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Recent reports on the impressive efficacy of chimeric antigen receptor (CAR)-modified T cells against hematologic malignan-
cies have inspired oncologists to extend these efforts for the treatment of solid tumors. Clinical trials of CAR-T-based cancer 
immunotherapy for solid tumors showed that the efficacies are not as remarkable as in the case of hematologic malignancies. 
There are several challenges that researchers must face when treating solid cancers with CAR-T cells, these include choosing 
an ideal target, promoting efficient trafficking and infiltration, overcoming the immunosuppressive microenvironment, and 
avoiding associated toxicity. In this review, we discuss the obstacles imposed by solid tumors on CAR-T cell-based immuno-
therapy and strategies adopted to improve the therapeutic potential of this approach. Continued investigations are necessary to 
improve therapeutic outcomes and decrease the adverse effects of CAR-T cell therapy in patients with solid malignancies in 
the future. 
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INTRODUCTION 

T cells with engineered/modified chimeric antigen receptors 
(CARs) have recently emerged as a promising tool for 
treating tumors. These CAR-T cells have been modified 
with a recombinant receptor molecule to recognize 
cell-surface antigens directly and are independent of major 
histocompatibility complex (MHC) restrictions—a com-
monly observed mechanism of tumor immune escape 
(Elkord et al., 2009; Garrido et al., 1997).  

The prototype CAR is composed of an extracellular tar-
get-binding domain, a hinge, a transmembrane domain, and 
one or more intracellular signaling domains. Most CARs 

use an antibody-derived single-chain variable fragment 
(scFv) for targeting specific tumor-associated antigens 
(TAA). The hinge is important for CAR expression on the 
cell surface because it affects flexibility of the scFv and its 
interaction with the ligand. First-generation CARs were 
conjugated with an intracellular signaling domain alone, 
typically the CD3  chain. Some groups used signaling do-
mains derived from the Fc receptor (Kershaw et al., 2006). 
Second- and third-generation CARs harbor one or two 
costimulatory molecules in their intracellular regions, such 
as CD27, CD28, CD134 (OX40), CD137 (4-1BB), CD244, 
or ICOS, which may augment the effects of  chain signal-
ing and hence enhance T cell proliferation and persistence 
(Altvater et al., 2009; Guedan et al., 2014; Hombach et al., 
2012; Milone et al., 2009; Song et al., 2011, 2012). Recent-
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ly, fourth-generation CARs, also called TRUCK T cells, 
were developed involving two separate transgenes, with the 
CAR gene and a T cell activation responsive promoter 
linked to a cytokine, such as IL-12 (Chmielewski and 
Abken, 2015; Chmielewski et al., 2014).  

CAR-T cells that specifically recognize CD19 are effica-
cious in clinical studies aimed at treating CD19-positive 
hematological malignancies (Brentjens et al., 2011, 2013; 
Grupp et al., 2013; Kochenderfer et al., 2012; Porter et al., 
2011), and the United States Food and Drug Administration 
granted “breakthrough therapy” designation to anti-CD19 
CAR-T cell therapy (Gill and June, 2015). Currently, an 
increasing number of clinical trials in CAR-T cell therapy 
are being extended to target solid malignancies (Li et al., 
2015). Experience with solid tumors is more limited, and 
here we review past results on CAR-T cell therapy against 
solid malignancies by focusing on facts that might aid in 
improving therapeutic responses and overcome current lim-
itations.  

CAR-T CELL THERAPY FOR SOLID 
MALIGNANCIES 

Solid malignancies represent a relatively large proportion of 
the total cancer burden. Surgery, radiotherapy, and chemo-
therapy are mainstays of treatment modalities, but the mor-
tality rate remains high for most patients with advanced or 
metastatic disease. Cancer immunotherapy, evaluated as a 
scientific breakthrough in 2013, focuses on the development 
of novel therapies employing the immune system to gener-
ate an effective immune response against cancer, such as 
using monoclonal antibodies against immune-checkpoints 
and adoptive transfer of CAR-T cells. While CAR-T cell 
therapy was first attempted against solid tumors (Kershaw 
et al., 2006; Lamers et al., 2006), the most exciting results 
from CAR-T cell therapy up to now have been derived from 
trials of patients with hematological malignancies 
(Brentjens et al., 2011; Kochenderfer et al., 2012; Porter  
et al., 2011). In this review, we discuss the possible obsta-
cles and difficulties faced by CAR-T cell therapy when tar-
geting solid tumors.  

