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Chronic myeloid leukemia (CML) is a form of leukemia characterized by the presence of clonal bone marrow stem cells with 
the proliferation of mature granulocytes (neutrophils, eosinophils, and basophils) and their precursors. CML is a type of 
myeloproliferative disease associated with a characteristic chromosomal translocation called the Philadelphia (Ph) chromo-
some or t (9;22) translocation (BCR-ABL). CML is now usually treated with targeted drugs called tyrosine kinase inhibitors 
(TKIs). The mechanism and natural history of CML is still unclear. Here, we summarize the present CML animal disease 
models and compare them with each other. Meanwhile, we propose that it is a very wise choice to establish zebrafish (Danio 
rerio) CML model mimics clinical CML. This model could be used to learn more about the mechanism of CML, and to aid in 
the development of new drugs to treat CML. 
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1  Introduction—Chronic myeloid leukemia 

Chronic myeloid leukemia (CML) is a cancer occurring in 
one to two of 100,000 adults, and comprises nearly 15% of 
the cases of adult leukemia [1]. CML is distinguished by 
clonal expansion of primitive pluripotent stem cells without 
the loss of their capability to differentiate into myeloid cells, 
and by a dramatic increase in proliferation of granulocytic 
cells that have the capacity to differentiate [2]. CML is a 
characteristic leukemia model which can be used to study 
the multistep processes of leukemogenesis and the essential 
nature of leukemia, as well as other cancers, in order to 
discover novel therapies. 

During the past five decades, there has been significant 
progress in CML research. In 1960, an abnormal chromo-

some was found in nearly all human CML samples, which 
was designated as the Philadelphia chromosome (Ph) [3]. 
The Ph was recognized as deriving from a deleted chromo-
some 22 [4]. Shortly after this discovery, it was verified that 
the Ph positive chromosome resulted from a reciprocal 
translocation between chromosome 9 and 22 [5,6]. In 1984, 
the t (9;22) translocation was identified, where in an onco-
gene, ABL (Abelson murine leukemia), on chromosome 9 
was fused with a formerly unknown gene, BCR (breakpoint 
cluster region), on chromosome 22 [7]. However, whether 
the acquisition of the characteristic translocation is second-
ary to, or is indispensable to the genetic lesion remains un-
known. 

There are three main BCR-ABL variants due to alternative 
splicing or translocation at different breakpoints between 
the BCR and ABL exons (Figure 1) [8]. In CML, the break 
in the BCR gene is in a region designated as the major 
breakpoint cluster region (m-bcr). While the break in the  
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BCR gene in a distal region designated as the micro-bcr 
(μ-bcr). The μ-bcr is uncommon in CML, while chronic 
neutrophilic leukemia and/or thrombocytosis may be related 
to this breakpoint region [2]. However, the break in the BCR 
gene just distal to the first exon of BCR, in a region named 
for the minor breakpoint cluster region (m-bcr), is mainly 
associated with Ph-positive acute lymphoblastic leukemia 
(ALL). Consequently, BCR-ABL proteins are approxi-
mately 190, 210, and 230 kD, and the fusion protein in hu-
man CML is approximately 210 kD [2,9,10]. 

CML progression is generally triphasic, involving a 
chronic phase (CP), then progressing either to the acceler-
ated phase (AP) and then to the blast phase (BP), or directly 
to the blast phase [9]. The detailed characteristics of these 
three phases are as follows (Table 1): The chronic phase; 
the white blood cell (WBC) count in patients progressively 
increases. In peripheral blood (PB), blasts account for less 
than 15% of the WBC count. Clinical symptoms like sple-
nomegaly, weight loss, and B cell symptoms (fever, night 
sweats, and weight loss) may exist. The course from the 
chronic phase to the more aggressive phases without treat-
ment is 3.5–5 years. The diagnosis is based on the afore-
mentioned characteristics. The accelerated phase; patients 
have increasingly worse blood cell counts, which show 
blasts accounting for 15% to 30% in PB, and organomegaly. 
In addition, there may be a new chromosomal abnormality.  

The blast phase; patients develop symptoms like acute 
leukemia, including bone pain and B cell symptoms. There 
are increasing numbers of blast cells, both in PB and bone 
marrow (BM). This stage is diagnosed by having more than 
30% blasts.  

