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Long noncoding RNAs (lncRNAs) play important roles in various biological regulatory processes in yeast, mammals, and 
plants. However, no systematic identification of lncRNAs has been reported in Gossypium arboreum. In this study, the 
strand-specific RNA sequencing (ssRNA-seq) of samples from cotton fibers and leaves was performed, and lncRNAs involved 
in fiber initiation and elongation processes were systematically identified and analyzed. We identified 5,996 lncRNAs, of 
which 3,510 and 2,486 can be classified as long intergenic noncoding RNAs (lincRNAs) and natural antisense transcripts 
(lncNAT), respectively. LincRNAs and lncNATs are similar in many aspects, but have some differences in exon number, exon 
length, and transcript length. Expression analysis revealed that 51.9% of lincRNAs and 54.5% of lncNATs transcripts were 
preferentially expressed at one stage of fiber development, and were significantly highly expressed than protein-coding tran-
scripts (21.7%). During the fiber and rapid elongation stages, rapid and dynamic changes in lncRNAs may contribute to fiber 
development in cotton. This work describes a set of lncRNAs that are involved in fiber development. The characterization and 
expression analysis of lncRNAs will facilitate future studies on their roles in fiber development in cotton. 
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INTRODUCTION 

With the development of DNA sequencing technology and 
transcriptome analysis in recent years, the traditional view 
that protein-coding genes are the only effectors of gene 
function has been challenged. Long noncoding RNAs 
(lncRNAs) have been identified as a major component of 
the eukaryotic transcriptomes involved in the regulation of 
important biological processes (Derrien et al., 2012; Fabbri 
and Calin, 2010; Rinn and Chang, 2012; Zhang et al., 
2010). Based on their relative positions with respect to pro-
tein-coding genes, those located in the intergenic regions 
were defined as long intergenic noncoding RNAs (lin-

cRNAs), and long noncoding RNAs that partially over-
lapped with protein coding genes were referred to as natural 
antisense transcripts (lncNATs) (Derrien et al., 2012). Most 
lncRNAs, unlike protein-coding genes, lack sequence con-
servation between species in both plants and animals (Dong 
and Chen, 2013; Necsulea et al., 2014; Zhang et al., 2014). 
LincRNAs in higher eukaryotes might be transcribed by 
RNA polymerase II and processed by both 5′-capping and 
3′-poly(A) additions (Guttman et al., 2009), and like most of 
the protein-coding genes, many contain one or more introns 
(Liu et al., 2012; Ulitsky et al., 2011; Zhu et al., 2013). 
LncRNAs are usually expressed at low levels and often ex-
hibit tissue-specific patterns (Cabili et al., 2011; Rinn and 
Chang, 2012; Zhang et al., 2014), raising the possibility that 
lncRNAs participate in tissue development. LncRNAs, such 
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as Kcnq1ot1, bxd, and HOTAIR, are crucial for the precise 
control of embryogenesis in animals (Rinn et al., 2007; 
Umlauf et al., 2004). A recent study shows that lncRNAs 
may play an important role in de novo protein evolution 
(Ruiz-Orera et al., 2014). In plants, COLDAIR of lincRNA 
might participate in the epigenetic repression of 
FLOWERING LOCUS C (FLC) during vernalization (Heo 
and Sung, 2011), and one of rice lncRNAs has been identi-
fied to play a role in panicle development and fertility 
(Zhang et al., 2014). Long day specific male fertility associated 
RNA in rice was essential to normal pollen development 
under long-day conditions (Ding et al., 2012). In addition, a 
recent study showed that lncRNAs might play an important 
role in protein evolution (Ruiz-Orera et al., 2014).  

With the rapid development in “omics” sequencing tech-
nology, lncRNAs have continued to be located in more 
plant species. In addition to the lncRNAs found in yeast and 
humans (Cabili et al., 2011; Ulitsky et al., 2011), more than 
6,000 lincRNAs have been identified using a reproducibil-
ity-based bioinformatics strategy in Arabidopsis (Liu et al., 
2012). Most recently, 35,268 lncNATs of G. babardense 
were identified and their expression patterns were charac-
terized (Wang et al., 2015). In plant monocots, 2,224 
lncRNAs were identified by strand specific RNA- 
sequencing in rice (Zhang et al., 2014), and 20,163 lin-
cRNAs were identified by integration methods in maize (Li 
et al., 2014b). 

