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Pluripotent stem cells (PSCs) are cells that can differentiate into any type of cells in the body, therefore have valuable promise 
in regenerative medicine of cell replacement therapies and tissue/organ engineering. PSCs can be derived either from early 
embryos or directly from somatic cells by epigenetic reprogramming that result in customized cells from patients. Here we 
summarize the methods of deriving PSCs, the various types of PSCs generated with different status, and their versatile applica-
tions in both clinical and embryonic development studies. We also discuss an intriguing potential application of PSCs in con-
structing tissues/organs in large animals by interspecies chimerism. All these emerging findings are likely to contribute to the 
breakthroughs in biological research and the prosperous prospects of regenerative medicine. 
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INTRODUCTION 

The life cycle of an organism during development from a 
zygote to an adult is programmed with gradual loss of dif-
ferentiation potency at cell level. Regenerative therapy can 
be achieved by replacing, engineering or regenerating dam-
aged cells, tissues or organs to restore normal function, and 
holds great promise to cure some untreatable diseases such 
as spinal cord injury. It is believed that regenerative medi-
cine will play an increasingly important role in medical rev-
olution in the coming decades. 

Pluripotent stem cells (PSCs) are the most important seed 
cells for regenerative medicine due to their unlimited 
self-renewal in vitro and differentiation capacity to form 
any type of cells in vivo. PSCs of different status can be 
isolated and established at different stages of an embryo or 

from different tissues of an adult. Apparently, these stem 
cells have problems of immunological rejection and limited 
resource. The reversion of a cell into a state with a different 
gene expression profile (not always with increased potency) 
is called reprogramming. Reprogramming could generate 
patient-specific stem cells, making a great prospect for re-
generative medicine. Nuclear transfer and overexpression of 
transcription factors, which includes both transdifferentia-
tion and induced pluripotent stem cell (iPSC) technology, 
are recognized reprogramming methods. 

Establishing animal disease/therapeutic models and ani-
mals with “organ niche’’ (Rashid et al., 2014) is another 
concept for regenerative medicine. With the development of 
functional genomic research and genome-editing technolo-
gy, many disease models are generated. However, few of 
them can currently be applied in clinical study. Also, in vivo 
generation of human organs from donor stem cells in a 
xenogenic environment with “developmental compensa-
tion’’ or via 3D bio-printing is still a tough task.  
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PLURIPOTENT STEM CELLS: HIGHER 
PLURIPOTENCY AND CLOSER TO HUMAN 

Embryonic stem cells (ESCs) with highest pluripotency are 
good for cell-replacement therapies and for in vitro genera-
tion of organs, thus holding promise in treating degenerative 
disorders such as Parkinson’s disease, Alzheimer’s disease, 
and diabetes. Since the first successful derivations of mouse 
ESCs were reported in 1981 (Evans and Kaufman, 1981; 
Martin, 1981), ESCs have been successfully established in 
many species, including human (Thomson et al., 1998), 
monkey (Li et al., 2005a; Thomson et al., 1996), rat 
(Germana, 2011; Iannaccone et al., 1994; Li et al., 2012a), 
and rabbit (Wang et al., 2007, 2008), and a lot of efforts 
have been put into improving pluripotency of human ESCs 
(Gu et al., 2012; Hanna et al., 2010). Since the use of hu-
man ESCs for research and therapy must be with delibera-
tion, the international consensus guidance for banking and 
supply of human ESCs for research purposes (International 
Stem Cell Banking, 2009) and the points to consider in the 
development of seed stocks of pluripotent stem cells for 
clinical applications have been enacted (Andrews et al., 
2015). 

For regenerative medicine, PSCs with higher pluripoten-
cy and lower immunological rejection are always needed. 
Tetraploid embryo complementation represents the golden 
standard of demonstration of the highest pluripotency of 
stem cells. However, only mouse ESCs and iPSCs (Zhao et 
al., 2009) have been demonstrated to have such develop-
mental potency. For clinic application, transplantable neural 
progenitor cells from rat ESCs (Herson et al., 2003) and 
rhesus monkey ESCs (Chen et al., 2009; Li et al., 2005) 
were established, and the efficacy of neural progeni-
tor-based transplantation therapy in the nonhuman primate 
was evaluated (Chen et al., 2009; Li et al., 2005). In addi-
tion, cynomolgus monkey ESCs with higher pluripotency 
with which monkey chimeric fetuses were generated have 
been obtained (Shuai et al., 2015). Human parthenogenetic 
ESCs (Hao et al., 2009; Shuai et al., 2015) and homozygous 
human androgenetic ESCs (Ding et al., 2015) were derived, 
providing important tools for future therapeutic use in a 
clinical setting. 

