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DNA damage is a relatively common event in eukaryotic cell and may lead to genetic mutation and even cancer. DNA damage 
induces cellular responses that enable the cell either to repair the damaged DNA or cope with the damage in an appropriate 
way. Histone proteins are also the fundamental building blocks of eukaryotic chromatin besides DNA, and many types of 
post-translational modifications often occur on tails of histones. Although the function of these modifications has remained 
elusive, there is ever-growing studies suggest that histone modifications play vital roles in several chromatin-based processes, 
such as DNA damage response. In this review, we will discuss the main histone modifications, and their functions in DNA 
damage response.  
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INTRODUCTION 

Eukaryotic cells are exposed to numbers of factors that 
cause DNA lesions and genomic integrity is continually 
challenged. Chemicals, UV radiation, ionizing radiation 
outside the cells and reactive oxygen species, S-adenosyl- 
methionine inside the cells are known to induce various 
DNA damage (Lord and Ashworth, 2012). DNA lesions 
interfere with DNA replication and transcription, and if they 
are not repaired correctly, they can have deleterious effects, 
such as mutations and even wider-scale genome aberrations 
(Polo and Jackson, 2011). DNA damage is closely associ-
ated with many human diseases, including cancer, neuro-
degenerative disorders, immune deficiencies, infertility and 
cardiovascular disease (Ciccia and Elledge, 2010; Jackson 

and Bartek, 2009).    
In order to preserve genomic integrity, DNA damage 

must be repaired precisely. Indeed, eukaryotic cells have 
developed several highly conserved DNA repair pathways 
to counteract different types of damage, including (i) Base 
excision repair. (ii) Nucleotide excision repair. (iii) Mis-
match repair. (iv) Nonhomologous end-joining (NHEJ)- 
mediated DNA double-strand break repair. (v) Homologous 
recombination (HR)-mediated DNA double-strand break 
repair (Sancar et al., 2004; Williamson et al., 2012). Differ-
ent repair pathways are mediated by different repair factors, 
contributing to a series of large networks safeguarding the 
genomic DNA (Sancar et al., 2004). It has been clear that 
histone modification is also a critical part of these networks, 
and the roles of histone modification in DNA damage re-
sponse have been well demonstrated in recent studies 
(Miller and Jackson, 2012; Sulli et al., 2012).  



258 Cao, L.L., et al.   Sci China Life Sci   March (2016) Vol.59 No.3 

In eukaryotes, chromatin is composed of repeating units 
of nucleosomes connected by linker DNA. The core com-
ponent of nucleosome is histone octamer, which is formed 
by two copies each of histone H2A, H2B, H3, H4 
(Margueron and Reinberg, 2010; Talbert and Henikoff, 
2010), whereas histone H1 binds to the linker DNA between 
nucleosomes. Histones are easily catalyzed by histone mod-
ification enzymes to form different kinds of post-    
translational modifications, such as methylation, acetylation 
and phosphorylation (Campos and Reinberg, 2009; 
Kouzarides, 2007). Until now, more than a dozen types of 
histone modifications and hundreds of modification sites 
altogether have been found (Arnaudo and Garcia, 2013; Dai 
et al., 2014; Kouzarides, 2007; Tan et al., 2011) (Figure 1).  

Histone modifications play critical roles in many biolog-
ical processes by regulating chromatin structure and func-
tion. There are several ways for histone modifications to 
exert their functions. At first, it is well known that the 
DNA-histone interaction in the chromatin structure is medi-
ated by the attraction between negatively charged DNA 
backbone and positively charged lysine and arginine resi-
dues of histones (Bannister and Kouzarides, 2011). Some 
modifications including lysine acetylation, lysine citrullina-
tion and Serine/Threonine phosphorylation, can change the 
charge of the amino acid residues of histones and thereby 
regulate the compaction of chromatin (Gyorgy et al., 2006; 
Strahl and Allis, 2000). In addition, histone modifications 
can serve as high-affinity binding sites or platforms for the 
proteins containing specific binding domains. For example, 
the PHD zinc-finger domains, chromodomains and Tudor 
domains bind specifically to the methylated lysines, while 
bromodomains recognize acetylated lysines with high affin-
ity (Yun et al., 2011). Furthermore, there are intricate 

crosstalks between different histone modifications, and one 
histone modification can regulate the activities of chromatin 
by influencing another histone mark. For example, the ex-
istence of some histone modifications can inhibit the gener-
ation of other modifications at the same amino acid residue, 
and modulating the formation of modifications at the resi-
dues nearby because of steric effect (Lee et al., 2010b; 
Suganuma and Workman, 2008). In general, histone modi-
fications regulate chromatin activities in different ways.  