Many molecular signaling pathways essential to the 
pathogenesis of chronic leukemia have been found to be 
downstream of the BCR-ABL protein [8,10]. The BCR-  
ABL fusion protein can promote cell proliferation and in-
crease anti-apoptosis, activating key signal molecules/ 
pathways. Since 2001, tyrosine kinase inhibitors have been 
used as first line treatments for CML. However, leukemia 
will eventually recur unless CML patients receive lifelong 
tyrosine kinase inhibitor treatments, and at present, alloge-
neic stem cell transplant is another unique curative treat-
ment [8,9].   

2  Existing CML models 

2.1  BCR/ABL transgenic mouse model 

2.1.1  Conventional BCR/ABL transgenic mice 

In conventional transgenic mice, BCR/ABL fusion proteins 
(including P190, P210, and P230) have been expressed in 
BCR/ABL transgenic mice under the control of a promot-
er/enhancer element. Different promoters, including  

 

 

Figure 1 (color online)  Schematic diagram of the various aberrant BCR-ABL counterparts [8]. Different junction breakpoints of BCR-ABL are shown. 
The left half of the oval indicates the N-terminus (amino terminus). Rectangles with different colors indicate different protein domains. The right half of the 
oval indicates the carboxy-terminal region. Thick lines represent the junction of the two genes. In CML, breaks in m-bcr join only the first exon of BCR to 
the entire ABL gene from exon 2 to the end of the gene (e1-a2 junction), breaks in m-bcr join all of BCR up to exons 13 or 14 (also known as exon b2 or b3 
of m-bcr to ABL (again, the entire gene from exon 2 to the end) (b2-a2 or b3-a2 junction), and breaks in μ-bcr join all of BCR up to exon 19 to ABL (exons 2 
to 11) (e19-a2 junction).  

Table 1  The main characteristics of the three phases of CMLa) 

Phase of CML   Characteristics 
Chronic phase (CP) (i) The blasts account for less than 15% of the white WBC count in PB and BM. 

(ii) The diagnostic criteria do not reach the accelerated or blast phase. 
Accelerated phase (AP) (i) In peripheral blood, blasts account for from 15% to 30% of the WBC count, and/or progressive splenomegaly 

is observed.  
(ii) There may be a new chromosomal abnormality. 

Blast phase (BP)  (i) There are increasing numbers of blasts both in PB and BM. This stage is diagnosed by more than 30% blasts. 
(ii) BM biopsy shows blasts together. 

a) WBC: white blood cells; CML: chronic myeloid leukemia; PB: peripheral blood; BM: bone marrow 
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Eμ [11], MPSV-LTR (myeloproliferative sarcoma virus  
retroviral long terminal repeat) [11], MT-1 (metallothi-
onein) [12–15], tec [16], hMRP8 [17], and Sca-1 [18], that 
drive BCR/ABL expression have been studied in mouse 
models. The models mentioned above demonstrate the ex-
pression of BCR/ABL fusion protein in mice. Nevertheless, 
there are several shortcomings of these models. First, a 
subset of mice only develops lymphoid leukemia rather than 
myeloid malignancies. Second, the disease progression of 
these models has a longer latency, which restricts the appli-
cation of these models in CML treatment research. Third, 
the main problem of conventional transgenic mouse models 
is that the BCR/ABL fusion protein is produced in the 
transgenic mice throughout the lifetime, and this may ac-
count for embryo gene lethality. An approach to overcome 
this obstacle is the application of conditional promoters to 
prevent oncogene expression during embryogenesis and 
allow induction of gene expression under specified condi-
tions after birth. 

2.1.2  Conditional BCR/ABL transgenic mice 

The application of conditional transgenic systems has been 
taken into consideration to develop models of CML. Inhibi-
tion of the BCR/ABL transgene before birth prevents toxici-
ty that may hinder transgene expression. Currently, the tet-
racycline (Tet)-inducible expression system is the most used 
of the inducible systems. There are primarily two kinds of 
tetracycline-inducible expression systems, the tetracy-
cline-regulated transactivator (tTA) (Tet-off) system [19], 
and the reverse tetracycline-regulated transactivator (rtTA) 
(Tet-on) system [20]. However, all the conditional CML 
models utilize the tTA (Tet-off) system. Several transgenic 
mouse lines have been developed using the tTA gene under 
the control of the MMTV-LTR (mouse mammary tumor vi-
rus long terminal repeat) [21], the human CD34 genomic 
locus [22,23], and the murine stem cell leukemia (SCL) 
gene 3′ enhancer [24]. The transgenic mice develop symp-
toms reminiscent of human B-cell ALL instead of CML, 
and a myeloproliferative disorder related to the megakar-
yocytic lineage, using MMTV-LTR and CD34 promoters, 
respectively, after an induction of the BCR/ABL fusion gene 
expression, and then withdrawal of the tetracycline from the 
drinking water. In addition, after induction of BCR/ABL 
expression, all SCL tTA/BCR/ABL double transgenic mice 
developed a phenotype that had many common features 
with chronic phase CML [24]. Moreover, the phenotype 
could be induced again after thorough inhibition of 
BCR/ABL expression, indicating that the persistence of on-
cogene expression is not indispensable for the leukemic 
stem cell population that is maintained, even without the 
existence of BCR/ABL. Meanwhile, imatinib (a kind oftyro-
sine kinase inhibitor) failed to induce recovery in the mice. 

