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Lymphomas of mucosa-associated lymphoid tissue (MALT) are typically present at sites such as the stomach, lung or urinary 
tract, where lymphoid tissues scatter in mucosa lamina propria, intra- or sub-epithelial cells. The infection of certain pathogens, 
such as Helicobacter pylori, Chlamydophila psittaci, Borrelia burgdorferi, hepatitis C virus, or certain autoantigens cause 
these sites to generate a germinal center called the “acquired lymphoid tissue”. The molecular pathogenesis of MALT lym-
phoma is a multi-step process. Receptor signaling, such as the contact stimulation of B cell receptors and CD4 positive T cells 
mediated by CD40/CD40-ligand and T helper cell type 2 cytokines like interleukin-4, contributes to tumor cell proliferation. A 
number of genetic alterations have been identified in MALT lymphoma, and among them are important translocations, such as 
t(11;18)(q21;q21), t(1;14)(p22;q32), t(14;18)(q32;q21) and t(3;14)(p13;q32). Fusion proteins generated by these translocations 
share the same NF-B signaling pathway, which is activated by the caspase activation and recruitment domain containing 
molecules of the membrane associated guanylate kinase family, B cell lymphoma-10 and MALT1 (CBM) protein complex. 
They act downstream of cell surface receptors, such as B cell receptors, T cell receptors, B cell activating factors and Toll-like 
receptors, and participate in the biological process of MALT lymphoma. The discovery of therapeutic drugs that exclusively 
inhibit the antigen receptor signaling pathway will be beneficial for the treatment of B cell lymphomas in the future. 
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Marginal zone lymphomas (MZLs) originate from the mar-
ginal zone and are categorized into three subtypes according 
to the World Health Organization (WHO) classification, 
including splenic MZL, extranodal MZL of muco-
sa-associated lymphoid tissue (MALT) type and nodal MZL. 
Among them, the MALT lymphoma accounts for 8% of the 
non-Hodgkin’s lymphomas.  

MALT usually refers to an organized lymphoid tissue 
with a germinal center, such as the tonsils, intestinal Peyer’s 
patches (or aggregated lymphoid nodules), the appendix. In 
addition, the gastric, respiratory and urinary tract (lymphoid 

tissue without capsule, scatter in mucosa lamina propria, 
intra- or sub-epithelial cells) also account for a proportion 
of MALT. MALT plays an important role in the resistance 
of the mucosal immune system to external microbial inva-
sions. However, due to the constant stimulation of certain 
antigens, the intra-epithelial, lamina propria and 
sub-epithelial lymphocytes of the extranodal organs gener-
ate a germinal center, which is also called “acquired lym-
phoid tissue” [1]. Consequently, further genetic alterations 
promote tumor formation. 

Infections of certain pathogens are more common in 
MALT, such as Helicobacter pylori (Hp), Chlamydophila 
psittaci (Cp), Borrelia burgdorferi, hepatitis C virus (HCV), 
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or autoimmune responses of autoantigens. Low-grade 
MALT lymphomas always exhibit an indolent feature and 
progress slowly, and the use of antibiotics to eliminate cer-
tain pathogens, such as Hp, leads to the complete or partial 
regression of low-grade gastric MALT lymphomas in  
approximately 70% of cases, as determined by echoendos-
copy [2]. Currently, some genetic abnormalities, such as 
chromosomal translocations, were found in MALT lym-
phomas, and the characteristics of the fusion proteins en-
coded by these genes, such as apoptosis inhibitor 2 (API2), 
also called baculoviral inhibitor apoptosis protein repeat 
containing 3(BIRC-3), forming fusion protein API2/ 
BIRC3-MALT1, were found to be associated with antibiotic 
refractory (such as Hp eradication therapy) and high-grade 
transformation [3]. Most of the fusion proteins generated by 
chromosomal translocation participate in the activation of 
the signaling of nuclear factor  light chain enhancer of 
activated B cell (NF-B) [4], a protein complex that plays 
an important role in the immune response to infection. Ac-
tivation of the NF-B signaling pathway of MALT lym-
phomas leads to the proliferation of tumor B cells without 
the help of the B cell receptor (BCR). In this review, we 
summarize recent advances in the study of the molecular 
pathogenesis of MALT lymphoma.  