SELECTING TUMOR ANTIGENS 

A critical hurdle in fighting solid malignancies with CAR-T  

cell therapy is the availability of adequate target antigen. 
Ideally, the targeted antigen would be exclusively expressed 
on the surface of the malignant cells. However, most of the 
selected antigens are not restricted to tumor cells and are 
expressed by normal host tissues. Early trials of anti-ErbB2 
(Her2/neu) CAR-T cells against solid tumors yielded sever-
al adverse events soon after adoptive transfer (Morgan  
et al., 2010).  

The characteristics of solid tumor antigens are summa-
rized in Table 1. Mutated antigens in solid tumors may be 
ideal targets for CAR-T cells—for example, mutated epi-
dermal growth factor receptor (EGFRvIII) (Sampson et al., 
2010), tumor-specific glycosylation patterns of MUC-1 
(Maher and Wilkie, 2009), and erythropoietin-producing 
hepatocellular A2 receptor (EphA2) epitopes (Coffman  
et al., 2003)—since they are strictly expressed on tumor 
cells. However, such target antigens are rare and some  
mutated molecules are not expressed on the cell surface. 
Currently, most of the antigens recognized by CAR-T cells 
are also expressed by healthy cells, including tissue/ 
lineage-specific antigens, developmental antigens normally 
expressed during fetal development, and antigens that are 
overexpressed on tumor cells compared to non-malignant 
host cells. Screening and identification of more biomarkers 
for solid tumors is a critical step in extending the promise of 
this immunotherapeutic approach to solid malignancies. The 
heterogeneity of solid tumors increases the complexity of 
antigen selection. Unlike hematologic malignancies, solid 
tumors are composed of cancer cells and stromal cells. Even 
the cancer cells do not uniformly express the selected anti-
gen with/without mutations. 

Tumor-associated stroma, occupying up to 90% of the 
tumor mass (Dvorak, 1986), has garnered increasing atten-
tion for its role in supporting tumor cell growth, invasion, 
and angiogenesis (Bhowmick et al., 2004; Orimo et al., 
2005; Santos et al., 2009; Zhang et al., 2011b). The stroma 
is composed of heterogeneous cell types including tumor 
fibroblasts, connective tissue cells, vascular endothelial 
cells, and immune subtypes such as lymphocytes, granulo-
cytes, and macrophages. Kakarla et al. and Wang et al. have 
consistently reported that inhibiting tumor growth by tar-
geting tumor stroma with CAR-T cells directed to fibroblast 
activation protein (FAP) can be safe and effective (Kakarla 
et al., 2013; Wang et al., 2014). Targeting tumor vasculature 
provides another means for therapy against multiple solid  

Table 1  Solid tumor antigens for CAR-T cell based cancer immunotherapy 

Solid tumor antigens Examples 
Overexpressed antigens 
 

CEA, ErbB2 (HER2), FR, GD2, Mesothelin, VEGFR2, CSPG4, EpCAM, PSMA, EGFRvIII, MUC-1, MUC-16, 
EphA2, etc 

Mutated antigens Mutated EGFRvIII, glycosylation patterns of MUC-1, EphA2 epitopes 
Tissue/Lineage-specific antigens Prostate specific cancer antigen (PSCA) 
Developmental antigens MAGE family members, NY-ESO-1 
Tumor-associated stroma Fibroblast activation protein (FAP) 
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tumor types. T cells transduced with VEGFR-2 CAR 
showed durable tumor regression in preclinical models 
(Chinnasamy et al., 2010). 

Consequently, target antigen selection is a key challenge 
for CAR-T cell therapy. There may be several possible 
ways to find a more promising, safer target. CAR-T cells 
can be genetically modified to recognize two or more tu-
mor-associated antigens, which can enhance discrimination 
between abnormal and healthy tissue. One example is 
split-signal CARs, which can limit full T cell activation to 
tumors expressing multiple antigens (Kloss et al., 2013; 
Wilkie et al., 2012). Other strategies include tandem CARs 
(TanCARs), which contain ectodomains with two scFvs 
(Grada et al., 2013), also limiting the risk of immune es-
cape. Another alternative approach is co-expression of in-
hibitory CARs (iCARs) directed against molecules in 
healthy organs together with their activating counterparts. 
Inhibitory signaling may be provided by checkpoint mole-
cules such as CTLA-4 and PD-1. Still, there is a growing 
exigency to find novel antigen targets as become more  
potent. 