Histone modification is involved in a lot of physiological 
and pathological processes. Firstly, histone modification is 
closely related to tumorigenesis and cancer progression. For 
instance, H3K36 dimethylation is the transcriptional activa-
tor of DUSP3 (dual-specificity phosphatase 3) gene, whose 
protein dephosphorylates ERK1/2 (extra cellular-regulated 
kinase 1/2) and downregulates ERK1/2 activity. Histone 
demethylase KDM2A (lysine-specific demethylase 2A), 
which is capable of erasing H3K36 dimethylation and re-
pressing DUSP3 expression, is frequently overexpressed in 
lung tumors, and promotes lung tumorigenesis and metasta-
sis by enhancing ERK1/2 signaling (Wagner et al., 2013). In 
addition, histone modification plays a role in cell metabo-
lism. It has been demonstrated that histone demethylase 
KDM3A directly regulates the metabolic gene Ppara and 
Ucp1 expression, both of which are the important regulator 
of energy balance, by demethylating H3K9me1/2 (Tateishi 
et al., 2009). Moreover, histone modification is the modu-
lator of stem cell division and differentiation. There is a 
large cohort of developmental gene promoters containing 
bivalent chromatin domain, which is enriched simultane-
ously with the transcriptionally active histone mark 
H3K4me3 and transcriptionally repressive histone mark 

 

 

Figure 1  Many histone modifications are involved in DNA damage response. The representative modification sites are shown here.  
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H3K27me3, and stem cell fate is controlled by the specific 
bivalent domain (Voigt et al., 2013). Furthermore, histone 
modification is also tightly correlated with DNA damage at 
every stage of cell response to DNA damage (Rossetto    
et al., 2010). In this review, we will summarise and discuss 
the most recent studies, and describe the functions of each 
histone modification in DNA damage response (Figure 1).  

PHOSPHORYLATION 

One of the first histone modification events correlated with 
DNA damage response is the phosphorylation of the H2A 
variant H2AX, and the phosphorylated H2AX is referred as 
H2AX. H2AX phosphorylation occurs within minutes after 
exposure to DNA damage, and the phosphorylation site is 
Serine 139 (S139) of the H2AX human variant or Serine 
129 (S129) of yeast H2A in a unique conserved SQ motif in 
the C-terminal tail (Downs et al., 2000; Rogakou et al., 
1998). It has been described that ATR (ataxia-telangiectasia 
mutated and Rad3 related) is responsible for H2AX foci 
formation in response to replication stress (Ward and Chen, 
2001), while ATM (ataxia-telangiectasia mutated) and 
DNA-PK (DNA-dependent protein kinase) function redun-
dantly to phosphorylate H2AX after exposure to ionizing 
radiation (Stiff et al., 2004) (Figure 2). H2AX spreads over 
a large region (over 1 Mb in human cells) around a DNA 
break site (Downs et al., 2004; Rogakou et al., 1999; Shroff 
et al., 2004; Unal et al., 2004). Therefore, it is easily de-
tected by specific antibodies against H2AX in fluorescence 
microscopy and chromatin immunoprecipitation analysis, 
and has been commonly used as a biomarker of DNA dam-
age nuclear foci (Bonner et al., 2008; Mah et al., 2010). 
H2AX distributes on both sides of a DNA break in an 
asymmetrical manner because of transcription state of the 
genes surrounding DNA damage site (Iacovoni et al., 2010). 
In addition, the pattern of H2AX is different on different 
chromatin regions, and H2AX foci formation in euchroma-
tin is more efficient than that in heterochromatin in yeast 
and mammals (Kim et al., 2007).  

It is clear that H2AX is essential for DNA damage re-
sponse. At first, H2AX is required for the error-free HR 
repair and genome stability, and H2AX deficient mice or 
cells show increased use of error-prone single-strand an-
nealing, enhanced radiosensitivity and oncogenic transloca-
tions, resulting in increased rates of tumorigenesis and can-
cer development (Bassing et al., 2002; Bassing et al., 2003; 
Celeste et al., 2003a; Celeste. et al., 2002; Xie et al., 2004). 
Additionally, although H2AX is dispensable for the con-
stitution of the primary DNA damage signal and the initial 
recruitment of repair factors, it is critical for the accumula-
tion and retention of Rad50, Rad51, BRCA1 (breast cancer 
1), MDC1 (mediator of DNA damage checkpoint 1) in hu-
man cells and 53BP1 homolog in yeast in response to DNA 
damage (Celeste et al., 2003b; Javaheri et al., 2006; 

Nakamura et al., 2004; Paull et al., 2000; Stucki et al., 
2005). Moreover, H2AX does not affect chromatin organ-
ization in the initial stage of DNA damage recognition and 
signaling (Fink et al., 2007). However, it is necessary to 
open the chromatin structure to facilitate access for the re-
pair factors around the damage sites after the initial signal-
ing, and histone modifiers and ATP-dependent chromatin 
remodelers are required at the DNA breaks (Osley et al., 
2007). In fact, H2AX plays a role in recruiting NuA4, 
INO80 chromatin remodeling complexes and promotes his-
tone acetylation to render the chromatin environment sur-
rounding the DNA breaks more accessible for the repair 
factors (Downs et al., 2004; Lee et al., 2010a; Morrison   
et al., 2004; van Attikum et al., 2004).  