REPROGRAMMING: SOURCE OF 
PATIENT-SPECIFIC STEM CELLS 

Reprogramming could generate patient-specific stem cells, 
so it may play a potentially important role in translating 
stem cells from basic research to clinical application. 

Nuclear transfer 

The original design of nuclear transfer (NT) experiment was 
established by Briggs and King in 1952, by injecting a nu-
cleus of a ruptured cell into an enucleated unfertilized 
xenopus egg (Briggs and King, 1952). The first successful 

nuclear transfer experiment was accomplished by Gurdon 
and colleagues in 1958, with developing into adult xenopus 
(Gurdon et al., 1958). Chinese scientist Dizhou Tong gener-
ated the first cloned Carassius auratus in 1963, and per-
formed the first interspecies nuclear transfer cloning be-
tween Carassius auratus and Rhodeus sinensis in 1973. 

In 1997, Wilmut reported the birth of the first cloned 
mammal “Dolly” the sheep (Wilmut et al., 1997). Thereaf-
ter, mouse (Wakayama et al., 1998), cow (Cibelli et al., 
1998; Kato et al., 1998), goat (Baguisi et al., 1999), pig 
(Betthauser et al., 2000; Onishi et al., 2000; Polejaeva et al., 
2000), cat (Shin et al., 2002), rabbit (Chesne et al., 2002), 
mule (Woods et al., 2003), horse (Galli et al., 2003), rat 
(Zhou et al., 2003), dog (Lee et al., 2005), ferret (Li et al., 
2006), and camel (Wani et al., 2010) were successively 
cloned. In 2006, cloned rhesus monkey blastocysts were 
generated, yet no cloned monkey have been produced so far 
(Zhou et al., 2006). In 2004, Hwang established the first 
nuclear transfer ESCs (ntESCs) (Hwang et al., 2004), being 
regarded as a milestone for therapeutic cloning. In addition, 
human oocyte morphology classification (Yu et al., 2009) 
and therapeutic cloning by xenotransplanted oocytes (Riaz 
et al., 2011) were also tried. Recently, fertile offspring from 
Kitw/Kitwv infertile male mice was generated through in vivo 
differentiation of gene corrected ntESCs (Yuan et al., 2015), 
and spermatid-like cells from mouse ESCs in vitro gameto-
genesis (Zhou et al., 2016) were derived, exploring new 
paths to rescue male infertility caused by genetic mutations 
(Yuan et al., 2015).  

The reprogramming efficiency of nuclear transfer is very 
low, so lots of efforts have been made to improve the effi-
ciency. The abnormal development of nuclear transfer em-
bryos is always associated with defects in epigenetic repro-
gramming (Dean et al., 2001; Kang et al., 2001; Ohgane et 
al., 2001; Yamazaki et al., 2006). Treatment with histone 
demethylase inhibitor can increase the reprogramming effi-
ciency (Bui et al., 2010; Dai et al., 2010; Kishigami et al., 
2006; Song et al., 2014). Besides, modified culture methods 
showed that in vitro culture environment plays an important 
role in nuclear transfer reprogramming (Dai et al., 2009). It 
was also reported that some of the placental abnormality of 
nuclear transfer embryos can be blamed on the abnormal 
expression of some genes, such as HSPC117 (Wang et al., 
2010). Furthermore, protein profile of the mouse meta-
phase-II oocyte was analyzed, which might be valuable in 
revealing potential mechanisms of epigenetic reprogram-
ming in nuclear transfer (Ma et al., 2008).  

Overexpression of transcription factors 

As early as in 1987, Davis achieved transdifferentiation of 
fibroblasts into myocytes via overexpression of MyoD, and 
it was an innovative progress (Davis et al., 1987). Similarly, 
overexpression of C/EBP can change pre-T cells (Laiosa 
et al., 2006) or pre-B cells (Xie et al., 2004) into macro-
phagocytes, as pancreatic exocrine acinar cells into liver 
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cells (Shen et al., 2000). In 2010, Shinya Yamanaka in-
duced mouse fibroblast transdifferentiating into functional 
neural cells by overexpression of 19 neural-specific tran-
scription factors. In 2012, successful transdifferentiation of 
Sertoli cells, one type of testis sustentacular cells, into neu-
ral stem cells was reported, and the obtained neural stem 
cells could survive and generate synapses following trans-
plantation into the dentate gyrus. The work has important 
implications for regenerative medicine (Sheng et al., 2012a, 
b). In 2008, in vivo transdifferentiation of pancreatic acinar 
cells into pancreas islet  cells with normal insulin secretory 
function was accomplished by adenovirus-introduced over-
expression of three transcription factors (Zhou et al., 2008). 