Cotton (Gossypium spp.) is one of the most economically 
important crop plants with approximately 33 million ha 
planted per year worldwide. Its single-celled fiber is the 
principal natural source for the textile industry. Gossypium 
belongs to the Malvaceae family, and it diverged from a 
common ancestor with Theobroma cacao (Li et al., 2015; Li 
et al., 2014a; Wang et al., 2012). Based on the collective 
observations of pairing behavior, chromosome size, and 
relative fertility in interspecific hybrids, eight diploid sub-
genomes, designated as A to G and K, have been found 
across North America, Africa, Asia, and Australia. The 
haploid genome size of diploid cottons (2n=26) varies from 
about 880 Mb (G. raimondii) in the D genome to 2,500 Mb 
in the K genome (Hawkins et al., 2006; Hendrix and 
Stewart, 2005). The tetraploid cotton species (2n=4×=52), 
such as G. hirsutum and G. barbadense, are thought to have 
formed by an allopolyploidization event that occurred ap-
proximately 1–2 million years ago (Chen et al., 2007; 
Sunilkumar et al., 2006). Interestingly, the A genome spe-
cies produce spinnable fibers that are cultivated on a limited 
scale, whereas the D genome species do not. Interestingly, 
the AD genome species can produce more suitable textile 
fibers than the A genome. Due to its excellent genetic and 
genomic resources, cotton is regarded as a good model to 
study genome polyploidization, and cotton fibers are an 
excellent experimental system for studying cell fate deter-
mination, cell elongation, and cell wall formation (Guan and 
Chen, 2013).  

A previous study has completed the genome sequencing 
for cotton D, A, and AD (Cao, 2015; Li et al., 2015; Li et 
al., 2014a; Wang et al., 2012). Previous studies on noncod-
ing RNAs in cotton have been largely limited to small 
RNAs. For example, the microRNAs (miRNAs) involved in 
sterile males and somatic embryogenesis have been identi-
fied in cotton (Gong et al., 2013; Wei et al., 2013), and 
there were 257 novel miRNAs that might relate to cotton 
fiber elongation (Xue et al., 2013). MiR828 and miR858 
play roles in the regulation of fiber development in allotet-
raploid G. hirsutum (Guan et al., 2014). In this study, we 
aimed to identify lncRNAs in the allotetraploid cotton spe-
cies G. arboreum, referring to the complete genome se-
quence and strand specific RNA sequencing. We used nine 
stranded transcriptomic sequences, representing the main 
stages of cotton fiber development, to identify lncRNAs. 
We systematically identified cotton lncRNAs (including 
lincRNAs and antisense lncRNAs) with a specific focus on 
the lncRNAs that were expressed during fiber development. 
The dynamic changes and fiber-specific expression in lnc-
NATs and lincRNAs may contribute to ovule and fiber de-
velopment in cotton. 

RESULTS  

A computational approach for the identification of 
lncRNAs in cotton 

In order to systematically identify lncRNAs related to cot-
ton fiber development, we performed whole transcriptome 
strand-specific RNA sequencing for immature ovules (1 day 
prior to anthesis, 1 DPA), fiber cell initials (on the day of 
anthesis, 0 DPA), young fiber-bearing ovules (1 day 
post-anthesis, 1 DPA), fiber (10, 15 DPA), and leaves in G. 
arboreum. 

By integrating the lncRNA computational identification 
methods (Liu et al., 2012; Zhang et al., 2014), we made a 
cotton lncRNA pipeline based on strand specific RNA-seq 
data (Figure 1) using six whole transcriptome ssRNA-seq 
data sets. All RNA-seq datasets were first mapped to the 
whole genome of G. arboreum in order to reconstruct the 
cotton transcriptome. After filtering out infrequently ex-
pressed transcripts and transcripts that overlapped with 
transposable elements, we identified 43,732 transcription 
units, and 80.0% (32,097/40,134) of the annotated mRNAs 
genes could be recovered. The efficient recovery of anno-
tated protein-coding genes indicated that the dataset used 
was suitable for the recovery of novel transcribed regions of 
the cotton genome. 