1  Strain-specific or autoantigen-driven selec-
tion 

1.1  Helicobacter pylori 

Currently, a large number of studies ranging from epidemi-
ologic and biological to molecular and genetic studies have 
supported a causative role of Hp in the pathogenesis of gas-
tric MALT lymphoma [5–7]. Hp, a spiral microaerophilic 
bacterium, indirectly induces the proliferation of low-grade 
B cells in gastric MALT lymphoma, and this effect is site- 
and strain-specific. Most strains of Hp possess the cytotox-
in-associated antigen (Cag A), a 120–145 kilodalton protein. 
Recently, Ye et al. [8] found that Cag A was highly associ-
ated with the MALT lymphoma harboring t(11;18) 
(q21;q21), which exhibits advanced inflammation and the 
production of certain chemokines in the tumor microenvi-
ronment. Other investigators provided evidence that Cag A 
can reverse the effect of the drug hydroxyurea by inhibiting 
P53 accumulation, which leads to B cell proliferation with-
out the control of programmed cell death [9,10].  

1.2  Other microorganisms  

Other microorganisms associated with MALT lymphoma 
include Cp, which is found in ocular adnexa MALT lym-
phoma (OAMZL) [11,12], and Borrelia burgdorferi in cu-
taneous MALT lymphomas [13–15]. Molecular analysis 
showed that at an early stage in OAMZL, Cp is able to 
cross-react with self-antigens and promotes inflammation in 

the tumor microenvironment. With the progression of this 
disease, autoantigens are presented and eventually promote 
the proliferation and expansion of self-reactive B cells, 
which are independent of the support from the tumor mi-
croenvironment [16]. The fact that using antiviral therapy 
for HCV-related B-cell non-Hodgkin’s lymphoma (B-NHL) 
can lead to partial or complete regression, elucidating a 
cause and effect relationship between HCV infection and 
the development of lymphoma. Hepatitis C virus infections 
are documented in half of the patients with gastric MZL [17] 
and one-third of the patients with non-gastric MALT lym-
phoma [18]. The continuous stimulation of viral antigens 
and intracellular replication of the HCV virus could cause 
permanent B-cell damage and is proposed to be the  
main determinant of the pathogenesis of HCV-related  
B-NHL [19].  

1.3  Autoantigens 

Patients with autoimmune diseases are prone to suffer from 
MALT lymphomas. Sjögren’s Syndrome (SS) patients ex-
hibit a 44-fold increased risk of developing a MALT lym-
phoma in the parotid gland [20], while patients with Hash-
imoto’s thyroiditis have a 3-fold higher risk of developing 
lymphoma [21]. The presence of antigen-selective pressure 
was demonstrated by the analysis of variable part mutations 
in the immunoglobulin heavy chain (VH) gene. Preferential 
use of VH1, VH3 and VH4 family genes and the ongoing mu-
tations in the IgH gene observed in MALT lymphomas im-
ply the production of autoantibodies [22] and the role of 
certain antigenic stimulations in the clonal expansion of 
tumor cells [23,24]. 