SPECIFIC HURDLES IN THE PROCESS OF 
TARGETING TUMORS 

While CAR-T cells are genetic modified, the last step is 
infusing them into patients, the key process in fighting  
tumors. However, this process can be frustrating and  
complicated. As a fundamental prerequisite for therapeutic 
efficacy, CAR-T cells need to be transported to the tumor  
lesion. Once they accumulate in the vicinity, they must effi-
ciently infiltrate the tumor. When migrating into the solid 
tumor lesion, CAR-T cells face a highly immunosuppres-
sive microenvironment. The solid tumor microenvironment 
is extremely inhospitable and capable of inducing anergy in 
CAR-T cells. As shown in Figure 1, CAR-T cells must 
therefore overcome many obstacles and use countermeas-
ures to fight solid tumors. 

T cell trafficking 

The presence of tumor-infiltrating lymphocytes (TIL) has 
been reported to correlate well with positive clinical out-
comes in some patients with various solid cancers (Galon et 
al., 2006; Kim et al., 2013; Kmiecik et al., 2013; Piersma et 
al., 2007). In fact, improved antitumor responses have been 
shown to positively correlate with increased cytotoxic T 
lymphocyte (CTL) infiltration. CTL trafficking is a tightly 
controlled process, whose homing could be influenced by 
many factors, such as mismatching of chemokine-   
chemokine receptor pairs, down-regulation of adhesion 
molecules, and aberrant vasculature (Slaney et al., 2014). 
CAR-T cell therapy is a personalized treatment involving 
genetic modification of autologous CTLs, enabling specific 
recognition and targeting of tumor-associated antigens ex-
pressed by the tumor cells or the tumor stroma. Previous 

 

Figure 1  Specific hurdles in the process of targeting solid tumors. The 
efficacy of CAR-T cells is dependent on their capacity to be transported to 
the tumor tissue, efficiently infiltrate into the tumor lesion, and resist im-
munosuppressive signals within the tumor microenvironment.  

studies have shown that CD8+ T cells are recruited from the 
blood to the site of infection by a variety of distinct pro-
cesses involving attachment/adhesion, rolling/tethering, 
chemotaxis, and extravasation (Masopust and Schenkel, 
2013; Nolz et al., 2011). In addition, the tumor is a hostile 
microenvironment for T lymphocytes, and T cell trafficking 
is markedly reduced compared to an infectious disease set-
ting due to both intrinsic and extrinsic factors (Bellone and 
Calcinotto, 2013). Consequently, new strategies are re-
quired to enhance the trafficking of these gene-modified 
CAR-T cells to the tumor microenvironment.  

Efforts to enhance CAR-T cell trafficking have been 
made, including efforts to create a match between the 
chemokine produced by tumors and the chemokine recep-
tors on the effector T cells. Chemokine secretion varies 
among different tumor types, and successful re-direction of 
T cell migration depends on matching the chemokine with 
its appropriate chemokine receptor. Kershaw et al. have 
demonstrated that engineering the chemokine receptor 
CXCR2 (CXCL1 receptor) into T cells enabled the T cells to 
efficiently migrate toward a melanoma tumor (Kershaw  
et al., 2002). Transgenic co-expression of CCR4 improved 
the homing of CAR-CD30-modified T cells to CD30+ 
Hodgkin lymphoma that secreted CCL17 (the ligand for 
CCR4), and thereby improved anti-lymphoma effects (Di 
Stasi et al., 2009). In addition, previous studies have shown 
that enhanced CCR2b expression from mesothelin-reactive 
CAR-T cells and CAR-GD2 T cells led to improved an-
ti-tumor effects against malignant pleural mesothelioma and 
neuroblastoma (Craddock et al., 2010; Moon et al., 2011). 
Locoregional disease is the primary cause of disease-related 
mortality among some malignancies, providing a strong 
rationale for regional T cell delivery. In contrast to system-
atic administration, local delivery, such as intra-peritoneal 
and intra-tumoral injection, may also provide a good meth-
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od for CAR-T cell delivery. One example is head and neck 
squamous cell carcinoma. Intra-tumoral delivery of 
ErbB-targeted CAR-T cells is currently under Phase 1 clin-
ical trial evaluation (van Schalkwyk et al., 2013). Similarly, 
ovarian cancer and malignant pleural mesothelioma may 
both be appropriate candidates for local delivery because of 
their propensity for localized dissemination within peritone-
al and pleural cavities. 