We then evaluated the coding potential of the remaining 
transcripts and obtained novel expressed lncRNAs. We used 
the Coding Potential Calculator (CPC) to predict the coding 
potential of each transcript (Kong et al., 2007). All tran-
scripts with CPC scores >0 were discarded. To guarantee 
the thorough elimination of protein-coding transcripts, we  
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Figure 1  A computational pipeline for the systematic identification of 
lncRNAs in cotton. ssRNA-seq, strand specific RNA sequencing. TUs, 
transcription units. TE, transposable elements. CPC, coding potential cal-
culator. HMMER, a software for biosequence analysis using profile hidden 
Markov models. lncNAT, long non-coding natural antisense transcript. ME, 
multiple exon. SE, single exon. 

also employed HMMER (Eddy, 2009) to scan each tran-
script unit in all three reading frames to exclude transcripts 
that encoded any of the known protein domains cataloged in 
the Pfam protein family database (Punta et al., 2011). The 
following criteria were used to provide a strict definition for 
lncRNAs: (i) the transcript length must more than 200 nu-
cleotides, and (ii) the transcript must contain no open read-
ing frame (ORF) encoding more than 50 amino acids. Fi-
nally, the lncRNAs located at least 500 bp away from any 
annotated protein coding genes were defined as lincRNA, 
and the lncRNAs located on the antisense DNA strand and 
complementary to annotated genes were referred to as lnc-
NAT. Ultimately, 3,510 lincRNA loci (Table S1 in Sup-
porting Information) and 2,486 lncNAT loci (Table S2 in 
Supporting Information) were identified. 

The characterization of lncRNAs in G. arboreum 

To display the characteristics of lincRNAs and lncNATs 
more clearly, we analyzed the characteristics of lincRNAs 
and lncNATs separately in the following comparisons. We 
found that only a small fraction (median percentage, 10.8%) 
of the sequence for most of the lncNATs was antisense 
overlapped by protein-coding mRNA (Figure 2A) and that 
lincRNAs and lncNATs were similar in many aspects (Fig-
ure 2). The exon number distribution of lncRNAs showed 
that the G. arboreum genome encoded 74% of single-exonic 
lincRNAs and 72% of single-exonic lncNATs, which are 
significantly higher proportions than those of protein-coding 
transcripts (Figure 2B). Cotton lncRNAs have fewer exons 

 

 

Figure 2  Properties of cotton lncRNAs. A, The proportion of lncNAT sequences overlapped by the annotated protein-coding genes. B, The number of 
exons per transcript for all lincRNAs and lncNATs and annotated protein-coding genes. C, Exon size distributions for lincRNAs, lncNATs and pro-
tein-coding transcripts. D, Transcript size distributions for lincRNAs, lncNATs and protein-coding transcripts. 
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than mRNAs (1.57 compared to 4.61 on average; 1.40 ex-
ons for lincRNAs and 1.82 exons for lncNATs), but their 
exon lengths (median length of 387 nucleotides, 422 nucle-
otides for lincRNAs, and 375 nucleotides for lncNATs) 
were significantly higher than those of mRNA (median 
length of 235 nucleotides) (Figure 2C). The mean transcript 
length of lncRNAs was typically lower than that of pro-
tein-coding genes (average lengths: 586 bp for lincRNAs, 
629 bp for lncNATs and 1,088 bp for protein-coding tran-
scripts) (Figure 2D), and about twice that of Arabidopsis 
(average length of 285 nucleotides) (Amor et al., 2009; 
Zhang et al., 2014). Like the Arabidopsis and rice lncRNA, 
only a small proportion of cotton lncRNAs (81 of 3,510 
lincRNAs, 2.3%; 49 of 2,486 lncNATs, 2.0%) generate 
small regulatory RNAs (sRNAs) (Table S3 in Supporting 
Information), implying that these lncRNAs might function 
through generating sRNAs. 

Expression characterization of cotton lncRNAs in fiber 

The stranded RNA-seq data were used to systematically 
explore lncRNA expression among different fiber develop-
ment stages. We estimated the overall expression level of 
each transcript using reads per kilobase of exon model per 
million (RPKM) and found that the lincRNAs and lncNATs 
were expressed at similar levels (means: 8.12 RPKM for 
lincRNA, 8.27 RPKM for lncNAT, respectively). These 
were significantly lower than the levels at which pro-
tein-coding genes are expressed (median: 24.3 RPKM, both 
P<1×1018, t-test) but higher than the levels at which 
TE-related mRNAs are expressed (median: 4.3 RPKM, both 
P<2.1×1016, t-test) (Figure 3A). This observation is con-
sistent with a previous study (Cabili et al., 2011; Liu et al., 
2012; Zhang et al., 2014). There were 1,092 and 515 lin-
cRNAs with RPKM≥0.5 at the fiber initiation and rapid 
elongation stages, respectively (Tables S4 and S5 in Sup-
porting Information); and 955 and 466 lncNATswith RPKM 
≥0.5 at the fiber initiation and rapid elongation stages, re-
spectively (Tables S6 and S7 in Supporting Information). 
The distribution of lncRNA DEGs was almost identical to 
that of the protein coding genes (Figure 3B and C). 