Because of the essential role in DNA damage response, 
H2AX must be tightly regulated. Indeed, many factors are 
capable of modulating H2AX. For example, ATM pro-
motes H2AX formation to maximal distance and maintains 
H2AX densities, while MDC1 is required for H2AX for-
mation at high densities near damage sites, but not for gen-
eration of H2AX over distal sequences (Savic et al., 2009). 
In addition, SWI/SNF chromatin remodeling complex facil-
itates H2AX induction and binds to H2AX-containing 
nucleosomes (Lee et al., 2010a; Park et al., 2006). Moreo-
ver, evidence from yeast models suggests that yINO80 is 
required for maintaining a high level of H2AX during 
DNA damage response, while ySWR1 functions antagonis-
tically and plays a role in replacing H2AX with the H2AZ 
variant (Papamichos-Chronakis et al., 2006). Last but not 
least, H2AX has to be eliminated from chromatin after the 
repair process is completed. It can be achieved either by the 
function of SWR1 (Papamichos-Chronakis et al., 2006), or 
by H2AX dephosphorylation. Many phosphatases have the 
ability to erase H2AX, including PP2A, PP4C, PP6, Wip1 
in human cells and yPph3 in yeast (Figure 2). H2AX 
dephosphorylation is important for DNA repair and efficient 
recovery from the DNA damage checkpoint (Chowdhury  
et al., 2005; Chowdhury et al., 2008; Douglas et al., 2010; 
Keogh et al., 2006; Macurek et al., 2010; Nakada et al., 
2008). In general, H2AX is an important marker of DNA 
break sites and essential modulator of DNA damage re-
sponse, and is also tightly regulated during the DNA repair 
process. 

In addition to H2AX, there are some other phosphoryla-
tion events occurring on histone H2AX or other histones 
linked with DNA damage response. For instance, H2AX is 
also phosphorylated on its C-terminal tyrosine 142 (Y142) 
by the non-canonical tyrosine kinase WSTF (Williams- 
Beuren syndrome transcription factor), and dephosphory-
lated by tyrosine phosphatase EYA (Cook et al., 2009; Xiao 
et al., 2009). Y142 is constitutively phosphorylated under 
normal growth conditions, and becomes gradually 
dephosphorylated during the DNA damage response (Xiao 
et al., 2009). WSTF and/or Y142 phosphorylation not only   
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Figure 2  The role of H2AX in DNA damage response. In response to 
DNA double-strand break, histone H2AX is quickly phosphorylated by 
ATM or other kinases, after which many repair factors are recruited to the 
DNA damage site to promote DNA repair. As long as the DNA repair 
process is completed, H2AX will be dephosphorylated by some phospha-
tases, such as PP2A, PP4C, PP6, Wip1. 

regulate the recruitment of active ATM and MDC1, and the 
maintenance of H2AX upon DNA damage (Xiao et al., 
2009), but also further determine repair/survival versus 
apoptotic responses to DNA damage (Cook et al., 2009). 
Additionally, phosphorylation of threonine 101 (T101) on 
H2AX is identified as a DNA damage responsive modifica-
tion as well. T101 mutation increases  radiation (IR) sensi-
tivity of ES cells, but does not affect DNA repair efficiency 
(Xie et al., 2010). Moreover, histone H2B is phosphorylated 
on serine 14 (S14) by protein kinase MST1 (mammalian 
sterile twenty-like kinase 1) following DNA damage, and 
H2BS14ph foci appears at the late time points in a 
H2AX-dependent manner (Cheung et al., 2003; Fernandez- 
Capetillo et al., 2004). Furthermore, the N-terminal serine 1 
(S1) of H4 in nucleosomes proximal to the break sites is 
phosphorylated by casein kinase 2 (CK2) at the end of the 
repair process. H4S1 phosphorylation inhibits H4 acetyla-
tion to stabilize the nucleosome during chromatin restora-
tion, and promotes NHEJ-mediated double-strand break 
repair (Cheung et al., 2005; Utley et al., 2005). Finally, his-
tone H3 phosphorylation, such as H3S10p and H3S28p, 
decreases upon DNA damage due to the activation of cell 
cycle checkpoint and thus reduced mitotic cells (Tjeertes  
et al., 2009).  

METHYLATION 

The second most common histone modification linked with 
DNA damage response is histone methylation. Histone 
methylation occurs at specific sites on H3 and H4 such as 
H3K4, H3K9, H3K27, H3K36, H3K79 and H4K20. It is 
performed by histone methyltransferases and reversed by 
histone demethylases, indicating that it is dynamically reg-
ulated in eukaryotic cells. Histone methyltransferases refer 
to a family of proteins containing the catalytic SET domain 
except the H3K79 methyltransferase DOT1L, while two 
families of histone demethylases have been reported, in-
cluding flavin adenine dinucleotide (FAD)-dependent his-
tone demethylases and Jmjc domain-containing histone de-
methylases. Many histone methyltransferases/demethylases, 
as well as their targeted histone methylations, are involved 
in DNA damage response.  