T cell infiltration 

Once the genetically modified T cells accumulate in the 
vicinity of the tumor, they must infiltrate into the tumor 
lesion and efficiently exert an anti-tumor effect. These pro-
cesses involve a complex sequence of events, including the 
adhesion of T cells to endothelial cells and chemo-
kine-chemokine receptor interactions modulating their ex-
travasation into antigen-rich tissues (Muller, 2003; Parish, 
2006; Yadav et al., 2003). It has been reported that the panel 
of chemokine produced by solid tumors does not favor T 
cell infiltration into tumor sites. Thus, better strategies are 
needed to facilitate T cell infiltration into tumors and en-
hance the efficacy of CAR-T cell anti-tumor effects. 

The extracellular matrix (ECM) is an integral component 
of the stroma, and the main components of the ECM are 
heparan sulfate proteoglycans (HSPGs). Therefore, T cells 
that attack stroma-rich solid tumors must degrade HSPGs in 
order to access tumor cells and exert anti-tumor effects. 
Caruana et al. have demonstrated that CAR-T cells engi-
neered to express heparanase (which degrades HSPGs) 
promoted tumor T cell infiltration and anti-tumor activity 
(Caruana et al., 2015). Moreover, the endothelin B receptor 
has been reported to prevent T cell infiltration in ovarian 
tumors. Kandalaft et al. demonstrated that blocking those 
receptors improved T cell infiltration into the tumor lesion 
and enhanced the efficacy of immunotherapy (Kandalaft  
et al., 2009). Another candidate for enhancing T cell infil-
tration is VEGF receptor-2, which is overexpressed by tu-
mor-associated endothelial cells (Slaney et al., 2014). 
Throughout the history of cancer treatment, the long-term 
therapeutic effect of blocking VEGF receptor-2 has been a 
major anti-angiogenic pharmacologic intervention and has 
been fully dependent on CD8+ T cell infiltration in tumors 
(Manning et al., 2007). T cells transduced with VEGF re-
ceptor-2 CAR also showed durable and increased tumor 
infiltration, correlating with their anti-tumor effect 
(Chinnasamy et al., 2010).  

Immunosuppressive microenvironment 

A critical barrier against the use of engineered T cells for 
the treatment of solid tumors is the tumor microenviron-
ment. It is a key determinant of anti-tumor immunity with 
the capacity to suppress the infiltration, activation, and ef-
fector activity of T cells. The ultimate goal is to be curative 
in solid tumors, and CAR-T cells must withstand and thrive 
in the solid tumor microenvironment. Moon et al. have re-

vealed that CAR-T cells were, with varying efficiencies, 
able to traffic into tumors and proliferate, which slowed 
tumor growth but did not cause regressions or cures. The 
CAR TILs underwent rapid loss of cytolytic and cytokine 
secretion capacity, which is reversible by resting cells in 
vitro within 24 h (Moon et al., 2014). Immune suppressor 
leukocytes, as well as other obstacles, such as immunosup-
pressive cytokines and inhibitory immuno-checkpoints, 
present within the tumor microenvironment can suppress 
the anti-tumor activity of CAR-T cells.  