2  Receptor signaling leading to monoclonal B 
lymphocytes proliferation  

2.1  Contact stimulation of BCRs and CD4+T cells me-
diated by CD40/CD40L and T helper cell type 2 cyto-
kines 

The molecular pathogenesis of MALT lymphoma is a mul-
tistep process, starting with the infection of microorganisms. 
Accumulating evidence reveals that Hp does not directly 
stimulate the proliferation of B cell lymphomas. Previous 
studies by Hussell et al. [25] found that removing tu-
mor-infiltrating T cells before the experiment or adding 
anti-CD40L to the Hp strain, which stimulates MALT lym-
phoma in cell culture, blocks all of the effects of Hp on tu-
mor B cells. Therefore, they concluded that the proliferative 
responses of tumor B cells rely on contact-dependent help 
from Hp-specific T cells via the CD40-CD40L interaction. 
However, this conclusion is under debate. The study by 
Craig et al. [26] found that depleting CD40L+ cells from the 
cultures and blocking the direct interaction between CD40L 
and its receptor did not abrogate tumor cell proliferation. 
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Additionally, increased levels of immunoglobulin and in-
terleukin (IL)-2 were shown in response to bacterial stimu-
lation. Tumor B cell proliferation was dramatically en-
hanced in the presence of tumor-infiltrating CD4+T cells, 
which produced large quantities of T helper cell type 2 (Th2) 
cytokines, such as IL-4. All of these observations suggest 
that interleukins play a role in the proliferation of tumor B 
cells and that soluble activated T cell-derived signals are 
more important than direct interactions between the cell 
types for the induction of tumor B-cell proliferation [26]. 

2.2  Regulatory T cells—highly suppressive to effector 
T cells and essential for tumor B-cell proliferation 

Increasing evidence shows that the regulatory T cells (Tregs) 
play a role in MALT lymphoma [27,28]. Immunohisto-
chemical staining of FoxP3 in human low-grade gastric 
MALT lymphoma showed that FoxP3+ Tregs heavily infil-
trated tumor tissue [26]. Patients with a higher number of 
tumor cells with infiltrating Foxp3+ showed a favorable 
prognosis due to better responses to antibiotics [29]. Craig 
et al. [26] conducted a transwell migration assay to observe 
the migration of Tregs toward supernatants of cultures that 
had been induced to proliferate by adding Helicobacter ex-
tract. This chemo-attraction process of Tregs was main-
tained, at least partially, in pure B cell cultures and is ap-
proximately proportional to their level of proliferation. 
However, the depletion of total CD4+, CD40L+ or CD25+ T 
cells prevented tumor cells from proliferation [26].  

2.3  Toll-like and B-cell activating factor receptors 

Bacterial ligands and some autoantigens recognized by 
Toll-like receptors (TLRs) activate the release of proin-
flammatory cytokines and chemokines that trigger the pro-
liferation of B cells. A study by Adam et al. [30] showed 
that gastric MALT lymphoma exclusively express TLR4, 
which enables the tumor to interact with Hp and autoanti-
gens. B-cell activating factor (BAFF), is part of the tumor 
necrosis factor ligand family and plays an important role in 
the proliferation and differentiation of B cells [31]. In the 
case of SS, the overexpression of BAFF causes excessive 
immunoglobulin production and exerts a sustained stimula-
tion of B cell proliferation, leading to the production of au-
toantibody-producing plasma cells [32].  

3  The microenvironment of “acquired lym-
phoid tissue” 

In addition to the contact stimulation of BCRs and CD4+ T 
cells mediated by CD40/CD40L and Th2 cytokines induced 
by certain pathogens or autoantigens, another important 
component of the “acquired lymphoid tissue” are the neu-
trophils [33]. Certain pathogens, such as Hp, recruits neu-

trophils and promotes reactive oxygen species (ROS) [34]. 
The presence of excessive ROS can cause fatal cellular le-
sions by damaging cellular proteins, lipids and DNA [35]. 
ROS are associated with various transcription factors, such 
as NF-B[36], activator protein-1 (AP-1) [37], hypoxia- 
inducible factor-1 [38] and signal transducer and activator 
of transcription 3 (STAT3) [39], which are involved in in-
flammation, cellular transformation and tumor biology. 
Furthermore, ROS also control the expression of various 
tumor suppressor genes, such as phosphatase and tensin 
homolog (PTEN) [40]. Other studies showed that nicotina-
mide adenine dinucleotide phosphate oxide 2 (NOX2), a 
product of ROS, is overexpressed in gastric MALT com-
pared to patients with gastritis [41]. This implies that ROS 
participate in the formation of the “acquired lymphoid tis-
sue”. Another component of the “acquired lymphoid tissue” 
is the lymphoma-associated macrophages that release a pro-
liferation inducing ligand (APRIL), which promotes the 
progression of Hp-associated MALT lymphoma [42,43]. 
With the help of Hp-specific T-cells, this phenomenon 
could be further amplified and prolonged [43]. Finally, the 
up-regulation of certain chemokines, such as C-C chemo-
kine receptor type 7 (CCR7), CXC chemokine receptor 
(CXCR)3, CXCR7 and Chemokine C-X-C motif ligand 12 
(CXCL12), as well the down-regulation of CXCR4, are 
found in gastric MALT lymphoma, which indicates that 
chemokines also play an important role in disease progres-
sion (Figure 1) [44,45]. 

