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Tomas Lindahl contributed his scientific career to unveiling 
fundamental mechanisms of DNA decay and repair. He 
made several ground-breaking discoveries on genome in-
stability, novel DNA repair activities and pathways, and 
disease association. 

The 2015 Nobel Prize in Chemistry was awarded jointly 
to Tomas Lindahl, Paul Modrich and Aziz Sancar for their 
mechanistic studies of DNA repair. Their findings were 
affirmed to have “enormous consequences” that have led to 
insights in cancer treatments.  

Tomas Lindahl is an admirable scientist with great 
achievement on fundamental mechanisms of DNA decay 
and DNA repair in the fields of cancer therapy, inherited 
human genetic disorders and ancient DNA. He started his 
scientific career at Karolinska Institute where he completed 
his PhD work in 1967. Before he obtained his ground- 
breaking achievements on DNA repair, Tomas Lindahl had 
been focusing, also made great discoveries, on Epstein-Barr 
virus studies in his first research decade. He initially ob-
served non-integrated covalently-closed circles of Ep-
stein-Barr virus genome and pointed out the essentiality of 
Epstein-Barr virus DNA in cancer cell lines (Adams and 
Lindahl, 1975; Kaschka-Dierich et al., 1976). He then iden-
tified several sequence variants of the Epstein-Barr virus 

DNA (Rymo et al., 1979). The finding has been surprisingly 
applied and extended into the cancer progression studies 
until nowadays (Lee et al., 2015; Liang et al., 2015; Traylen 
et al., 2015). For instance, Epstein-Barr virus DNA has been 
used to diagnose chronic lymphocytic leukemia (Liang et 
al., 2015). 

In 1978, Tomas Lindahl became a professor at the Uni-
versity of Gothenburg in Sweden after his postdoctoral 
training was completed at Princeton University and the 
Rockefeller University in the USA. Since then, his work 
was dedicated to characterize and quantify spontaneous 
endogenous DNA damage and repair (Breimer and Lindahl, 
1980; Breimer and Lindahl, 1984, 1985a, 1985b; Chetsanga 
and Lindahl, 1979; Franklin and Lindahl, 1988; Harris et 
al., 1983; Karam et al., 1990; Karran and Lindahl, 1980, 
1985; Karran et al., 1979; Lehmann et al., 1988; Lindahl, 
1972, 1976, 1987, 1990; Lindahl and Wood, 1989; Rydberg 
and Lindahl, 1982; Teo et al., 1984, 1986; Wood et al., 
1988). DNA is the genetic material that carries all of our 
genetic information and in the early 1970s, it was generally 
believed to be an extremely stable molecule. This was chal-
lenged by Tomas Lindahl’s studies. From the 1970s to 
1980s, he demonstrated that DNA has limited chemical sta-
bility and would decay quickly because of spontaneous 
changes, radiation, free radicals and carcinogenic substanc-
es (Lindahl, 1993). He demonstrated that over thousands of 
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potentially mutagenic and cytotoxic changes challenged the 
DNA on a daily basis in a single human cell. These DNA 
lesions are generated during the biological processes of hy-
drolytic depurination, deamination of cytosine residues, 
oxidation of guanine and pyrimidine residues and methyla-
tion of adenine residues to 3-methyladenine etc. (Lindahl, 
2013). In order to avoid DNA disintegrating, there must be 
some DNA repair enzymes and mechanisms that could 
counteract those amounts of DNA damages. Therefore, 
Tomas Lindahl started to focus on DNA repair mechanisms 
since then. He published a very important review “Instabil-
ity and decay of the primary structure of DNA” in Nature in 
1993 to discuss DNA damaging and repairing processes 
(Lindahl, 1993). All the findings of his research have laid 
the foundation for cancer research and human genetic dis-
orders in present scientific studies (Santos, 2015; Tokarz et 
al., 2015; Wang, 2015). 