Immune suppressor cells 

First, solid tumors are usually infiltrated with abundant 
immune suppressor cells, including M2 tumor-associated 
macrophages, myeloid-derived suppressor cells (MDSCs), 
and regulatory T cells (Tregs) and B cells (Bregs), which 
protect malignant cells from the anti-tumor activity of the 
immune system (Biswas and Mantovani, 2010; Liyanage et 
al., 2002; Schmid et al., 2011). Preclinical data supports the 
hypothesis that the incorporation of co-stimulatory mole-
cules, such as CD28, into CARs may help CAR-modified T 
cells to overcome the immunosuppressive tumor microen-
vironment mediated by Treg cells (Koehler et al., 2007; Lee 
et al., 2011; Loskog et al., 2006). Recently, a study by Bur-
ga et al. showed that myeloid-derived suppressor cells ex-
pand in response to liver metastases and inhibit the an-
ti-tumor efficacy of anti-CEA CAR-T cells; CAR-T cell 
efficacy was rescued when mice received CAR-T in com-
bination with MDSC depletion (Burga et al., 2015). Tumor 
cells have been found to secrete high levels of granulo-
cyte-macrophage colony-stimulating factor (GM-CSF) in 
vivo implicated in MDSC recruitment, and GM-CSF neu-
tralization may be an alternative approach to prevent MDSC 
expansion (Lesokhin et al., 2012; Schmidt et al., 2013). 

Cytokines 

Soluble factors, namely cytokines, in the tumor microenvi-
ronment are important determinants of immunotherapy for 
solid tumors. Various immunosuppressive cytokines such as 
TGF- and IL-10 are involved in the inhibition of the effi-
cacy of cancer immunotherapy (Rabinovich et al., 2007; 
Schreiber et al., 2011). TGF- suppresses CD8+ effector T 
cells and is capable of modulating the CD4+ helper T cell 
toward a Treg phenotype. Therapies aimed at inhibiting 
immunosuppressive cytokines, such as introducing a domi-
nant-negative TGF- receptor in CAR-T cells, showed im-
proved efficacy (Bollard et al., 2002). In addition, activating 
cytokines such as IL-2, IL-12, and IL-15 has been shown to 
mitigate the effect of immunosuppressive factors in the tu-
mor microenvironment and showed remarkable enhance-
ment of CAR-T efficacy. Chmielewski et al. showed that 
IL-12 secretion by engineered T cells expressing CARs re-
sulted in the destruction of antigen negative cancer cells that 
may escape from T cell therapy (Chmielewski et al., 2011). 
Indeed, studies have shown that therapy with CAR-T cells 
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engineered to express IL-12 could change the tumor micro-
environment and enhance anti-tumor function (Kerkar et al., 
2010; Zhang et al., 2011a). Moreover, numerous studies 
have demonstrated that production of cytokines such as IL-2 
and IL-15 improved the anti-tumor effects of CAR-T cells 
(Hoyos et al., 2010; Kershaw et al., 2006; Nishio and Dotti, 
2015; Till et al., 2008; Wang et al., 2013). 

Inhibitory immuno-checkpoints  

It has been reported that a number of inhibitory im-
mune-checkpoint pathways, such as programmed cell death 
protein 1 (PD1), cytotoxic T lymphocyte antigen 4 (CTLA- 
4), B7-H family members, or FasL, can shut down the an-
ti-tumor ability of TILs. Interaction between PD1 and its 
ligand, PDL1, can suppress the activation of CAR-T cells in 
the tumor microenvironment. Infused CAR-T cells express 
PD1 and are susceptible to PD1/PDL1 interaction-mediated 
suppression (Abate-Daga et al., 2013; Kalos et al., 2011). 
Moon et al. showed that CAR-T cells underwent rapid loss 
of function in tumors, a process that was associated with 
up-regulation of intrinsic T cell inhibitory enzymes and ex-
pression of surface inhibitory receptors (Moon et al., 2014). 
The use of checkpoint inhibitors targeting the above path-
ways, such as anti-PD1 and anti-CTLA-4, has been demon-
strated to enhance T cell responses in patients with mela-
noma, renal cancer, etc. (Hodi et al., 2010; Topalian et al., 
2012). At present there are preclinical data showing that 
blocking PD1 immunosuppression can boost CAR-T cell 
therapy, likely representing a fruitful area for future study 
(John et al., 2013a, 2013b). We believe that combining 
CAR-T cells with other therapies, like blocking antibodies, 
offers the potential to improve anti-tumor effects, as tumors 
are heterogeneous and complex. 