2.1.3  Embryonic stem cell (ES cells)-based recombination 
introducing BCR/ABL ectopic expression 

Using homologous recombination in ES cells, Castellanos et 
al. [25] constructed an in-frame fusion gene of BCR/ABL 
P190, mimicking the consequences of the human chromo-
somal translocation by fusion of BCR/ABL encoding se-
quences into the BCR endogenous gene. Of the total chi-
meric mice, 38 of 40 generated with the mutant ES cells 
developed B-cell ALL by 4 months after birth. The study 
demonstrated that the endogenous BCR product is not nec-
essary for BCR/ABL oncogene activity in leukemogenesis. 

Subsequently, differentiating cultures of ES cells were 
transfected with the CML-specific BCR-ABL oncoprotein 
to study leukemic transformation of ES cells derived from 
embryonic hematopoietic progenitors [26]. The transformed 
hematopoietic derivatives of ES cells demonstrated the rela-
tionship of BCR/ABL expression with interleukin-3 (IL-3) 
production that was reported in primitive hematopoietic 
progenitors from human CML patients. This study demon-
strated the autocrine and paracrine effects of BCR/ABL- 
infected cells in mice. 

2.1.4  Advantages and disadvantages of transgenic mouse 
models  

Transgenic mouse models are time-consuming to develop 
because of founder selection, breeding, and genotyping 
processes. Compared to human disease, in which the Ph 
translocation exists in a single stem/progenitor cell type, the 
expression in mouse models is controlled by using specific 
promoter/enhancer constructs, and therefore the oncogene 
exists in all hematopoietic cells in the BCR/ABL transgenic 
mice. This may affect the pathophysiology of the leukemia 
or its response to drugs. However, highly reproducible ex-
pression among transgenic offspring, analysis of leukemic 
phenotypes under stationary conditions, and versatile mat-
ing with various transgenic mouse strains, especially gene 
knockout strains, makes them appropriate for CML model-
ing.  

2.2  Murine bone marrow (BM) retroviral transduction 
and transplantation model of CML 

2.2.1  Retroviral transduction and transplantation model 

The initial murine BM retroviral transduction and trans-
plantation model of CML was reported in 1990 [27]. There 
were three kinds of diseases including CML-like myelopro-
liferative syndrome, ALL, and a type of leukemia related to 
macrophages in the recipient mice at several months after 
transplantation. Soon afterwards, JW-RX [28], a retrovirus 
expressing BCR/ABL, was used to infect BM cells of donor 
mice that were pretreated by 5-FU (5-fluoro-2,4(1h, 3h) 
pyrimidinedione). The cells were applied to reconstitute 
mice after treatment with lethal irradiation. Approximately 
half of the mice developed a myeloproliferative syndrome  
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reminiscent of the CP of CML. Both of the studies suggest-
ed that BCR/ABL is the main cause of myeloproliferative 
syndrome in mice. Nevertheless, the recipient mice showed 
more than one kind of disease and most recipient mice de-
veloped CML with different disease latencies. 

The development of P210-induced leukemia in primary, 
secondary, tertiary, and quaternary transplant recipients was 
recently explored [29]. The late-onset CML-like disease is a 
useful murine model reminiscent of human CML. Subse-
quent studies showed progress in the model system devel-
opment, including improvement of the constructs, the tran-
sitory retroviral packaging system, and the modification of 
the virus infection conditions accounting for the increase in 
effective retroviral transduction and 100% efficiency of 
generating the CML-like disease [29–31].  

An excellent model where all recipient mice developed 
CML with a shorter latency helped to evaluate drugs for 
CML therapy [32]. Either STI571 (a tyrosine kinase inhibi-
tor) or placebo was given to mice reconstituted with P210 
BCR/ABL-transduced BM cells. The retroviral model sys-
tem provides a potent tool for exploring the disease mecha-
nisms of CML, drug resistance, and the progression of 
CML. 