In 2006, Takahashi and Yamanaka induced mouse fibro-
blasts into ESCs-like cells via overexpression of Oct4, 
Sox2, Klf4, and c-Myc (OSKM) (Takahashi and Yamanaka, 
2006), the cells were named induced pluripotent stem cells 
(iPSCs). This shed light on regenerative medicine field. The 
generation of all-iPSCs-mouse “Xiaoxiao” with the method 
of tetraploid embryo complementation (Zhao et al., 2009, 
2010a, b, c), and the verification of iPSCs’ capability to 
generate offspring through nuclear transfer (Zhou et al., 
2010), paved the way for iPSCs to be used in regenerative 
medicine. Notably, however, mice generated from tetraploid 
complementation competent iPS cells show similar devel-
opmental features as those from ES cells but are prone to 
tumorigenesis (Tong et al., 2011), indicating that more ef-
forts need to be made before iPSCs to be translated from 
basic research to clinical application.  

Pig iPSCs attract a wide attention because pig is an im-
portant animal model for in vitro generation of human organ 
and there lacks pig ESCs. It was reported that mouse 
ESCs-like pig iPSCs were produced efficiently and they 
processed good cell viability and proliferation capability 
(Gu et al., 2014), although pig iPSCs with chimaeric ability 
have yet to be obtained. 

Exogenous four transcription factor-coding genes in 
iPSC technology are the barrier for its application. In 2011, 
Anokye-Danso obtained OSKM-free iPSCs by transfecting 
miR-302/367 into fibroblasts (Anokye-Danso et al., 2011). 
Some other research groups used proteins generated from 
OSKM genes to induce iPSCs, and obtained satisfying re-
sults (Cho et al., 2010; Kim et al., 2009; Lee et al., 2012; 
Zhou et al., 2009). Furthermore, a chemical reprogramming 
system without gene-editing (Hou et al., 2013; Zhao et al., 
2015) have also been developed. 

Enhancing the efficiency of iPSCs reprogramming is 
important for their application. Adding active small mole-
cules that are associated with epigenetic modification, such 
as VPA (Huangfu et al., 2008), DNA methylase inhibitors 
(Huangfu et al., 2008; Mikkelsen et al., 2008), histone 
methylase inhibitors (Shi et al., 2008), histone deacetylase 
inhibitor (Hai et al., 2011), protein arginine methyltransfer-
ase inhibitor (Yuan et al., 2011), or vitamin C (Esteban et 
al., 2010), has been reported to be able to increase the iPSCs 

reprogramming efficiency. Similar to nuclear transfer, some 
maternal factors, such as TH2A and TH2B (Shinagawa et 
al., 2014), can promote iPSCs reprogramming. Also, the 
activity of endogenous retrovirus HERVH was shown to 
have connection with pluripotency of human iPSCs (Ohnuki 
et al., 2014). Notably, that the maternal unmethylated 
Dlk1-Dio3 region would turn methylation during iPSC re-
programming, which may be caused by disorder of c-Myc 
(Li et al., 2011) and/or Gtl2 (Das et al., 2015), is a key rea-
son for loss of capability of tetraploid embryo complemen-
tation (Liu et al., 2010; Stadtfeld et al., 2010). Recently, it 
was reported that increased N(6)-methyladenosine (m6A) 
abundance, which is partially regulated by multiple miR-
NAs (Chen et al., 2015), promotes the reprogramming of 
mouse embryonic fibroblasts to pluripotent stem cells; con-
versely, reduced m6A levels impede reprogramming 
(Carette et al., 2009). 

Gamete-deriving haploid embryonic stem cells 

Gamete-deriving haploid ESCs technology is stemmed from 
nuclear transfer and has been a novel technology for mam-
malian genetic study and regenerative medicine (Shuai and 
Zhou, 2014). Since the 1970s, extensive efforts have been 
made to generate haploid embryos in the mouse (Tarkowski 
and Rossant, 1976), but it was not until 2011 that the mouse 
parthenogenetic haploid ESCs (phESCs) were derived from 
parthenogenetic haploid embryos via fluorescence-activated 
cell sorting of haploid cells (Elling et al., 2011; Leeb and 
Wutz, 2011). Moreover, mouse androgenetic haploid ESCs 
(ahESCs) which can function as sperm were established in 
2012 (Li et al., 2012b; Yang et al., 2012). Subsequently, 
generations of monkey phESCs (Yang et al., 2013), and rat 
ahESCs and phESCs (Li et al., 2014) were reported.  

