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Adequate energy storage is essential for sustaining healthy life. Lipid droplet (LD) is the subcellular organelle that stores energy
in the form of neutral lipids and releases fatty acids under energy deficient conditions. Energy storage capacity of LDs is primarily
dependent on the sizes of LDs. Enlargement and growth of LDs is controlled by two molecular pathways: neutral lipid synthesis
and atypical LD fusion. Shrinkage of LDs is mediated by the degradation of neutral lipids under energy demanding conditions
and is controlled by neutral cytosolic lipases and lysosomal acidic lipases. In this review, we summarize recent progress regarding
the regulatory pathways and molecular mechanisms that control the sizes and the energy storage capacity of LDs.
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INTRODUCTION
Energy is essential for life as it can be converted to ATP to
perform meaningful work at an acceptable metabolic cost in
healthy organism. Food, themajor chemical source of energy,
is digested and absorbed through the digestive system. Part
of the energy is stored in cells and can be transformed and
utilized to sustain life under starvation, prolonged physical
activity and stress conditions. Glycogen and triacylglycerol
(TAGs, neutral lipids or fat) are the two major forms of stored
energy in the body. Glycogen is mainly stored in the liver and
muscle. TAG, themost efficient form of energy due to its high
energy density and the hydrophobic characteristics, is mainly
stored in the adipose tissue, whereas small amounts are found
in the liver andmuscle (Herman, 2016). The amount of stored
energy represents the balance between energy intake and en-
ergy expenditure.
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The subcellular organelle responsible for lipid storage is
lipid droplet (LD) that is present in most organisms and cell
types (Murphy, 2012). Adipose tissue is the main tissue
responsible for lipid storage in higher animals. Mammals
mainly possess two types of adipose tissue: white and
brown adipose tissue (WAT and BAT, respectively). White
adipocyte contains a unilocular LD and is the major lipid
storage cell in the body. LD stores excess energy in the
form of TAG and releases free fatty acids (FFAs) by TAG
degradation. Besides being actively involved in lipid storage
and lipid homeostasis, LDs are highly dynamic in the cell by
interacting with many other subcellular organelles including
endoplasmic reticulum (ER), mitochondria, lysosome, endo-
some and autophagosome (Barbosa et al., 2015; Beller et al.,
2010; Fujimoto and Parton, 2011; Murphy et al., 2009; Welte,
2015; Zehmer et al., 2009). The lipid storage capacity of
LDs is determined by its “size” (the volume) and controlled
by the balance beween TAG synthesis and degradation, and
also CIDE (cell death-inducing DFFA (DNA fragmentation
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factor, alpha subunit)-like effector) family proteins mediated
atypical LD fusion. Net increase of cellular or localized TAG
synthesis or CIDE mediated atypical LD fusion promotes LD
growth and expansion. On the contrary, TAG degradation
via cytosol or lysosomal lipase results in the reduction of
LD sizes and lower lipid storage capacity. Regulation of LD
sizes and lipid storage capacity is important in maintaining
normal biological function especially under starvation and
stress conditions. Its deregulation results in the develop-
ment of metabolic diseases including obesity, diabetes, fatty
liver, cardiovascular disease, neurodegenerative disease and
cancer (Filipe and McLauchlan, 2015; Gong et al., 2009;
Gross and Silver, 2014; Krahmer et al., 2013; Liu et al.,
2015; Rutkowski et al., 2015; Saka and Valdivia, 2012;
Suzuki et al., 2011; Xu et al., 2012). This review summarizes
the structure and function of LDs and the main regulatory
pathways and molecular mechanism that control the sizes of
LDs and the lipid storage capacity.