Based on the Jensen-Shannon (JS) score (Cabili et al., 
2011), the degree of the differential expression of lin-
cRNAs, lncNATs, mRNAs were estimated among fiber 
samples. We found that the distributions of lincRNAs and 
lncNATs were significantly different from protein-coding 
transcripts (Kolmogorov-Smirnov test; P-value<1.47× 
1012; Figure 3D). When a specificity JS score of 0.5 was 
used as a threshold, we found that 51.9% of lincRNAs and 
54.5% of lncNATs transcripts were preferentially expressed 
at one stage of fiber development, much higher than pro-
tein-coding transcripts (21.7%) (Table 1). The differentially 
expressed genes (DEGs) between samples were also de-
tected using the two-fold change criteria and false discovery 
rate (FDR) (corrected P value≤0.001) between samples. 

 
Figure 3  Characterization of cotton lncRNA expression. A, lncRNAs are 
transcribed at lower levels than protein coding genes but at higher levels 
than TE-mRNAs. RPKM, Reads Per Kilobase of exon model per Million. 
B, Volcano plot illustrating the distribution of fold changes and FDR P 
values for lincRNAs. The blue blots show the overall distribution, and the 
red blots represent the DEGs between 0 and 1 DPA samples. C, Volcano 
plot illustrating the distribution of fold changes and FDR P values for 
protein coding genes. The blue blots show the overall distribution, and the 
red blots represent the DEGs between 0 and 1 DPA samples. D, The dis-
tributions of maximal tissue specificity scores (JS scores) calculated for 
lncRNA and protein-coding transcripts of fiber and leaf tissues. E, 
K-means clustering of DEG lincRNAs from the 1, 0, and 1 DPA of fiber 
initiation, and the DEGs were grouped into six groups using the hierar-
chical clustering algorithm. F, K-means clustering of DEG lncNAT from 
the 1, 0, and 1 DPA of fiber initiation. 

For example, there were 880 lincRNAs and 741 lncNATs 
that were identified as DEGs at the fiber initiation stage, 
and these genes were grouped into six clusters using 
K-means for clustering (Figure 3E and F), suggesting dra-
matic changes of lncNRAs during fiber development. 

There were 19 randomly selected tissue-preferentially 
expressed lncRNAs verified by qRT-PCR (Figure 4). We 
found that it was in concordance with the results of  
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Table 1  Numbers of specific expression transcript units (TUs) for fiber and leaf samples. 

TUs type 
TUs numbers of JS scores (0.5) 

Percentage of total expressed TUs
1 DPA 0 DPA 1 DPA 10 DPA 15 DPA Leaf 

lincRNA 203 274 258 162 107 461 51.9 
lncNAT 145 219 174 151 123 234 54.5 
mRNA 376 534 567 438 341 671 21.7 

 

 
Figure 4  Expression of lncRNAs across 10 tissues or fiber developmental stages. 1, 0, and 1 DPA represents the ovules and fiber development stages. 5 
and 10 DPA represent the fiber elongation development stages. 

qRT-PCR and the ssRNA-seq results for most of the studied 
tissues, corroborating the reliability of lncRNA expression 
patterns based on ssRNA-seq data. 

DISCUSSION 

Fiber initiation and rapid elongation stages are crucial steps 
that affect the yield and quality of fiber, and are important 
for cotton because of its applications in agriculture. Over 
the past decade, genetic screens have identified a number of 
genes involved in fiber development (Pang et al., 2010; Qin 
et al., 2007; Qin and Zhu, 2011; Shi et al., 2006; Walford et 
al., 2011; Yan, 2015; Zou et al., 2013); however, the regu-
latory pathways that mediate the differentiation of the ovule 
epidermal and the fiber elongation process are far from be-
ing understood. Although an increasing number of reports 
indicate that lncRNAs function in the regulation of devel-
opment inmammals and plants (Cabili et al., 2011; Liu et 
al., 2012; Ulitsky et al., 2011; Zhang et al., 2014), the iden-
tification of such lncRNAs in plants is in its infancy, and 
few plant lncRNAs have beenclearly identified to play roles 
in regulating plant development processes (Liu et al., 2012; 
Zhang et al., 2014). In this study, we systematically identi-
fied and analyzed cotton lncRNAs to find novel lncRNAs 

associated with fiber development. These data provide a 
good foundation for functional research of lncRNA in cot-
ton fiber development. 