Tomas Lindahl’s most outstanding contribution to ‘The 
Cell’s Toolbox for DNA Repair’ was to observe the base 
excision-repair (BER) pathway, which is an endogenous 
mechanism responsible for removing small, non-helix- 

distorting base lesions from the genome and thus repairing 
the DNA damage (Lindahl, 1979). He also identified several 
DNA repair enzymes with previously-unknown modes of 
action in BER (Figure 1), including DNA glycosylases 
(Figure 1A-I), AP endonucleases (Figure 1A-II), the 
O6-methylguanine-DNA methylatransferase (Figure 1B) 
and the AlkB family of DNA dioxygenases (Figure 1C) 
(Breimer and Lindahl, 1980, 1985a; Lindahl, 1979; 
Ljungguist and Lindahl, 1974; Ljungguist et al., 1974, 1975, 
1976; Demple et al., 1982; Harris et al., 1983; Karran et al., 
1979; McCarthy and Lindahl, 1985; Olsson and Lindahl, 
1980; Teo et al., 1984; Duncan et al., 2002; Kolvisto et al., 
2003; Sedgwick et al., 2006, 2007 Trewick et al., 2002). 
The AlkB repair mechanism was later shown to have fun-
damental importance for histone demethylation, 5-methylC 
hydroxylation and reversible RNA methylation (Figure 1D) 
(Jia et al., 2011; Zheng et al., 2013). 

In addition, Tomas Lindahl’s group characterized two of 
the major DNA specific exonucleases, TREX1 and FEN1, 
in mammalian cell nuclei (Figure 1A-III, 1E). TREX1 is a 
3′ to 5′ exonuclease and FEN1 is a 5′ to 3′ exonuclease.    

 

 
Figure 1 (color online)  Overview of mechanistic models for enzymatic reactions (Lindahl, 2013) A, DNA glycosylases catalyze the cleavage of base-sugar 
bonds (I); AP endonucleases incise double-stranded DNA at base-free sugar-phosphate residues (II); FEN1 removes overhangs and flaps from DNA (III) and 
eukaryotic DNA ligases ligate DNA ends (IV). B, O6-methylguanine-DNA methyltransferase (MGMT) irreversibly transfers a promutagenic methyl group 
from alkylated DNA to a specific cysteine residue in the transferase itself. C, DNA dioxygenases remove certain cytotoxic methyl groups from alkylated 
base residues by oxidative demethylation in the presence of iron and oxoglutarate. D, FTO and ALKBH5 demethylate RNA m6A as a novel epigenetic 
marker in α-ketoglutarate (α-KG) and Fe2+-dependent manner. E, TREX1 is a 3′ to 5′ exonuclease with preference for single-stranded DNA (Courtesy from 
Lindahl (2013)).  
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Both are also the DNA repair factors able to remove over-
hangs and flaps from DNA (Klungland and Lindahl, 1997; 
Sanderson and Lindahl, 2002). After Tomas Lindahl pub-
lished his works on TREX1 and FEN1, studies on these two 
DNA repair factors have been continued. For instance, a 
form of inherited systemic lupus erythematosus in human 
cells, called Aicardi-Goutieres syndrome, was found to be 
caused by the loss of TREX1(Crow et al., 2006). More re-
cent studies showed an accumulation of single-strand DNA 
and persistent checkpoint activation in TREX1-negative 
cells (Yang et al., 2007).  

Tomas Lindahl completed numerous pioneering works 
on DNA repair. Many of his collaborators took part in these 
works. In 1990, together with a senior postdoctoral fellow, 
Dr. Rick Wood, they established a human cell-free system 
for ATP-dependent nucleotide excision repair (Hansson et 
al., 1990). In collaboration with Dr. Lee Johnston, the hu-
man DNA ligase I cDNA was cloned and sequenced 
(Barnes et al., 1990). This enzyme functions in DNA repli-
cation and repair. Moreover, in 2001, a complex and chem-
ically-stable oxidative DNA lesion, cyclopurine deoxynu-
cleoside, was identified by Tomas Lindahl and Jean Cadet 
(Kuraokam et al., 2001). They determined that this DNA 
lesion could be exclusively repaired by nucleotide excision 
repair in contrast to other oxidative DNA lesions 
(Kuraokam et al., 2001). All of these works have a vital 
elicitation role for the studies in other biological fields.  
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