THE STRUCTURE AND FUNCTION OF LDS

LD is composed of a monolayer of phospholipids, a neu-
tral lipid core and various associated proteins (Figure 1).
Lipidomic analyses of isolated LDs from various cell types
reveal that phosphatidylcholine (PC) is the major phos-
pholipid, followed by phosphatidylethanolamine (PE) and
phosphatidylinositol (PI). Small amount of lyso-PC and
lyso-PE, ether-linked form of PC and PE and free cholesterol
has also been detected in LD fraction (Bartz et al., 2007;

Ohsaki et al., 2014; Tauchi-Sato et al., 2002; Walther and
Farese, 2012). Plin1 is the first LD-associated protein iden-
tified in mammalian cells. Since then, many types of LD
associated proteins are identified by various proteomic and
molecular analyses. Majority of the LD-associated proteins
are involved in controlling LD dynamics under different
nutrient conditions and hormone stimulations. The main
components of neutral lipid core in most eukaryotic cells are
TAG and sterol ester (SE). Ribosome, ER-like membrane
and other proteins are also reported in the neutral lipid core
in specific cell types (Robenek et al., 2009; Wan et al., 2007).
The actual structure or organization of the neutral lipid core
remains to be elusive. FFAs released from LDs by TAG
degradation can function as potential ligands for PPARs and
substrates for synthesis of other signal molecules, such as
endocannabinoids and prostaglandins (Zechner et al., 2012).
Neutral lipids stored in LDs also detoxify FFAs and choles-
terols, and as a key reservoir of membrane components and
energy, which confers selective advantages to the organisms.
In eukaryotes, LDs are generated from ER where most of

enzymes for TAG synthesis are localized. Due to the physical
feature, nascent LDs are budded out from ER membrane and
form cytosolic LDs. However, cytosol LDs are observed to
have extensive contacts with ER and LD-ER contacts may
act as a conduit for the lipids and proteins exchange, and may
related to ER stress and ER-assisted degradation (ERAD) of
unfolded proteins (Barbosa et al., 2015; Gao and Goodman,
2015; Jacquier et al., 2011; Kassan et al., 2013; Knoblach and
Rachubinski, 2015; Wilfling et al., 2014). Mitochondria and

Figure 1         The structure and function of LDs. LD is composed of a neutral lipid core, a monolayer phospholipid membrane and its associated surface proteins.
The major components of neutral lipids in mammalian LD are triacylglycerols (TAGs) and sterol esters (SEs). Dysregulated LD homeostasis is closely con-
nected to many pathological conditions and the development of various diseases reactive oxygen species (ROS).
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peroxisome, organelles responsible for lipid oxidation, also
have close association with LDs, and Plin5 has been identi-
fied to mediate the interaction between LD and mitochondria
and may facilitate the transport of FA for oxidative phospho-
rylation with increased energy demand (Gao and Goodman,
2015; Lodhi and Semenkovich, 2014; Mason andWatt, 2015;
Pu et al., 2011; Rambold et al., 2015; Schrader, 2001; Yu et
al., 2015). LDs are also observed surrounding the nucleus or
actually present in the nucleus that may function to store spe-
cific proteins or sequester transcriptional factors (Farese and
Walther, 2016; Welte, 2015). The interaction between LDs
and endosomes also observed and likely regulated by Rab5
(Liu et al., 2007).
Excess or insufficient lipid storage is associated with many

pathological conditions including obesity, insulin resistance,
inflammation, fatty liver diseases, atherosclerosis, neurode-
generative disease, cancer development and viral replication
(Figure 1). As the major tissue for lipid storage, adipose tis-
sue plays a crucial role in controlling lipid homeostasis. It
protects the body from lipotoxity by transforming FFAs into
TAGs, and releases glycerol and FFAs as energy resource for
other tissues during energy limitation. Excessive lipid storage
in adipocytes results in hypoxia, ER stress, insufficient angio-
genesis, increased adipocyte death, high immune cell infiltra-
tion, increased secretion of pro-inflammatory cytokines and
the development of obesity and insulin resistance (Sell et al.,
2012; Ye, 2013). On the other hand, insufficient lipid stor-
age in adipose tissue under lipodystrophic condition leads to
adipocyte lipotoxicity, mitochondrial dysfunction, increased
oxidative stress, inflammatory responses, deregulated release
of free fatty acids and impaired insulin sensitivity (Bindlish
et al., 2015; Frayn, 2001; Grundy, 2015).
Excess lipid storage in the form of cholesterol esters in LDs