As well as valuable tool for genetic screening and drug 
screening (Shuai and Zhou, 2014), haploid ESCs are also 
novel resources for regenerative medicine due to the fol-
lowing reasons. (i) Haploid ESCs of mouse and rat have 
similar pluripotency to diploid ESCs which could produce 
chimeric animals and contribute to the germline (Leeb et al., 
2012). (ii) Both ahESCs and phESCs can generate fertile 
offspring (Li et al., 2012b, 2014; Wan et al., 2013). (iii) 
Fused ESCs from ahESCs and phESCs can generate fertile 
offspring through tetraploid embryo complementation (Li et 
al., 2015). (iv) Haploid ESCs can differentiate into haploid 
epiblast stem cells (Elling et al., 2011) and haploid somatic 
cells (unpublished data). (v) Genome-editing to repair dou-
ble allele mutations is easier for haploid ESCs. (vi) Haploid 
ESCs may be induced into gametes by overexpressing tran-
scription factors or adding small drug molecules. 

Creatively, mouse-rat allodiploid ESCs (AdESCs) were 
generated using the mouse and rat haploid ESCs, and the 
AdESCs have similar pluripotency to mouse and rat ESCs 
with the ability to differentiate into all three germ layers as 
well as early stage germ cells while maintaining a stable 
allodiploid genome (Li et al., 2016a). AdESCs can serve as 
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a powerful tool for understanding evolution of gene regula-
tion, which would be very useful for uncovering the nature 
of totipotency of mouse ESCs, and would be helpful for 
establishing human ESCs with higher pluripotency, espe-
cially when based on other possible AdESCs, such as 
mouse-monkey and even mouse-human AdESCs. 

ANIMAL MODELS: DISEASE/THERAPEUTIC 
MODELS AND ORGAN DEFECT MODELS 

Animal disease/therapeutic models and animal models with 
organ defects are another useful tool for regenerative medi-
cine. Precise genomic modifications at single nucleotide 
level have promoted the development of animal model con-
struction. For a long period of time, genome editing has 
largely relied on traditional forward genetic screenings, 
which are intrinsically limited (Rubin and Spradling, 1982; 
Solnica-Krezel et al., 1994). With the development of artifi-
cial nuclease technology, ZFN (zinc finger nucleases), 
TALEN (transcription activator like effector nucleases), and 
CRISPR (clustered regularly interspaced short palindromic 
repeat)/Cas9 (CRISPR-associated) system have boosted the 
development of genome-editing. Many animal models of 
human diseases have been established by TALEN or 
CRISPR/Cas9 system, including mouse (Wang et al., 2014), 
rat (Li et al., 2013), pig (Hai et al., 2014; Wang et al., 
2015), and monkey (Liu et al., 2014; Niu et al., 2014; Wan 
et al., 2015). 

Since blastocyst complementation was first reported by 
Chen, giving rise of T and B lymphocytes by injecting nor-
mal mouse ESCs in Rag2/ mice which have no mature T 
or B cells (Chen et al., 1993), the generation of functional 
rat pancreas in mouse by interspecies blastocyst injection of 
rat ESCs reported by Kobayashi (Kobayashi et al., 2010)  
took an initial step toward the future regenerative medicine. 
Similar successes in organ generation were achieved for 
kidney of mouse (Usui et al., 2012) and pancreas of pig 
(Matsunari et al., 2013).  

A great development in tissue engineering is represented 
by 3D bio-printing technology (Gu et al., 2015), which 
opens a new path for regenerative medicine and holds a 
great promising future. Nevertheless, it will need parallel 
advances in biomaterials and cell biology to achieve clinical 
advances. 

OUTLOOK 

The 2012 Nobel Prize in physiology or medicine was 
awarded to Shinya Yamanaka and John Gurdon for their 
discovery of somatic cell reprogramming, which provides a 
means to obtain limitless sources of stem cells. Repro-
gramming marks an instrumental advance for the field of 
stem cells and regenerative medicine. The mechanistic as-
pects of reprogramming are currently under extensive in-
vestigation, and in-depth and thorough understanding of 

development and reprogramming will be crucial for devel-
oping safe and effective cell therapies to realize the full po-
tential of regenerative medicine.  

In the coming decades, to generate stem cells with higher 
pluripotency especially from large animals and human, to 
establish animal disease/therapeutic models and animals 
with “organ niche”, and to develop new biomaterials and 
well-established in vitro differentiation system in order to 
generate human organs through 3D bio-printing, will be 
major research directions for regenerative medicine. 
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