4  Genetic abnormalities in MALT lymphomas 

4.1  Chromosomal translocation and its fusion protein 

A number of genetic alterations have been identified in 
MALT lymphomas. These abnormalities include aneuploidy, 
such as trisomy 3,7,12 and 18, and a number of chromoso-
mal translocations, such as t(11;18)(q21;q21),t(1;14) 
(p22;q32), t(14;18)(q32;q21) and t(3;14)(p13;q32). Other 
abnormalities include point mutations in the c-Myc onco-
gene [46], loss of heterozygosity in the P53 gene [47], so-
matic mutation of Fas/CD95 [48], and CpG island hy-
per-methylation [49].  

4.1.1  t(11;18)(q21;q21)—API2(BIRC3)-MALT1 

t(11;18)(q21;q21) is mostly seen in gastric MALT lym-
phoma. The API2 gene is located at 11q21, and the MALT1 
gene is located at 18q21. The full-length protein product of 
API2, also called BIRC3, belongs to the inhibitor apoptosis 
protein (IAP) family and inhibits the biological activity of 
caspases 3, 7 and 9 [50,51]. API2-MALT1 is comprised of 
the N-terminal API2 region with three intact baculovirus 
inhibitors of apoptosis protein repeat domains (BIR) and an 
intact caspase-like domain in the C-terminal MALT1 region 
(Figure 2). API2-MALT1 is significantly associated with 
infections of the Cag A-positive strains of Hp and induces   
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Figure 1 (color online)  Microenvironment of the “acquired lymphoid tissue”. The infection of certain pathogens or autoantigens induce chronic inflamma-
tion by attracting T-cells, B-cells, regulatory T-cells, neutrophils, macrophages, cytokines and chemokines. 

 

Figure 2 (color online)  Structure of the API2, MALT1, Bcl-10 and CARMA. API2 gene comprises three BIR, a CARD motif and a C-terminal 
zinc-binding RING-finger domain; MALT1 gene comprises an N-terminal death domain (DD), two immunoglobulin-like domains (Ig-I) and a caspase-like 
domain; Bcl-10 encodes a CARD motif and a Ser/Thr-rich carboxylterminus; CARMA1/2/3 comprises the PSD-95/Dig/Z0-1 homologous (PDZ) domain, 
the Src-homology (SH3) domain, the guanylate kinase (GUK)-like domain, the coiled coil (CC) domain and an N-terminal CARD. 

the release of IL-8 to activate neutrophils and ROS [8]. And 
this translocation exhibits more resistance to antibiotic 
treatments than other translocation types [3,52]. API2- 
MALT1 deregulates MALT1 ubiquitin ligase activity, 
causing the constitutive activation of NF-B and promoting 
tumorigenesis [53]. It is thought that the presence of this 
translocation is not related to the transformation of MALT 
lymphoma into gastric diffuse large B-cell lymphoma 
(DLBCL) because no frequency difference was found be-
tween these two diseases [54]. 

4.1.2  t(1;14)(p22;q32)—IGH-Bcl-10 

MALT lymphomas that harbor t(1;14)(p22;q32) tend to be 
associated with advanced stages of the disease [55]. Trans-
location to chromosome 14 brings Bcl-10 under the control 

of IGH-gene enhancer, which results in the nuclear overex-
pression of Bcl-10 [56]. Wild-type Bcl-10 is believed to 
promote proliferation rather than apoptosis [57]. It encodes 
an intracellular protein of 233 amino acids, characterized by 
an amino-terminal caspase activation and recruitment do-
main (CARD) motif and a Ser/Thr-rich carboxyl terminus 
of unknown function (Figure 2).  