of macrophages due to the increased uptake of oxidized low-
density lipoprotein is the major cause of foam cell formation
during the development of atherosclerosis and cardiovascular
disease. Higher lipid storage and increased LD sizes in leuko-
cytes is observed under allergic inflammation and pathogen
infections. Degradation of TAG from LDs in leukocytes by
lipases (Dichlberger et al., 2014; Melo and Weller, 2016)
liberates arachidonic acid (AA) that is further converted to
prostaglandin (PG) by cyclooxygenase (COX) in response
to immuno-activation. LDs are also shown to be associated
with viral assembly of hepatitis C virus (HCV), dengue virus,
bacterial infection, and anti-pathogen infection due to its as-
sociation with Histone proteins and Viperin (Anand et al.,
2012; Camus et al., 2013; Crawford and Desselberger, 2016;
D’Avila et al., 2008; Filipe and McLauchlan, 2015; Hinson
and Cresswell, 2009). Most recent research has demonstrated
that the size of LDs and increased lipid accumulation is asso-
ciated with cancer development and neural degenerative dis-
eases (Baenke et al., 2013; Chen and Li, 2016; Liu et al.,
2015; Qiu et al., 2015).

INCREASED LIPID STORAGE BY THE
GROWTH OF LDS

The sizes of LDs vary drastically in different cell types, re-
flecting their varying lipid storage capacity. The diameters of
LDs in most non-adipose cells range from dozens of nanome-
ters to several micrometers. In white adipocytes that are most
efficient in storing lipids, the diameters of their uniloculars
LD can be easily larger than 100 µm. As unilocular large LD
contains smaller surface area compared with that of multiloc-
ular smaller LDs, it is protected from lipase degradation. Po-
tential difference in phospholipids composition of large LDs
may also contribute to the higher lipid storage capacity than
that of small LDs (Cohen et al., 2015). The sizes and the vol-
ume of LDs are dependent on two major mechanisms: the
growth activity of LDs that is dependent either on the activ-
ity of TAG synthesis or the atypical LD fusion that is medi-
ated by CIDE proteins. Second, it is also dependent on the
rate of TAG degradation that is controlled by cytosolic and
lysosomal lipases. Growth by quick fusion of LDs through
coalescence has also observed in some specific pharmacolog-
ical conditions but its physiological relevance remains to be
solved.

LD GROWTH BY ELEVATED TAG SYNTHESIS

As the core of LDs and the basic energy sources, the amount
of TAG directly determines the size LDs and the amount of
stored lipids. LD growth can occur by local synthesis of
TAGs on LDs (Figure 2A), or by transferring TAG that is syn-
thesized on ER to LDs. TAG is generated by a chain of bio-
chemical reactions using FA as the substrate. Cells can either
uptake FA from extracellular environment or generate FA by
de novo synthesis. Various fatty acid transporting proteins are
responsible for FA uptake and intracellular trafficking. De
novo synthesis of FA is catalyzed by a series of enzymatic
reactions and regulated by key transcriptional factors such
as sterol regulatory element-binding protein-1c (SREBP-1c),
liver X receptor (LXR), and carbohydrate response element
binding protein (ChREBP) (Ferré and Foufelle, 2010; Strable
and Ntambi, 2010).
TAG is synthesized by the addition of FA to glycerol-3

phosphate through the sequential enzymatic reactions cat-
alyzed by glycerol-3-phosphate O-acyltransferase (GPAT),
1-acylglycerol-3-phosphate O-acyltransferase (AGPAT),
phosphatidic acid phosphatase (PAP)/lipin, and diglyceride
acyltransferase (DGAT). Most of these enzymes are local-
ized on ER where TAG is generated and transported to LDs
through unknown mechanism (Kory et al., 2016). Certain
subset of enzymes (ACSL1, ACSL3, ACSL4, GPAT4, AG-
PAT3, Lipin1 and DGAT2) are reported to be specifically
localized to LDs and promote local TAG synthesis and LD
growth (Brasaemle et al., 2004; Fujimoto et al., 2007; Khelef
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Figure 2         Two major mechanisms of LD growth. A, Many enzymes are
localized to LD surface and TAG is synthesized locally to promoted LD
growth. B, Atypical fusion of LDs mediated by CIDE proteins that promote
LD growth and lipid storage. FFA, free fatty acid; LPA, lyso-phosphatidic
acid; PA, phosphatidic acid; DAG, diacylglycerol; TAG, triacylglycerol.