2.2.2  Main applications of retroviral transduction and 
transplantation models 

Retroviral transcription /transplantation model systems can 
be used to study the differences in activities of different 
functional domains to induce leukemia [33–35]. The models 
are useful to study the roles of different signal molecules/ 
pathways in the pathogenesis of CML [36–38] or the roles 
of BCR/ABL in transformation [29,32], to detect the poten-
tial of acquisition of additional genetic or epigenetic aberra-
tions causing blastic transformation in CML [39], and to test 
the effects of clinical drugs using BM retroviral transduc-
tion/transplantation murine CML models [40]. Moreover, 
the system also facilitates functional analysis of individual 
genes and signal pathways in CML. CML retroviral mouse 
models have been used for functional analyses of individual 
genes by transduction of transgenic cells for disruption of 
targeted genes such as signal transducer and activator of 
transcription 5 (STAT5) [36–38], P53 [41], Raf1 [42], and 
Gads (Grb2-related adaptor downstream of Shc) [43].  

2.3  Model of CML primary BM cells transplanted into 
immunodeficient mice (xenograft models of CML) 

2.3.1  Xenograft models of CML 

Sawyers et al. [44] originally transplanted cells from pa-
tients with BP CML into SCID (severe combined immuno-
deficient) mice and observed reproducible growth of leuke-
mic myoblasts in the hematopoietic tissues of immunodefi-
cient mice [44]. Later, both normal and leukemic hemato-
poietic cells from patients with chronic phase CML proved 

to be capable of engraftment into the BM of sublethally 
irradiated SCID mice [45]. It is possible that the leukemic 
cells secreted cytokines supporting the engraftment of both 
leukemic and normal cells. Soon afterwards, Wang et  
al. [46] reported engraftment of chronic phase (CP) CML 
cells into nonobese diabetic (NOD)/SCID recipients with 
better results. The results suggested that the first step to 
identify the phenotype of CML stem cells was the ability of 
the leukemic cells to successfully reconstitute in 
NOD/SCID mice after implantation of concentrated popula-
tions of CD34+ cells from CP CML patients [46]. As might 
be expected, cells from CML patients in AP or BP engrafted 
faster than cells from patients in chronic phase [45,46]. Im-
portantly, in vitro transfected BCR/ABL p210+BM cells (via 
coculture on stable retroviral producer cells), when injected 
intravenously into the tail vein of mice directly after retro-
viral infection, generated myeloproliferative CML-like dis-
ease [37]. In 2015, Schneckenleithner et al. [47] described 
the protocols in detail. 

2.3.2  Application of xenograft models of CML 

CML primary BM cells transplanted into immunodeficient 
mice can be used to study the transplantation of CML pro-
genitor cells, the biological characteristics of CML, and can 
help to identify therapeutic treatments for CML. 

3  Advantages of the zebrafish (Danio rerio) 
model 

3.1  Biological advantages of zebrafish 

The mouse models mentioned above have limitations be-
cause studies have failed to establish an animal model that 
can fully recapitulate all the characteristics of CML. Com-
pared to mice, zebrafish have the biological advantages of 
small size, productive fecundity, external fertilization, opti-
cal clarity of zebrafish embryos, easily identifiable pheno-
type, genes analogous with humans, and applicability to 
large-scale screening. Furthermore, the special characteris-
tic of leukemia cells, using fluorescent proteins and in vivo 
direct visualization of leukemia processes in the zebrafish, 
can be ideally studied using this model for leukemia re-
search. Compared with injections or feeding in mice, the 
zebrafish can absorb small molecular chemical compounds 
directly from the water, allowing high-throughput screening 
of drugs. The identification of small molecules through 
zebrafish screening procedures will aid in the development 
of novel drugs for the therapy of diseases, especially cancer.  

The zebrafish therefore holds great promise for the study 
of hematopoiesis, hematopoietic system diseases, and leu-
kemogenesis. Many malignant hematological diseases, 
which recapitulate crucial pathophysiological features of the 
homologous human disease, have been modeled in 
zebrafish. 
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3.2  Feasibility of using zebrafish as a CML model 

In general, the development of zebrafish myeloid leukemia 
models emerged later than the lymphoid leukemia models, 
partially due to a lack of appropriate myeloid specific pro-
moters. Not until 2006 was the mpx (myeloperoxidase) 
promoter applied for zebrafish transgenic line [48,49]. With 
the successful results of the mouse myeloid leukemia mod-
el, the significance of appropriate spatiotemporal expression 
of the oncogene was confirmed [50]. Although there  
are many acute myeloid leukemia (AML) zebrafish  
models [51,52], a CML model using zebrafish has not been 
reported. 