4.1.3  t(14;18)(q32;q21)—IGH-MALT1 

Translocation of t(14;18)(q32;q21) always occurs outside 
the gastrointestinal or pulmonary tract, in the ocular adnexa, 
skin, liver or salivary glands [58–60]. This type of translo-
cation is mainly associated with autoantigens rather than 
infectious agents. Similar to t(1;14)(q22;q32), the MALT1 
gene is controlled by IGH, which leads to the overexpres-
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sion of MALT1. In vitro and in vivo experiments have 
shown that MALT1 is associated with Bcl-10 in the en-
hancement of NF-B activation in both B and T cells, sug-
gesting that these proteins might function together in the 
same signaling pathway [61]. 

4.1.4  t(3;14)(p13;q32)—IGH-FoxP1 

The FoxP1 gene is located at 3p13 and codes for a member 
of the forkhead box (FOX) family of transcription factors. It 
contains a common DNA-binding winged helix or fork-
head-domain and N-terminal zinc-finger and leucine-zipper 
domains [62]. Spontaneous mutations in these regions are 
related to various congenital disorders; additionally, FOX 
transcription factors play a role in carcinogenesis via retro-
viral integration, transcriptional regulation, chromosomal 
translocation and gene amplification [63]. Recently, FoxP1 
was found to be expressed in lymphoid tissue. Similar to 
t(1;14)(q22;q32), t(3;14)(p13;q32) leads to the overexpres-
sion of MALT1. However, the significance of FoxP1 over-
expression in lymphomas is controversial. One study found 
nuclear FoxP1-positive cells to be confined to MALT lym-
phomas with poor clinical outcome [64].   

4.1.5  t(X;14)(p11;q32)—IGH-GPR34 

Recently, studies found that loss-of-function mutations in 
certain gene cause X linked lymphoproliferative disease 
[65,66]. By using interphase fluorescence in situ hybridiza-
tion (FISH), Ansell and his colleagues found a novel trans-
location involving the IGH locus and an unknown partner in 
a primary MALT lymphoma patient with SS [67]. This un-
known partner is now confirmed to be the X chromosome, 
resulting in the deregulation of the expression of the 
G-protein-coupled receptor, GPR34. Increased levels of 
GPR34 were detected in MZL tumor cells and normal im-
mune cells. The overexpression of GPR34 results in the 
phosphorylation of extracellular signal regulated kinase 
(ERK) and protein kinase C (PKC) and induces NF-B- 
related gene transcription, thus leading to increased cell 
proliferation [67]. 

4.2  MicroRNA is related to MALT lymphoma 

MicroRNAs represent important regulators of gene expres-
sion, ranging from B-cell maturation to the generation of 
various differential stages of B cells [68]. They also partic-
ipate in the regulation of important signaling pathways, 
such as NF-B [69], phosphatidylinositol-4,5-bisphosphate 
3-kinase (PI3K)/ protein kinase B (also known as AKt) [70], 
tumor growth factor-(TGF-[71], and BCR signaling 
[72], and regulate pro-apoptotic proteins, such as Bcl-2 [73], 
p53 [74] and transcription factors, such as Myc, FoxP1 [75] 
and Bcl-6 [76]. MALT lymphomas may transform into gas-
tric diffuse large B-cell lymphoma (gDLBCL); however, the 
mechanisms of this transformation have not been elucidated. 