et al., 1998; Kuerschner et al., 2008; Liu et al., 2004; Pol
et al., 2014; Poppelreuther et al., 2012; Stone et al., 2009;
Valdearcos et al., 2011; Wang et al., 2011; Wilfling et al.,
2013). Growth of LD would also require phospholipids to
stabilize the neutral lipid core. CTP:phosphocholine cytidy-
lyltransferase (CCT), a rate-limiting enzyme in phospholipid
synthesis pathway is responsible for the replenishment of
phospholipids during the rapid growth of LDs. Newly syn-
thesized PC may be transferred from ER to LDs by LD-ER
conduit or other unknown pathways. LD growth through
elevated TAG synthesis is a general mechanism for enhanced
energy storage and probably reduced lipotocixity in many
cell types from lower organisms such as yeast, C. elegans,
fly to human (Murphy, 2012).

LD GROWTH PROMOTED BY ATYPICAL
FUSION

Cells (adipocytes, hepatocytes, sebocytes etc.) that contain

large LDs and have high capacity in storing lipids have
adapted a special mechanism to efficiently increase lipid
storage by special form of LD fusion that is mediated by
CIDE proteins. Using genetically modified animal models,
we have found that CIDE family proteins (including Cidea,
Cideb, and Cidec/Fsp27) are important regulators of lipid
storage in the adipocytes, hepatocytes, skin sebocytes and
the mammary epithelia. The development of obesity and
fatty liver diseases have been positively correlated with
their protein levels (Matsusue et al., 2008; Toh et al., 2008;
Xu et al., 2016). On the contrary, CIDEs deficiency leads
to lipodystrophy, insulin resistance, dry skin and newborn
death. In particular, white adipocytes require Cidec/Fsp27
for the formation of unilocular LD since its deficiency results
in the accumulation of multilocular small LDs and markedly
reduced lipid storage (Nishino et al., 2008; Rubio-Cabezas
et al., 2009; Toh et al., 2008). Reduced LD sizes and low
lipid storage is also observed in Cideb deficient hepatocytes,
Cidea deficient skin sebocytes, brown adipocytes and mam-
mary epithelia cells (Li et al., 2007; Wang et al., 2012; Wu et
al., 2014b; Zhang et al., 2014; Zhou et al., 2003).
How do CIDE proteins promote LD growth and increase

lipid storage? We have observed that these proteins are en-
riched and clustered at LD contact sites (LDCS) where they
generate a potential pore (or channel structure) to allow lipid
to exchange among contacted LD pair. The higher internal
pressure in smaller LD will then drive the internal lipid trans-
fer from the smaller LD to the large one to form a larger
LD (Gong et al., 2011). As this process is different from
SNARE-mediated membrane fusion, we define this as atypi-
cal LD fusion (Figure 3). We have further identified several
proteins that interact with Cidec to promote LD fusion and
unilocular LD formation in adipocytes. One of such protein is
Plin1, a LD-associated protein that originally found to protect
LD from lipase digestion. By interacting with the N-terminal
domain of Cidec, Plin1 maintains Cidec in a correct confor-
mation and may stabilize the Cidec fusion complex and in-
crease the efficiency of LD fusion (Sun et al., 2013). We also
identified Rab8a as an important regulator of Cidec-mediated
LD fusion. GTPase-activating proteins AS160 (Akt substrate