H3K9 methylation is critical for genome stability and 
DNA damage response. At first, H3K9me3 is an essential 
histone marker of heterochromatin (Grewal and Jia, 2007). 
H3K9 methyltransferase SUV39H1 is required for the 
maintenance of heterochromatic state, and its methylation 
by SET7/9 impairs its enzymatic activity resulting in de-
creased H3K9me3 and heterochromatin instability (Peng 
and Karpen, 2009; Wang et al., 2013). Next, H3K9 methyl-
ation is important for the cellular response to DNA damage, 
but the role of H3K9 methylation is different at the ear-
ly-stage and late-stage of DNA damage response. DNA 
damage immediately induces the loading of a protein com-
plex containing KAP-1, HP1, SUV39H1 onto the DNA 
double-strand breaks, and therefore upregulates the level of 
H3K9me3 nearby. With the assistance of HP1, H3K9me3 
can spread over tens of kilobases away from the damage 
sites to form a large repressive heterochromatin domain 
(Ayrapetov et al., 2014). Subsequently, HP1 is released 
from chromatin, and histone acetyltransferase Tip60 binds 
to H3K9me3 via its chromodomain. The enrichment of 
Tip60 activates its acetyltransferase activity, and stimulates 
the subsequent acetylation and activation of ATM at the 
damage sites (Ayoub et al., 2008; Ayrapetov et al., 2014; 
Sun et al., 2010; Sun et al., 2009). Therefore, H3K9 meth-
ylation and heterochromatin formation is required for ATM 
activation, and ATM-mediated DNA damage signaling such 
as H2AX localization at the early phase of DNA damage 
response (Sasaki et al., 2014). However, because the chro-
matin adjacent to the damaged DNA needs to be open in 
order to increase the accessibility of repair proteins, H3K9 
methylation has to be reversed to promote the repair pro-
cess. It has been demonstrated that DNA damage induces 
the degradation of G9a/GLP, which results in decreased 
H3K9me2 at the promoters of IL-6 and IL-8 in senescent 
cells (Takahashi et al., 2012). In addition, H3K9me2/3 de-
methylases KDM4B and KDM4D are recruited to the DNA 
damage sites mediated by PARP1, and are responsible for 
H3K9 demethylation (Khoury-Haddad et al., 2014; Young 
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et al., 2013). However, a recent study reveals that 
H3K9me2 is required for BARD1 and BRCA1 retention at 
sites of DNA damage, thus promoting HR repair in S phase 
of cell cycle (Wu et al., 2015). It indicates that H3K9me3 is 
removed, but H3K9me2 is reserved at damaged DNA.  

Similar to H3K9 methylation, H3K36 methylation is an 
important histone marker for recruiting repair factors as 
well. H3K36 methyltransferase Metnase promotes DNA 
integration by opening chromatin and facilitating joining of 
DNA ends (Lee et al., 2005). More importantly, H3K36me2 
is induced in response to DNA double-strand break, and 
Metnase itself and its phosphorylation by Chk1 (checkpoint 
kinase 1) are responsible for the increase of H3K36me2, 
which is a platform for recruiting Ku70 to enhance the ac-
tivity of NHEJ (Fnu et al., 2011; Hromas et al., 2012). Ad-
ditionally, our group discovered that the phosphorylation of 
H3K36 demethylase KDM2A mediated by ATM is also 
required for H3K36me2 induction, and H3K36me2 is capa-
ble of favoring MRE11 complex localization through the 
direct interaction between H3K36me2 and NBS1 (Cao    
et al., 2015). Compared to H3K36me2, it seems that 
H3K36me3 exerts more complicated functions in DNA 
damage response although it is not induced by DNA dam-
age. At first, Set2-dependent H3K36me3 is essential for the 
loading of mismatch recognition protein hMuts via direct 
interaction with the hMSH6 PWWP domain, and is required 
for DNA mismatch repair to ensure the fidelity of DNA 
replication (Li et al., 2013). However, the role of H3K36- 
me3 in cellular response to DNA double-strand break is 
controversial at present. One study in fission yeast indicates 
that H3K36me3 is cell cycle regulated, peaking in G1 when 
NHEJ occurs and decreasing in S and G2/M phases, and 
H3K36me3 reduces chromatin accessibility, impairs DNA 
end resection and HR (Pai et al., 2014). Other studies show 
that Set2-dependent H3K36me3 is critical for appropriate 
resection and HR through recruiting repair factors CtIP 
(retinoblastoma binding protein 8), RPA (replication protein 
A1) and Rad51 (Jha and Strahl, 2014; Pfister et al., 2014). 
In the end, H3K36 demethylase Rph1 functions as a tran-
scriptional repressor and inhibits the expression of DNA 
repair enzyme gene PHR1 and other stress-response genes 
by H3K36 demethylation, while DNA damage and envi-
ronmental stress induce Rph1 phosphorylation and dissocia-
tion from chromatin to facilitate gene expression (Liang   
et al., 2011; Liang et al., 2013), indicating that H3K36 
methylation is essential for DNA repair.  

Although H3K79 methylation is also a pre-exiting his-
tone modification and not induced by DNA damage (Huyen 
et al., 2004), it plays an extensive role in DNA damage re-
sponse and the maintenance of genome stability. The best 
characterized function of H3K79 methylation is recruiting 
53BP1 to DNA break sites. Dot1L-dependent H3K79 meth-
ylation is required for the localization of 53BP1 around 
damaged DNA and 53BP1 tandem Tudor domain binds to 

methylated H3K79 directly, resulting in the induction of 
53BP1 phosphorylation and checkpoint activation (Giann- 
attasio et al., 2005; Huyen et al., 2004; Wakeman et al., 
2012; Wysocki et al., 2005). In addition, H3K79 methyla-
tion mediated by Dot1L promotes nucleotide excision re-
pair, and H3K79R mutation increases the binding of histone 
deacetylase complex to eliminate histone acetylation and 
reduce DNA lesion accessibility to repair enzymes 
(Chaudhuri et al., 2009; Tatum and Li, 2011). Moreover, 
Dot1L and H3K79me3 contribute to favorable sister chro-
matid exchange during HR and facilitate HR repair (Conde 
et al., 2009; Rossodivita et al., 2014). Furthermore, there is 
crosstalk between H3K79 methylation and other histone 
methylations. For example, H3K79 methylation is important 
for the maintenance of heterochromatic mark H3K9 meth-
ylation and H4K20 methylation at centromeres and telo-
meres, and loss of H3K79 methylation results in hetero-
chromatin instability (Jones et al., 2008). Lastly, it has been 
described that H3K79 methylation is critical for Mek1 au-
tophosphorylation and activation, and thereby modulates the 
meiotic checkpoint response (Ontoso et al., 2013).  