Many pipelines have been reported in lncRNA identifica-
tion (Liu et al., 2012; Wang et al., 2015; Zhang et al., 2014). 
In a previous study of Arabidopsis, the lncRNAs overlap-
ping with TE were removed, and the lncRNAs were heavily 
methylated and kept silent (Fedoroff, 2012). Considering 
the previous study, the higher repetitive DNA sequence 
content (68.5%) of the genome (Li et al., 2014a), and the 
relatively low expression of TE-overlapped lncNRAs were 
filtered out of the transcripts located in the TE regions in 
this study. In addition, since protein domains vary in length 
from between about 25 amino acids up to 500 amino acids 
in length, we assumed that more strict standards should be 
used for the protein coding potential evaluation, and no 
ORF should encode more than 50 amino acids. 

In summary, our current work identified a set of lncRNA 
involved in cotton fiber development using a bioinformatics 
approach, providing a platform for future investigation of 
cotton lncRNA regulation and function in fiber. Future 
work will aim to dissect their biological functions in rela-
tion to cotton fiber development and the genetics underpin-
ning the improved fiber yield and quality. The cis-function 
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model had been recently reported with an intronic ncRNA 
named COLDAIR in plants (Heo and Sung, 2011). In cot-
ton, gene expression is likely to be significantly regulated 
by diverse epigenetic modifications (Chen, 2007), and 
therefore, studies on lncRNAs are imperative, as some 
lncRNAs are probably involved in epigenetic regulation. 
We believe that cotton lncRNA have roles in dosage com-
pensation, imprinting, enhancer function, and transcriptional 
regulation, and have a great impact on fiber development 
(Bonasio and Shiekhattar, 2014).  

MATERIALS AND METHODS  

Plant materials and samples 

G. arboreum SXY1, derived from 18 successive generations 
of self-fertilization, was used for lncRNA analysis. The 
plants were cultivated in a field under normal conditions. 
Ovules and fibers were excised from developing flower 
buds or bolls on selected days post anthesis (DPA). Leaves 
were collected from two-week-old seedlings. The materials 
were quick-frozen in liquid nitrogen and stored at 70°C 
before use. 

Transcriptome detection by RNA-seq 

We sequenced strand specific RNA libraries from plant 
leaves derived from 1 DPA (ovules), 0 DPA (ovules), 
1DPA (ovules), 10 DPA (fibers), 15 DPA (fibers), using 
illumina HiSeq2500 with 101-cycle pair-end sequencing 
protocols. Sequences were aligned to the whole genome of 
G. arboreum by using TopHat2 (Kim et al., 2013). The 
mapped sequences of each sample were assembled by Cuf-
flinks version 2.1.1 with the annotation of G. arboreum as 
the reference (Li et al., 2014a). A non-redundant set of 
transcripts were calculated using cuffcompare (Trapnell et 
al., 2013).  

Analysis for lincRNA identification and expression 

We combined methods provided by Liu et al. and Zhang et 
al. to identify lncRNAs with minor adjustments (Liu et al., 
2012; Zhang et al., 2014). The BEDtools (Quinlan, 2014) 
and in house perl scripts were also used to help the process-
es. The genomic loci of transcripts units (TUs) were com-
pared with those of the annotated protein-coding genes and 
the annotations of TEs. Cleaned reads (≥50 nucleotides in 
length after the quality check) were aligned with G. arbo-
reum reference sequences using Bowtie2. Two mismatches 
were allowed per read. We then used Cufflinks to assess the 
expression level of each gene model using fragments per 
kilobase per million mapped read. 

Quantitative reverse-transcription polymerase chain 
reaction (qRT-PCR) 

A total of 1 to 2 mg of RNA previously treated with DNase 
I (NEB) was reverse transcribed using SuperScript III 

(TaKaRa) and lncRNA specific primer. cDNA was ana-
lyzed by quantitative PCR using SYBR Green Jump-Start 
Taq ReadyMix (Sigma-Aldrich) and the Applied Biosys-
tems 7900HT real-time PCR system. All qRT-PCR reac-
tions were performed in triplicates for each cDNA sample 
with an annealing temperature of 60°C for 40amplification 
cycles. Expression levels were quantified relative to that of 
the housekeeping gene GaUBQ7 (GenBank accession No. 
JZ555258). The comparative cycle threshold method was 
used to quantify relative expression levels of target tran-
scripts. Primer sequences are presented in Table S1. 
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