney, R. (2009). Matrin 3: chromosomal distribution and protein interactions. J Cell Biochem 108, 125–133.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, M., Tian, S.Z., Capurso, D., Kim, M., Maurya, R., Lee, B., Piecuch, E., Gong, L., Zhu, J.J., Li, Z., et al. (2019). Multiplex chromatin interactions with single-molecule precision. Nature 566, 558–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, X., Hu, J., Yue, S., Kristiani, L., Kim, M., Sauria, M., Taylor, J., Kim, Y., and Zheng, Y. (2018). Lamins organize the global three-dimensional genome from the nuclear periphery. Mol Cell 71, 802–815.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zirkel, A., Nikolic, M., Sofiadis, K., Mallm, J.P., Brackley, C.A., Gothe, H., Drechsel, O., Becker, C., Altmüller, J., Josipovic, N., et al. (2018). HMGB2 loss upon senescence entry disrupts genomic organization and induces CTCF clustering across cell types. Mol Cell 70, 730–744.e6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (31871266 for C.L., 21573013 and 21825401 for Y.S.), National Key Research and Development Program of China (2016YFA0100103 for C.L., 2017YFA0505302 for Y.S.), and NSFC Key Research Grant 71532001 for C.L.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujie Sun or Cheng Li.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Gan, J., Sun, Y. et al. Architectural proteins for the formation and maintenance of the 3D genome. Sci. China Life Sci. 63, 795–810 (2020). https://doi.org/10.1007/s11427-019-1613-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1613-3

Keywords

Navigation