Another histone modification involved in 53BP1 locali-
zation is H4K20 methylation. H4K20 methyltransferase 
MMSET (Wolf-Hirschhorn syndrome candidate 1) regu-
lates the induction of H4K20 methylation on histones 
around double-strand breaks, which in turn facilitates 
53BP1 recruitment (Hajdu et al., 2011; Pei et al., 2011). In 
addition to MMSET, another two H4K20 methyltransferas-
es Set8 and Set9 are also responsible for H4K20 methyla-
tion and the recruitment of 53BP1 (Dulev et al., 2014; 
Greeson et al., 2008; Oda et al., 2010; Sanders et al., 2004; 
Yan et al., 2009). Similar to H3K79 methylation, H4K20 
methylation recruits 53BP1 via its tandem Tudor domain as 
well (Botuyan et al., 2006). Interestingly, histone deme-
thylase KDM4A also contains a tandem Tudor domain, and 
it competes with 53BP1 for binding to methylated H4K20. 
In order to favor 53BP1 localization, KDM4A is degraded 
in a RNF8- and RNF168-dependent manner in response to 
DNA damage (Mallette et al., 2012). Actually, H4K20 
methylation not only promotes 53BP1 localization, but also 
serves to modulate genome stability. H4K20me1/2/3 is re-
quired for maintenance of proper high order chromatin 
structure, and loss of H4K20 methylation impairs genomic 
integrity and may induce tumorigenesis (Oda et al., 2009; 
Sakaguchi and Steward, 2007; Schotta et al., 2008). In fact, 
global H4K20 methylation is much lower in bladder cancer 
samples than in normal tissues and has been proposed as a 
potential prognosis biomarker in bladder cancer (Schneider 
et al., 2011).  

Other histone methylations such as H3K27 methylation 
and H3K4 methylation are also involved in DNA damage 
response. DNA double-strand break initiates the recruitment 
of polycomb group proteins EZH2, SUZ12, CBX8, which 
constitute a repressive chromatin structure at the sites of 
DNA damage via H3K27 methylation to block transcription 
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and facilitate DNA repair (Campbell et al., 2013; Chou   
et al., 2010; O’Hagan et al., 2008). As for H3K4 methyla-
tion, it seems to be reversed upon DNA damage. At first, 
LSD1 (lysine-specific demethylase 1), as well as its Cae-
norhabditis elegans ortholog Spr-5, is enriched on dou-
ble-strand break sites and responsible for H3K4me1/2 de-
methylation, resulting in increased recruitment of repair 
factors (Mosammaparast et al., 2013; Nottke et al., 2011). In 
addition, KDM5A and KDM5B, the H3K4me2/3 deme-
thylases, are recruited to damaged DNA to induce loss of 
H3K4me2/3, and required for efficient DNA repair (Li    
et al., 2014; Seiler et al., 2011). However, the role of H3K4 
methylation in DNA damage response is disputable, be-
cause it has been reported that the yeast Set1p methyltrans-
ferase as well as its substrate H3K4me3 become detectable 
on a newly created double-strand break in budding yeast 
cells, and this enrichment of Set1p and H3K4me3 are im-
portant for DNA repair by NHEJ (Faucher and Wellinger, 
2010). Moreover, the role of H3K4 methylation in nucleo-
tide excision repair is interesting, and H3K4R mutation ex-
erts different impacts on nucleotide excision repair on dif-
ferent genomic loci (Chaudhuri et al., 2009). In our previous 
studies, we also described the critical role of an H3K4 me-
thyltransferase SET7/9 in DNA damage response and oxi-
dative stress, but through methylating non-histone proteins 
(Shen et al., 2015; Wang et al., 2013). At last, H3K23 tri-
methylation (H3K23me3), a novel characterized histone 
modification, is reported to blocks DNA damage in pericen-
tric heterochromatin during meiosis in Tetrahymena 
(Papazyan et al., 2014).  

ACETYLATION 

Histone acetylation has also been extensively studied in the 
context of DNA damage response modulation. It is well- 
known that histone acetylation can influence chromatin 
structure (Shogren-Knaak et al., 2006; Turner et al., 1992). 
On the one hand, acetylation neutralizes the positively 
charged lysine residues, resulting in diminished interaction 
between DNA backbone and histones to facilitate chromatin 
decondensation and enhance the accessibility of nucleoso-
mal DNA (Kouzarides, 2000; Shahbazian and Grunstein, 
2007). On the other hand, it is capable of recruiting chroma-
tin remodelling complex such as SWI/SNF complex to 
modulate the chromatin structure (Lee et al., 2010a). His-
tone acetylation is dynamically regulated by histone acetyl-
transferases and histone deacetylases. Histone acetyltrans-
ferases are responsible for transferring an acetyl group from 
acetyl-coenzyme A to histone lysine residues, while histone 
deacetylases are able to remove the acetyl group of histones 
(Grunstein, 1997). Compared to histone methyltransferas-
es/demethylases, histone acetyltransferases/deacetylases 
don’t exhibit rigid site-specificity. For example, p300/CBP 
acetylate all four nucleosomal core histones equally well, 
and they exhibit multisite acetylation pattern in different 

histones (Roth et al., 2001).  
Many histone acetyltransferases are involved in DNA 