Craig et al. [75] used a microarray approach to compare the 
microRNA expression profiles of gastric MALT lymphoma 
and gDLBCL. They found that microRNAs, which were 
deregulated in high-grade but not low-grade cases, were 
transcriptionally repressed by Myc. By knocking down Myc, 
the proliferation of DLBCL cell lines was blocked. Fur-
thermore, they found tumor-suppressive effects of miR-34a 
on the deregulation of its target, FoxP1. Similarly, using 
microarrays, Craig et al. [75] revealed a strong down-  
regulation of the tumor suppressor miR-203 in human 
MALT lymphoma samples as a result of the hypermethyla-
tion of the promoter of this locus. Demethylating agents led 
to increased miR-203 expression and down-regulation of 
the target of miR-203, leukemia viral oncogene homolog1 
(ABL1). Conversely, re-expression of miR-203 was suffi-
cient to prevent tumor cell proliferation in vitro. 

5  Activation of the NF-B pathway in MALT 
lymphomas 

NF-B signaling is a well-known pathway that controls 
DNA transcription ranging from the production of inflam-
matory mediators to cell survival and proliferation [53]. It 
can be activated by a number of cell-surface receptors, in-
cluding tumor necrosis factor (TNF), IL-1, TLR, lympho-
toxin (LT)-, and BAFF receptors [77], and plays a pivotal 
role in regulating the immune response to infection. Three 
independently existing fusion proteins mentioned before, 
IGH-BCL10, IGH-MALT1 and API2-MALT1, are the re-
sult of translocations and share a common cell survival 
pathway—that of NF-B signaling. The NF-B family 
comprises homodimers or heterodimers of five members 
(p50, p52, RelA, RelB or c-Rel) and is classified into two 
distinct pathways: the canonical and noncanonical pathways 
(Figure 2).  

In the canonical pathway, in an unstimulated state, 
RelA/p50 dimers are kept in the cytoplasm and inhibited by 
inhibitors of B kinase (IB) protein. The IB family con-
sists of IB, IB, IB, and Bcl-3, and the best-studied 
and major IB protein is IB. The upstream activation 
signal of the IB kinase (IKK) complex, which mainly 
comprises heterodimers of the catalytic IKK, IKK subu-
nits and NF-B essential modulator (NEMO), also called 
IKK, induces the degradation of IB proteins. IKK 
phosphorylates two serine residues located in IB regulato-
ry domains, which leads to their degradation [78]. After the 
degradation of IB, the NF-B complex is then released and 
enters the nucleus to “turn on” the expression of specific 
genes.  

Members of the TNF receptor superfamily, including 
BAFF, CD40 and LT-, activate the non-canonical NF-B 
pathway by inducing NF-B (RelB/p52) dimer translocation 
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Figure 3 (color online)  The canonical and non-canonical pathway of NF-B signaling. The CBM signalosome and the fusion oncoprotein API2-MALT1 
activate canonical NF-B signaling. For the non-canonical pathway, activated NIK phosphorylates and activates IKK kinase subunit, leading to the phos-
phorylation of the precursor p100, which degradate partially to p52, allowing RelB/p52 heterodimers to translocate to the nucleus and drive gene transcrip-
tion.  

into the nucleus. This process is independent of the classical 
IKK complex. TNF receptors activates NF-B-inducing 
kinase (NIK), which consequentlyphosphorylates and acti-
vates the IKK kinase subunit, leading to the phosphoryla-
tion of the precursor p100, which partially degrades to p52, 
setting the RelB/p52 heterodimers free; ultimately, 
RelB/p52 translocates to the nucleus and drives gene tran-
scription. Recent analyses showed that the synthesis of 
RelB and p52 is controlled by IKK-IB-RelA/p50 signal-
ing. The impairment of the canonical pathway will lead to 
the aberrant activation of the non-canonical pathway [79]. 
This evidence reveals that the canonical and non-canonical 
pathways are not separated, and an interaction exists be- 
tween them.  