TOXICITY 

Unwanted toxicity is a major problem that limits CAR-T 
cell-based immunotherapy. There are three potentially key 
routes contributing to the toxicity of CAR-T cells that must 
be considered (Table 2). The most common is on-target, 
on-tumor toxicity relating directly to the effects of binding 
of the CAR to the cognate antigen resident on the target 
tumor cell, such as cytokine release syndrome (CRS) and 
tumor lysis syndrome (Bugelski et al., 2009; Howard et al., 
2011). CRS is typified by chills, fevers, and hypotension, 
but can also result in much more severe life-threatening 
multiple-organ failure (Brentjens et al., 2010; Maude et al., 

2014). The severity of CRS seems to correlate with tumor 
burden, potency, and infusion dose of CAR-T cells. IL-6, 
IL-10, and IFN- cytokines play a major role in CRS. The 
main strategies used to overcome CRS involve direct tar-
geting of the cytokine action by blocking access to their 
receptors (e.g. anti-IL6 receptor antibody (tocilizumab)) 
with or without co-application of non-specific corticoster-
oids (Grupp et al., 2013). Secondly, on-target, off-tumor 
toxicity is a major challenge when treating solid cancers. 
CAR-T cells engage a target antigen that is expressed upon 
healthy and normal cells; this may result in the destruction 
of healthy cells expressing the specific target anti-
gen—perhaps even at a level much lower than that of tumor 
cells—and substantially limit the clinical application. For 
B-cell malignancies, B-cell depletion after treatment with 
anti-CD19 CAR-T cells is clinically manageable (Cheadle 
et al., 2010). In the case of many solid tumors, the CAR 
target may not be tumor-specific. A case reported by Mor-
gan et al. showed that activation of anti-ErbB2 CAR-T cells 
against healthy epithelial tissues that included the lung and 
heart resulted in the patient’s death soon after adoptive 
transfer (Morgan et al., 2010). The third potential mecha-
nism of CAR-T cell toxicity may relate to the response of 
non-CAR-T cells to the therapy (Cheadle et al., 2014). Inte-
grating vectors based upon retroviral and lentiviral back-
bones may pose a potential risk of oncogenic events.  

To control this, suicide genes—genetically encoded 
molecules that allow for selective destruction of adoptively 
transferred cells—are often employed. The most commonly 
used suicide genes are herpes simplex thymidine kinase 
(HSV-TK), inducible caspase 9 (iCasp9), and CD20 (Ciceri 
et al., 2009; Di Stasi et al., 2011; Marin et al., 2012). How-
ever, a disadvantage of their use is immunogenicity result-
ing in unwanted elimination of the modified T cells. In con-
trast to stable modified cells, transient expression of CARs 
by RNA transfer may provide temporary redirected T cell 
activity and limit adverse events in the case of toxicity 
(Birkholz et al., 2009). Even so, some studies have shown 
that RNA CAR-T cell activity is limited by ineffective tu-
mor infiltration in solid tumor models (Singh et al., 2014a, 
2014b). In addition, dual CAR targeting also provides a 
means to improve the tumor specificity of CAR-T cells with 
potential for avoiding antigen escape (Grada et al., 2013). 
Dual CAR targeting involves the use of one CAR contain-
ing a “signal 1” and a second with a “signal 2” activating 
domain. Both signals are required for full T cell activation. 

Table 2  CAR-T-cell therapy-associated toxicities 

Categorization of toxicities Reasons Examples 
On-target, on-tumor toxicity 
 

Binding the CAR to cognate antigen resident on the 
target tumor cell 

Tumor-derived toxicity, e.g. cytokine release syn-
drome (CRS) and tumor lysis syndrome 

On-target, off-tumor toxicity 
 

Destruction of healthy cells expressing the specific target 
antigen 

Organ failure and even death (a case reported by Mor-
gan et al.) 

Off-target, off-tumor toxicity 
 

Relating to the response of non-CAR-T cells 
 

Genotoxicity based upon retroviral and lentiviral 
backbones, e.g. oncogenic events 
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This strategy may provide increased tumor specificity, thus 
avoiding on-target, off-tumor toxicity (Kloss et al., 2013).  

CONCLUSIONS 

In summary, we have outlined how the targeting of CAR-T 
cells toward solid tumors faces certain obstacles and diffi-
culties that must be overcome for therapeutic success. Cur-
rently, efforts aiming to exploit CAR-T cell therapy to treat 
solid tumors are mainly in the preclinical stage. Strategies to 
overcome the major challenges must be empirically defined 
in forthcoming clinical trials with respect to both safety and 
efficacy in the treatment of solid cancers. 
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