damage response. At first, it is described that histone 
acetyltransferase MOF and its substrate H4K16 acetylation 
is required for IR-induced ATM activation (Gupta et al., 
2005; Smith et al., 2005), ATM-dependent phosphorylation 
of DNA-PKcs (Sharma et al., 2010) and MDC1 recruitment 
(Li et al., 2010), and MOF depletion greatly decreased DNA 
double-strand break repair by both NHEJ and HR (Sharma 
et al., 2010). Interestingly, a recent study reveals that the 
proteasome activator PA200 in mice specifically recognizes 
acetylated H4K16 via its bromodomain-like regions, and 
targets the core histones for acetylation-mediated degrada-
tion by proteasomes in response to DNA double-strand 
break, thus relaxing the chromatin and promoting DNA 
repair (Qian et al., 2013). In addition, human CBP/p300 and 
yeast Rtt109 are responsible for H3K56 acetylation in vivo 
and is required for DNA replication and genome stability 
(Das et al., 2009; Han et al., 2007). It is reported that 
H3K56 acetylation are reduced initially in response to DNA 
damage, followed by full renewal of an acetylated state, and 
H3K56Ac is colocalized with other proteins involved in 
DNA damage signaling pathways such as phospho-ATM, 
CHK2, and p53 at the sites of DNA repair (Battu et al., 
2011; Tjeertes et al., 2009; Vempati et al., 2010). During 
the S phase of cell cycle, H3K56Ac is on the newly synthe-
sized histone H3 that is incorporated into chromosomes 
(Masumoto et al., 2005), and it drives chromatin reassembly 
and checkpoint recovery after DNA repair with the assis-
tance of histone chaperone Asf1 (Chen et al., 2008; Driscoll 
et al., 2007). H3K56Ac abrogation results in sensitivity to 
genotoxic agents that cause DNA strand breaks, genome 
instability and decreased sister chromatid recombination in 
the S phase (Munoz-Galvan et al., 2013; Wurtele et al., 
2012). However, cells proceed into G2 phase after DNA 
replication fork damage repair is completed, and H3K56 
acetylation largely disappears in G2 phase (Masumoto et al., 
2005). In addition to p300/CBP, the acetyltransferase GCN5 
in human cells is also able to acetylate H3K56 (Tjeertes   
et al., 2009), but GCN5 is responsible for H3K9 acetylation 
as well, thus stimulating the recruitment of repair factors in 
the nucleotide excision repair pathway (Guo et al., 2011). 
Moreover, the acetyltransferase Tip60 also plays a role in 
DNA damage response (Ikura et al., 2000). Human Tip60 or 
its yeast homolog Esa1 is recruited to DNA double-strand 
breaks in vivo by H2AX (Bird et al., 2002; Downs et al., 
2004), and it induces acetylation of histones surrounding 
DNA damage sites, thus resulting in chromatin relaxation 
and loading of repair proteins (Murr et al., 2006). Besides 
chromatin relaxation, Tip60-mediated acetylation of phos-
pho-H2Av, H2AX homolog in Drosophila melanogaster, 
induces the exchange of phospho-H2Av with unmodified 
H2Av (Kusch et al., 2004), while Tip60-dependent H4K16 
acetylation diminishes 53BP1 binding to H4K20me2 and 
promotes HR repair (Tang et al., 2013). Tip60 depletion 
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impairs homologous recombination and rendered cells sen-
sitive to cisplatin (House et al., 2014; Miyamoto et al., 
2008; Tang et al., 2013). Furthermore, similar to human 
CBP/p300 or yeast Rtt109, histone acetyltransferase 1 in 
yeast and human cells is also required for the incorporation 
of acetylated H3 at sites of double-strand breaks, and facili-
tates subsequent recruitment of RAD51 to promote efficient 
homologous recombination (Qin and Parthun, 2002; Yang 
et al., 2013).  

Histone deacetylation is also important for DNA repair 
and cell cycle progression. At first, loss of histone deacety-
lase Hdac3 in MEFs causes DNA damage and S phase 
checkpoint activation, indicating that Hdac3 is essential for 
genome stability during DNA replication (Bhaskara et al., 
2008). In addition, in Saccharomyces cerevisiae, Sin3p- 
mediated H4K16 deacetylation is required for 53BP1 bind-
ing to methylated H4K20, thus inducing efficient NHEJ 
repair (Hsiao and Mizzen, 2013; Jazayeri et al., 2004). Ex-
cept for NHEJ, HR also triggers localized histone deacety-
lation by histone deacetylases Rpd3, Sir2, and Hst1 at DNA 
double-strand breaks, and the ability to modulate histone 
acetylation during HR is essential for cell viability (Tamb- 
urini and Tyler, 2005). Moreover, many histone deacetylas-
es are responsible for the removal of H3K56Ac, including 
HDAC1, HDAC2, hSIRT1, hSIRT2, hSIRT3, yHst1, yHst2, 
yHst3 and yHst4p, and sustained H3K56 hyperacetylation 
impedes the completion of DNA repair and increases cell 
sensitivity to DNA-damaging agents (Celic et al., 2006; Das 
et al., 2009; Maas et al., 2006; Miller et al., 2010; Vempati 
et al., 2010). In general, histone acetylation is dynamically 
regulated during DNA repair, and the balance between his-
tone acetyltransferases and histone deacetylases is critical 
for the repair process and genome integrity.  