The three key molecules, Bcl10, MALT1 and CARMA 
(CARD-containing molecules of the membrane associated 
guanylate kinase family), work upstream of the IKK com-
plex and downstream of the antigen receptor. CARMA1/ 

CARD11, CARMA2/CARD14 and CARMA3/CARD10 are 
highly conserved across species, sharing a similar structure 
but expressed in a tissue-specific pattern [80–82]. Upon the 
activation of T cell receptor (TCR), protein kinase C- 
(PKC) is recruited by CARMA1, and the activated PKC 
subsequently phosphorylates CARMA1 to recruit Bcl-10 
and MALT1, thus promoting TCR-induced NF-B signal-
ing [83]. Another molecule, 3-phosphoinstitide-dependent 
kinase (PDK)-1 can also activate PKC and recruits the 
IKK complex as well as interacts with CARMA1 to recruit 
Bcl-10 and MALT1 [84]. Once BCR is activated, the 
CARMA/Bcl- 10/MALT1 (CBM) and IKK complexes are 
recruited, and PKC phosphorylates CARMA1, thus pro-
moting NF-B signaling [85]. TNF receptor-associated fac-
tor 6 (TRAF6), belongs to the TRAF family (TRAF1~7), 
which mediates interactions with other signaling compo-
nents such as the transmembrane TNF receptors and  
CD40 [86]. TRAF6 ubiquitin itself, and IKK recruits the 
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TAB/TAK1 kinase complex. Finally, with the phosphoryla-
tion of the  subunit, the IKK complex is activated, and 
eventually, IB is phosphorylated and degraded. This pro-
cess ultimately leads to signaling cascades of NF-B [87].  

CARMA deficiencies, as well as BCL10- or MALT1- 
deficient lymphocytes, showed defective proliferation. In 
the CARMA1-deficient mouse model, primary B and T 
lymphocytes were defective in mitogen-induced NF-B 
activation and failed to proliferate [88]. By overexpressing 
Bcl-10 alone, NF-B was weakly activated. However, this 
effect can be increased in the presence of MALT1, while 
MALT1 alone is insufficient to induce NF-B activation 
[61]. This evidence suggest that the CBM complex cooper-
ates with and integrates signals from the upstream regulator 
to the IKK complex in classical NF-B signaling.  

Unlike wild-type MALT1, which requires Bcl-10 to as-
sist in its oligomerization, API2-MALT1 is capable of  
auto-oligomerization via its BIR domain (Figure 2). API2- 
MALT1 alone can stimulate the IKK complex activation 
and induce NF-B [53,89]. The moiety of API2-MALT1 
interacts with multiple upstream mediators of NF-B acti-
vation, including TRAF2 [90] and NIK [91]. Recent dis-
coveries showed that the receptor-interacting protein-1 
(RIP1) is a novel API2-MALT1-associated protein. It is 
ubiquitinated by API2-MALT1 with the help of TRAF2, 
leading to the activation of the canonical NF-B signaling 
pathway [92]. Other studies discovered that after a posi-
tively-charged Arg residue, MALT1 not only cleaves its 
signaling partner Bcl-10 but also the NF-B inhibitor  
A20 [81]. Upon TCR stimulation, A20 is recruited to and 
cleaved by MALT1. Thereby, the NF-B-inhibitory func-
tion of A20 is prohibited and the induction of NF-B sig-
naling is maximized. 

6  Perspectives 

Until recently, dozens of researchers have made efforts to 
better understand the molecular mechanisms of MALT 
lymphomas. It is publicly known that the strain-specific and 
autoantigen-driven stimulation of tumor cell surface recep-
tor signaling leads to the activation of NF-B via a canoni-
cal or non-canonical pathway. The identification of the role 
of the CBM signalosome in disease progression led to the 
discovery of the drugs that target the CBM complex in the 
treatment of some B-cell lymphomas [93,94]. As a result, 
further studies will be able to shed light on the use of thera-
peutic drugs that exclusively inhibit the antigen receptor 
signaling pathway. Additionally, recent studies indicated 
that specific inhibitors of the API2-MALT1 ubiquitin ligase 
would also be beneficial [95]. Currently, the combination 
use of anti-HCV therapies with monoclonal antibodies or 
IFN regimens to treat HCV-related lymphomas needs to be 
verified with more randomized controlled trials. Future 

studies in this field should focus on identifying the mecha-
nisms of lymphomagenesis and the relationship between 
lymphomas, microorganisms and the host. 
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