The TEL-JAK2 fusion construct generated from the 
zebrafish ortholog of the human TEL and JAK2, seen in a 
case of atypical CML [53] or derived from both T-cell ALL 
and atypical CML [54], was transiently expressed in devel-
oping zebrafish embryos under the control of either the 
white blood cell-specific spi1 promoter (also known as the 
pu.1 promoter) or the ubiquitously-expressed cytomegalo-
virus (CMV) promoter preferentially expressed in myeloid 
precursor cells. Although the study failed to develop a sta-
ble transgenic zebrafish line expressing the tel-jak2 fusion 
protein, mainly due to high lethality in the larval stage and 
later stages, the disruption of normal embryonic hemato-
poiesis showed that zebrafish were applicable for study in 
myeloid malignancy. 

3.3  Strategies to establish a zebrafish CML model 

3.3.1  Traditional approaches can be used in zebrafish 
models. 

The zebrafish share significant homology with the BCR and 
ABL genes of humans. Therefore, it is possible to produce 
CML transgenic zebrafish lines expressing the P210 
BCR-ABL fusion protein under control of a promot-
er/enhancer element. These promoters mainly include three 
types, the ubiquitous CMV promoter, the inducible heat 
shock protein (hsp) promoter, or the specific coro1a (coro-
nin-1a) promoter, which is a specific promoter for myeloid 
cells. Besides the traditional transgenic approaches, the 
gene editing technique to cause chromosome translocation 
can also be used. 

3.3.2  The gene editing technique can be used in zebrafish 
models. 

Gene editing systems such as the Cre/loxP, zinc finger 
(ZFN), transcription activator-like effector nucleases 
(TALEN), and clustered regularly interspaced short palin-
dromic repeats (CRISPR)/CRISPR-associated (Cas) system 
have been applied in chromosome translocation. In 2000, 
Buchholz et al. [55] reported the application of Cre recom-
binase to duplicate the t (8;21) translocation discovered in 
human AML in mice. They further demonstrated that the 
Cre/loxP system was a powerful tool to produce prede-

signed chromosomal translocations in mice, enabling reca-
pitulation of human genetic cancer events. In 2013, the ZFN 
and TALEN were used to design chromosomal transloca-
tions [56]. The t(11;22)(q24;q12), found in Ewing sarcoma 
and t(2;5)(p23;q35) translocations, found in anaplastic large 
cell lymphoma(ALCL), were both induced with high effi-
ciency, by using tailored nucleases ZFNs and TALENs de-
signed to cut accurately at specific translocation break-
points. The approach suggested that fusion gene expression 
could be inducted by the native promoter in cancer cells, 
allowing further study of the mechanisms and progression 
of cancer-relevant translocations in human cells. Recently, a 
novel type of site-specific nucleases, the CRISPR/Cas sys-
tem, has been a revolutionary approach for genome engi-
neering [57]. Using the ascendant RNA-guided CRISPR/ 
Cas system, Torres et al. [58] generated human cell lines 
and primary cells bearing chromosomal translocations at 
high frequencies, which resembled those described in AML 
and Ewing’s sarcoma. These gene editing techniques are 
completely applicable to zebrafish because of the ad-
vantages discussed above. Most notably, further develop-
ment of the CRISPR/Cas system is promising for the crea-
tion of models to help identify the characteristic events that 
drive the myeloid leukemia. In the future, gene editing 
techniques to induce chromosomal translocations will also 
help determine the pathogenesis of CML. 

4  Application and future perspectives of the 
zebrafish CML model 

The zebrafish CML model is useful for real-time observa-
tions of the development and transformation of leukemic 
cells, and for the analyses of the pathophysiology of signal-
ing pathways that are affected downstream of the fusion 
gene. The model is also useful to more quickly and directly 
test the effects of drug treatments, by observing the abate-
ment of the green leukemic cells marked by enhanced green 
fluorescent protein. The zebrafish CML model also provides 
a unique forward genetic screening for specific dis-
ease-related genes affecting the process of leukemia, such 
as genes related to tumorigenesis, cell specificity, disease 
progression speed, and metastasis processes. Moreover, the 
zebrafish CML model will also provide an ideal tool for 
chemical/drug library screening, to identify novel, targeted 
small chemical molecules with alternative, yet desired, in 
vivo pharmacological effects. 

This review does not contain any studies with human participants or ani-
mals performed by any of the authors. 
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