UBIQUITINATION 

Ubiquitination is a complicated process, in which the con-
served 76-residue polypeptide ubiquitin is covalently con-
jugated to the -amino group of a substrate lysine residue 
(Komander, 2009). It requires the sequential actions of three 
enzymes: an E1 activating enzyme that forms a thiol ester 
with the carboxyl group of G76, an E2 conjugating enzyme 
that transiently carries the activated ubiquitin molecule as a 
thiol ester and an E3 ligase that transfers the activated ubiq-
uitin from the E2 to the substrate (or ubiquitin) lysine resi-
due (Pickart, 2001). Ubiquitination regulates many critical 
cellular functions, mainly by ubiquitin-dependent degrada-
tion of substrates, while histone ubiquitination regulates a 
broad range of DNA related processes (Bennett and Harper, 
2008; Cao and Yan, 2012). For example, histone H2B ubiq-
uitynation interferes with chromatin compaction and leads 
to an open and biochemically accessible fiber conformation 
(Fierz et al., 2011). However, another study showed that 
H2A ubiquitynation prevents RNA polymerase II elonga-
tion-dependent chromatin decondensation, and induces 

transcriptional silencing at regions distal to DSBs (dou-
ble-strand breaks) (Shanbhag et al., 2010). Nevertheless, 
histone ubiquitynation is capable of modulating chromatin 
structure, transcription and DNA damage response. The 
indispensable role of histone ubiquitynation in DNA dam-
age response has been well-recognized nowadays (Messick 
and Greenberg, 2009).  

The first important ubiquitination event in DNA damage 
response is RNF8/RNF168-mediated histone ubiquitination. 
Upon DNA double-strand break or UV radiation, MDC1 
recruits RNF8 through phosphodependent interactions be-
tween the RNF8 forkhead-associated domain and motifs in 
MDC1 that are phosphorylated by ATM (Kolas et al., 2007; 
Mailand et al., 2007; Marteijn et al., 2009). The E3 ligase 
activity of RNF8 is required for the formation of lysine 
63-linked ubiquitin chains at damage sites to induce the 
recruitment of another E3 ligase RNF168, by its ubiquitin 
binding domains (Doil et al., 2009; Stewart et al., 2009). 
RNF168 binds and amplifies ubiquitin conjugates on dam-
aged chromosomes (Campbell et al., 2012; Doil et al., 2009; 
Wang and Elledge, 2007; Wu et al., 2009). MDC1-mediated 
and RNF8/RNF168-excuted ubiquitination occurs at K15 on 
H2A/H2AX, and ubK15 is directly recognized by 53BP1 
(Fradet-Turcotte et al., 2013; Mattiroli et al., 2012). RNF8 
or RNF168 deficient cells display impaired cellular re-
sponses to DNA damage, a defective G2/M checkpoint and 
increased radiosensitivity (Doil et al., 2009; Huen et al., 
2007). In addition to K63 linked ubiquitination, RNF168 
promotes noncanonical K27 linked ubiquitination in vivo 
and in vitro, and this specific ubiquitination is also required 
for the proper activation of the DNA damage response 
(Gatti et al., 2015). Additionally, the polycomb repressive 
complex 1, which contains Bmi1, Ring1, and Ring2, is re-
quired for H2A/H2AX ubiquitination (Bergink et al., 2006; 
Cao et al., 2005). Although the role of Ring1-mediated H2A 
ubiquitination in DNA damage response is not clear, Bmi1 
and Ring2 are recruited to sites of DNA damage where they 
contribute to the monoubiquitylation of H2A/H2AX at 
Lys119/Lys120 (Ginjala et al., 2011; Pan et al., 2011). 
Bmi1/Ring2-dependent H2A/H2AX ubiquitination is criti-
cal for the localization of 53BP1, BRCA1 and other repair 
factors (Facchino et al., 2010; Ismail et al., 2010). Conse-
quently, loss of Bim1 or Ring2 leads to impaired repair of 
double-strand break, G2/M cell cycle arrest and increased 
cellular sensitivity to irradiation or genotoxic agents 
(Chagraoui et al., 2011; Ginjala et al., 2011). However, the 
relationship between H2A/H2AX ubiquitination and 
H2AX is not clear. Moreover, some other ubiquitin E3 
ligases, such as B-lymphoma and BAL-associated protein 
(BBAP) (Yan et al., 2009), RNF20-RNF40 heterodimer 
(Moyal et al., 2011; Nakamura et al., 2011), Cul4-DDB- 
Roc1 (Wang et al., 2006) and checkpoint with forkhead- 
associated (FHA) and RING finger domain protein (CHFR) 
(Liu et al., 2013), have been shown to be involved in his-
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tone ubiquitination in response to DNA damage as well. 
Histone ubiquitination is tightly regulated during the 