Figure 3         Model of CIDE-mediated atypical fusion of LD that includes LD movement; enrichment of CIDEs at LD contact site (LDCS) and stabilization of
CIDE protein complex by Rab8a; formation of fusion pore that is stabilized by Plin1, and initiation of lipid transfer from smaller to larger LDs that is dependent
on internal pressure and other unknown factors; and the final completion of LD fusion and redistribution or recycling of CIDE protein complex.
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of 160 kD) and guanine nucleotide exchange factor MSS4
(mammalian suppressor of Sec4) that modulate Rab8a activ-
ity, are also important in regulating Cidec-mediated atypical
LD fusion (Wu et al., 2014a). In summary, CIDE-mediated
atypical LD fusion and growth can be characterized into a
few steps. First, LDs move quickly in the cell that may de-
pend on microtubule. Second, LDs contact each other and
form a tight junction with the enrichment of CIDE proteins at
the contact site. This step is mediated by CIDE proteins and
regulated by Rab8a. Third, fusion pore is formed and stabi-
lized, and this step is likely dependent on Plin1 in adipocytes.
Fourth, lipid transfer from smaller to larger LDs that is de-
pendent on surface tension and internal pressure of contacted
LD pairs. Finally, when fusion completed, the fusion protein
complex is disassembled and CIDE proteins and its associ-
ated proteins are redistributed on the surface of LDs (Figure
3). In the future, it will be interesting to identify novel fac-
tors in CIDE-mediated LD fusion, characterize the structure
of the fusion complex and delineate the regulatory pathways
that mediate nutrient and hormonal response in CIDE-medi-
ated atypical LD fusion.

THE SHRINKAGE AND DEGRADATION OF
LDS

Another important mechanism to regulate lipid storage and
LD sizes is the degradation of TAG in the neutral lipid core
by lipases to generate FFAs for providing energy substrate
during increased energy demand (endurance exercise) and
energy deprivation (fasting or starve). FFAs released from
TAG degradation are transported intracellularly to mitochon-
dria for oxidation and ATP generation. FFAs released from
WAT enter into the circulation, and uptaken and transported
by various FA binding/transporting proteins for further oxi-
dation in muscle, heart, liver and other tissues. Glycerol, an-
other production of TAG degradation, is released to the cir-
culation and converted to glucose in the liver (Large et al.,
2004; Zechner et al., 2009). There are two well-studied TAG
hydrolysis pathways. First is the direct degradation of TAG
by neutral lipases that binds to LDs. Another is the degra-
dation of TAG in LDs by lysosomal acid lipase (LAL) that
is localized to lysosomes. This pathway requires the deliv-
ery of LDs to lysosome by autophagosomes (Schweiger and
Zechner, 2015; Singh et al., 2009).

LD DEGRADATION BY NEUTRAL LIPASES

Neutral cytosolic lipases responsible for TAG degradation
include adipose triglyceride lipase (ATGL), hormone sensi-
tive lipase (HSL), and monoglyceride lipase (MGL). These
enzymes work step-wise to hydrolyze TAGs from LDs.
ATGL catalyzes the first step of lipolysis by hydrolyzing

TAG and generating FFA and DAG, DAG is successively
hydrolyzed by HSL to liberate FFA and monoacylglycerol
(MAG). Finally, MGL converts MAG to glycerol and FFA.
ATGL has been shown to play a crucial role in animal
survival, organ function, as well as cancer cell growth, and
cachexia (Haemmerle et al., 2006; Zechner, 2015). Human
mutation of ATGL also results in neutral lipid storage disease
with myopathy (Fischer et al., 2007).
Neutral lipase-mediated LD degradation is a complex,