cellular response to DNA damage. Firstly, some deubiqui-
tinases are involved in the removal of histone ubiquitina-
tion. For instance, the deubiquitinating enzyme OTUB2 
suppresses RNF8-mediated Lys 63-linked ubiquitin chain 
formation in a deubiquitinating activity-dependent manner. 
Depletion of OTUB2 enhances RNF8-mediated ubiquitina-
tion in an early phase of the DNA damage response, favors 
the accelerated accumulation of 53BP1 and RAP80 at 
DSBs, thus promoting DSB repair by NHEJ (Kato et al., 
2014). Therefore, OTUB2 fine-tunes the speed of RNF8- 
mediated ubiquitination so that the appropriate DNA repair 
pathway is chosen. In addition to OTUB2, other deubiqui-
tinases, such as usp44 (Mosbech et al., 2013), Dub3 
(Delgado-Diaz et al., 2014) and BAP1 (Yu et al., 2014), are 
responsible for the H2A/H2AX deubiquitination as well. 
They might act in concert with the ubiquitin E3 ligases, 
such as RNF8/RNF168 and the PRC1 complex, to promote 
the dynamic ubiquitination/deubiquitination of histones at 
DNA damage sites. Next, it has been demonstrated that 
RNF169, an E3 ubiquitin ligase paralogous to RNF168, 
accumulates at DNA damage foci through direct recognition 
of RNF168-mediated histone ubiquitylation. Therefore, 
RNF169 functionally competes with 53BP1 for association 
with ubiquitinated histones, and impairs the 53BP1 recruit-
ment at sites of DNA damage, resulting in stimulated HR 
and restrained NHEJ (Chen et al., 2012; Poulsen et al., 
2012). Moreover, p400 SWI/SNF ATPase and HERC2 are 
required for RNF8/RNF168-mediated ubiquitination, either 
by destabilization of nucleosomes or by facilitating the as-
sembly of the ubiquitin-conjugating enzyme Ubc13 with 
RNF8 (Bekker-Jensen et al., 2010; Xu et al., 2010). 

OTHERS 

Many other histone modifications are reported to influence 
DNA damage response. At first, the ubiquitin-like protein 
NEDD8 accumulates at DNA damage sites in an E3 ligase 
RNF111-dependent manner, and H4 is polyneddylated at 
the N-terminal lysine residues. H4 neddylation can be rec-
ognized by RNF168, and loss of H4 neddylation impairs the 
localization of RNF168 and its downstream functional 
partners, such as 53BP1 and BRCA1, thus affecting the 
process of DNA repair (Ma et al., 2013). In addition, the 
histone variant H2A.Z, and its SUMO modification, is re-
quired for DNA resection, single DSB-induced checkpoint 
activation, and DSB anchoring to the nuclear periphery 
(Kalocsay et al., 2009). Moreover, it has been demonstrated 
in many studies that histones are covalently modified by 
mono(ADP)-ribose in response to DNA single-strand break 
(Adamietz and Rudolph, 1984; Bohm et al., 1997; Kreim- 
eyer et al., 1984). TbSIR2RP1, a SIR2-related protein from 
the protozoan parasite Trypanosoma brucei, has been shown 
to catalyze the mono(ADP)-ribosylation of histones, partic-

ulary H2A and H2B, and treatment of trypanosomal nuclei 
with a DNA alkylating agent results in a significant increase 
in the level of histone H2A/H2B ADP-ribosylation. Conse-
quently, depletion of TbSIR2RP1 decreased the cellular 
resistance to DNA damage (Garcia-Salcedo et al., 2003). 
However, histone ADP-ribosylation occurs only upon DNA 
single-srand break, and its role in double-strand break repair 
is not clear now.   

CROSSTALKS AMONG HISTONE 
MODIFICATIONS 

There are various crosstalks among different modifications. 
At first, some modifications such as H2AX can serve as a 
platform for other modification factors, and promote the 
formation of some other modifications. In addition, some 
modifications can cooperate with each other to promote 
DNA repair. For example, both H3K36me2 and H3K36me3 
can promote HR, while both H3K79 methylation and 
H4K20 methylation are capable of recruiting 53BP1. In the 
future, with an increasing understanding of the process of 
DNA damage response, much more crosstalks will be dis-
covered.              

CONCLUSION AND FUTURE DIRECTIONS 

Histones are the major protein components of chromatin 
and are subject to many posttranslational modifications, 
especially on their N-terminals. These modifications may 
constitute a “histone code” to modulate many cellular pro-
cesses, such as DNA damage response. DNA damage re-
sponse is a complicated process, in which many factors are 
involved, in order to repair the damaged DNA and maintain 
the genome stability. Although the kinetics of DNA damage 
response has been extensively studied, the exact order of 
histone modifications and other repair factors remains im-
precise. It seems that many histone modifications regulate 
each other’s formation and accumulation, and the intricate 
crosstalk among these modifications renders the study of the 
specific function of a single histone modification more dif-
ficult. However, it is clear that the timing of histone modi-
fications is critical for the chromatin dynamics in the DNA 
damage response and efficient DNA repair. Therefore, it is 
still essential to clarify the exact role of each histone modi-
fication in DNA damage response in future studies. In addi-
tion, a lot of new histone modifications have been described 
recent years, and the functions of these modifications in 
DNA damage response are not clear. It is interesting to 
identify new histone modifications that are involved in 
DNA damage response in the future.  

Considering the importance of histone modifications in 
DNA damage response, they may serve as targets for small 
molecules to interfere DNA repair to increase the radiosen-
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sitivity or chemosensitivity of cancer cells. Actually, HDAC 
inhibitors have already been shown to alter tumor radiosen-
sitivity through the modulation of histone acetylation and 
have been used in cancer treatment (Camphausen and 
Tofilon, 2007). In the future, it is of great value to develop 
drugs targeting histone methylation, ubiquitination and oth-
er histone modifications. Based on the basic research, it is 
promising to cure cancer via combination therapy, which 
contributes to DNA damage and histone modification inter-
ference.     
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