multi-factorial process that is regulated by hormones, cy-
tokines, adipokines and protein-protein interaction (Zechner,
2015; Zechner et al., 2009). The catalytic activity of ATGL
is modified by its interaction with other proteins including
abhydrolase domain containing 5 (ABHD5/CGI-58) and
G0/G1 switch gene 2 (G0S2). Interaction with CGI-58
significantly increases the hydrolase activity of ATGL. In
contrast, when ATGL interacts with G0S2, its enzymatic
activity is strongly inhibited (Lu et al., 2010; Yang et al.,
2010). Under basal condition, Plin1 forms a protective
barrier on LDs, preventing lipases from accessing LDs
(Brasaemle et al., 2000; Martinez-Botas et al., 2000; Tansey
et al., 2001). Plin2 and Plin5 also play similar roles to that
of Plin1 (Kimmel and Sztalryd, 2016; Mason et al., 2014;
Mason and Watt, 2015; Sztalryd and Kimmel, 2014). In
addition, Plin1 interacts with CGI-58, rendering low ATGL
activity in hydrolyze TAG (Lass et al., 2006; Yamaguchi
et al., 2004). HSL is predominantly present in the cytosol
and does not appear to contribute to basal lipolysis (Miyoshi
et al., 2008) (Figure 4A). MGL hydrolyzes MAG that is
produced by ATGL and HSL to generate FFAs and glycerol.
One interesting feature of MGL is that is has no significant
substrate specificity and can be localized to LDs, ER, cyto-
plasm, and the plasma membrane. The activity of ATGL and
MGL is also important in cancer pathogenesis (Nomura et
al., 2010; Zechner, 2015).
Catecholamines (CA) acting on β-adrenergic receptors

(β-AR) is the most potent stimulatory signals for lipoly-
sis (Lafontan and Berlan, 1993). Activation of β-AR by
CA leads to the activation of adenylate cyclase, increased
cAMP levels, and subsequent activation of cAMP-depen-
dent protein kinase-A (PKA) (Collins et al., 2004; Holm,
2003) (Figure 4B). The most well studied PKA substrates in
lipolysis are Plin1 and HSL. When Plin1 is phosphorylated
by PKA, CGI-58 is released from Plin1-CGI-58 complex,
leading to the association between CGI-58 and ATGL, and
high TAG hydrolysis activity (Gandotra et al., 2011; Miyoshi
et al., 2008; Smirnova et al., 2006; Watt and Steinberg,
2008; Zimmermann et al., 2004) (Figure 4B). Plin5 is also
a downstream target of PKA and may play a similar role in
hormone-stimulated lipolysis to that of Plin1 (Macpherson
et al., 2013; Pollak et al., 2015). Phosphorylated Plin1 also
recruit phosphorylated HSL to LDs and modulate its activity

50 Yu, J., et al.   Sci China Life Sci   January (2017)  Vol. 60  No. 1



Figure 4         The regulation of LD degradation by cytosolic lipases under basal (A), hormone or starvation conditions (B) or LD degradation by lysosomal lipases
under starvation condition (C). CA, catecholamine; β-AR, β-adrenergic receptor; Gs, stimulative regulative G-protein.

(Miyoshi et al., 2006; Wang et al., 2009; Watt et al., 2006).
However, the physiological relevance of the post translational
modification of ATGL in controlling lipolysis and lipid stor-
age remains to be controversial. Recent analysis has revealed
that chaperone-mediated autophagy (CMA) may cross talk
with neutral lipase-mediated lipolysis by removing Plin2 and
Plin3 from LD surface and triggering their degradation by
lysosomes through their association with chaperone Hsc70,
resulting in the translocation of ATGL to LD for TAG degra-
dation (Kaushik and Cuervo, 2015) (Figure 4B).

LD DEGRADATION MEDIATED BY
LYSOSOMAL ACIDIC LIPASES

For a long time, lysosomal acidic lipases (LALs) are believed
to be responsible for the degradation of lipid membranes and
exogenous lipoproteins that are taken up by cells and deliv-

ered to lysosome. In 2009, Singh and colleagues found that
under prolonged fasting condition, autophagy plays an im-
portant role in LD degradation by selective uptake and se-
questering of LDs to autophagosome to deliver to lysosome
for degradation (lipophagy) in the liver (Singh et al., 2009).
Since then, lipohagy has been discovered in many cell types
as well as lower organisms such as yeast and fungi (Wang,
2016). The precise mechanism of lipophagy activation in par-
ticular how autophagosome specifically recognizes LDs is not
clear and remains a hot debate. As LC3-I, LC3-II and several
regulatory proteins in autophagic pathways are found to be
enriched in LDs, these proteins may play a role in lipophagy
activation (Singh et al., 2009) (Figure 4C). Rab7, a small GT-
Pase, has also shown to associate with LDs in starved hep-
atocytes and may be important for autophagy-mediated LD
degradation (Schroeder et al., 2015). In addition, crosstalk
between autophagic- and neutral lipase-mediate LD degrada-
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tion has been demonstrated as PNPLA5, a lipase that is local-
ized to LDs, is required for efficient autophagy by likely sup-
plying FAs for phospholipid production during autophagic
progression (Dupont et al., 2014).

OTHER IMPORTANT FACTORS
CONTROLLING LD SIZES AND LIPID
STORAGE

In addition to the above mentioned LD growth and degra-
dation pathways, the sizes of LDs and the intracellular lipid
storage capacity are regulated by several other factors includ-
ing Seipin, Pnpla3, Hsd17b13, Cavin and Ces1 (Bi et al.,
2014; Cai et al., 2015; Cartwright et al., 2015; Grippa et
al., 2015; Han et al., 2015; Romeo et al., 2008; Su et al.,
2014; Szymanski et al., 2007; Wang et al., 2016; Wolinski et
al., 2015). Seipin is originally discovered due to its mutation
in severe congenital generalized lipodystrophy (Magré et al.,
2001). Fld1, a homolog of Seipin in yeast, controls LD sizes
as its deficiency results in the accumulation of “supersized”
LDs (Fei et al., 2008; Szymanski et al., 2007). Seipin ho-
molog in fly also plays a conserved role in controlling lipid
storage and LD sizes (Tian et al., 2011). Seipin is an ER-asso-
ciated protein that may function to control localized PA pro-
duction, Ca2+homeostasis as well as mediate ER-LD contact
(Bi et al., 2014; Cartwright andGoodman, 2012; Grippa et al.,
2015; Han et al., 2015; Wolinski et al., 2015). Most recent re-
search byWang, et al. has indicated that Seipin forms discrete
foci on ER to control nascent LD growth (Wang et al., 2016).
Genetic or proteomic screening of human fatty liver patients
leads to the identification of Pnpla3 and Hsd17b13 that are
correlated with the development of liver steatosis (Chamoun
et al., 2013; Romeo et al., 2008; Su et al., 2014). Interest-
ingly, adipocyte is one of the most caveolae-enriched cell
types and loss of caveolae leads to lipodystrophic phenotype
in humans. Recent analysis shows that caveolae may partici-
pate in adipocyte response to mechanotension and lipid store
fluctuation (Dwianingsih et al., 2010; Shastry et al., 2010).
Regulatory factors such as PPARgamma and AKT can also
regulate lipolysis and lipid storage in adipocytes (Krahmer et
al., 2013).

CONCLUSION AND FUTURE PERSPECTIVES

Sustainable energy supply is critical for survival under
adverse conditions such as fasting, prolonged exercise
and stress. On the contrary, excess energy storage due to
increased energy uptake and reduced energy expenditure
results in the development of metabolic disorders including
obesity, diabetes and fatty liver disease. LDs are the subcel-
lular organelles responsible for energy storage. The sizes and
number of LDs reflect the energy storage capacity and are
regulated by many biological processes including localized

TAG synthesis, atypical LD fusion and LD degradation me-
diated by neutral lipases and autophagy mediated lysosomal
acidic lipases. Coordinated regulation of lipid metabolism,
glucose metabolism, mitochondrial activity, FA oxidation,
ER and Golgi activity are also important in regulating lipid
storage. In addition, nutrient response, hormonal stimulation
and other environmental factors may also contribute to the
intracellular LD sizes and lipid storage.
Therapeutical strategies targeting to lipid storage pathway

in controlling the development of metabolic disorders were
initiated many years ago and significant progress have been
made in the identification of compounds or molecules that
control the activation of metabolic consumption of lipids by
increasing mitochondrial FA oxidaiton, reducing lipid uptake
and synthesis and enhancing lipase activity. Our in-depth un-
derstanding of the molecular mechanism of lipid storage reg-
ulation would provide novel therapeutical approaches for the
development of effective tools for combating lipid storage re-
lated diseases.
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