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Systemic lupus erythematosus (SLE) is a debilitating autoimmune disease that can involve multi-organs. B cells play a central 
role in the immunopathogenesis via antibody-dependent and antibody-independent ways. Excessive autoantibodies production, 
hyperresponsiveness and prolonged survival of autoreactive B cells are characteristics of SLE. In this article, mechanisms of 
self-tolerance loss of B cells and promising B cell-targeting therapies in lupus are reviewed and discussed. 
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Systemic lupus erythematosus (SLE), the paradigm of au-
toimmune disease with the underlying mechanisms involv-
ing multiple immunological abnormalities, is a severely 
debilitating disease with multi-organ involvement and di-
verse autoantibodies spectrum [1]. Among the multiple el-
ements in the pathogenesis, B cells play a central role  
in SLE through antibody dependent and independent  
manners [2]. Presence of pathogenic autoantibodies is not 
only the hallmark of SLE and the clue for diagnosis, but 
also associated with characteristic pathological injury and 
specific clinical manifestations [3–5]. In addition, the path-
ogenic role of B cells is also attributed to its antibody inde-
pendent functions, including but not limited to antigen 
presentation, T cell crosstalk, dendritic cells (DCs) recruit-
ment, pro-inflammatory cytokine secretion. Why and how 
auto-reactive B cells in lupus lose self-tolerance, escape 
from central and peripheral checkpoints, become 
over-activated and spontaneously produce autoantibodies, 
are always the focus of clinical and basic research. There-
fore, it is important to summarize our current knowledge 

about the underlying mechanisms of self-tolerance break-
down and pathogenic functioning pathways of B cells in 
SLE. So we review here about B cell biology in SLE, in-
cluding its differentiation and selection, functioning and 
signaling, surviving and apoptosis, and the resulting poten-
tial therapeutic targets both in mice and human lupus.  

1  Role of B cells in the pathogenesis of SLE—
antibody dependent and independent mecha-
nisms 

Naïve B cells undergo the process of heavy chain V region 
gene rearrangement, isotype switching, somatic hypermuta-
tion and affinity-based selection within germinal center 
(GC), then leave GC and develop into memory B cells , or 
alternatively, short lived or long lived plasma cells that are 
capable of producing antibodies including pathogenic auto-
antibodies [6], which is crucial for triggering and perpetu-
ating disease in SLE. Various abnormality of the develop-
ment, status and functions of B cells have been reported, 
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including activation thresholds lowering, prolonged survival 
and inhibition of apoptotic processing [7,8].  

Although the spectrum of lupus manifestations is diverse, 
indicating the heterogeneous nature of SLE, circulating au-
toantibodies is ubiquitous and is related to target organ in-
jury and disease activity with diagnostic value [2,3]. For 
example, anti-Smith antibody is highly specific and path-
ognomonic for SLE [9,10]. Higher titers of anti-double 
strain DNA antibody (anti-dsDNA) correlates with lupus 
nephritis (LN) and disease activity [11,12]. The presence of 
anti-ribosomal P antibody predicts an increased risk of neu-
ropsychiatric event [13,14]. Patients with antibody against 
Sjogren syndrome antigen A (anti-SSA or anti-Ro) are pre-
disposed to photosensitivity, rash and haematological dis-
orders [15,16]. Pregnant women with anti-SSA may give 
birth to babies with congenital heart block [17].  

But the immunological role of B cell is not limited to the 
precursor of immunoglobulin (Ig) secreting cell, namely 
plasma cell. Mice with normal numbers of B cells but lack-
ing of circulating antibodies (mIgM MRL/MP-Faslpr mice 
that expressmembrane-bound IgM but lack exons needed 
for secretion) still exhibit autoimmunity and accelerated 
mortality [18], whereas B cell-deficient MRL/lpr mice are 
resistant to development of lupus-like disease [19,20]. 
These data collectively indicate that B cells also play an 
autoantibody-independent role in SLE pathogenesis. Actu-
ally, B cells exert multipotent immunological functions such 
as presenting antigen, co-stimulating T cells, inducing im-
munogenic DCs, as well as producing cytokines and chem-
okines to promote inflammation, affect immune regulation 
and lymphogenesis (Figure 1) [2,21,22].  

1.1  Autoreactive B cells and BREG in SLE 

SLE B cells can be divided into pathogenic autoreactive B 

cells that are involved in autoimmune response, protective 
B cells that are involved in immune defense against patho-
genic microorganisms and regulatory B cells (BREG) that 
help to keep self tolerance and immune homeostasis [23]. 
Abnormal proportional composition of B cell subgroups and 
accumulation of autoreactive B cells in murine and human 
SLE have been reported [24,25]. Autoreactive B cells exist 
in all human but with higher frequency in patients with  
SLE [26]. Moreover, defects of BREG in numbers and/or 
functions may also contribute to inordinate immunological 
state in SLE [27,28]. Before entering peripheral circulation, 
B cells have to be checked for their autoreactivity, those 
with high affinity with autoantigens are deleted or aner-
gized. Two major mechanisms in central and peripheral 
checkpoints are clonal deletion and receptor editing [29]. 
Additional censoring mechanisms may exist, as studies 
showed that 50%–75% immature B cells newly emerging 
into periphery can be autoreactive [30] and up to 20% of 
peripheral mature naïve B cells in normal individuals are 
reactive with self nuclear antigens [7,26].  

1.1.1  Autoreactive B cell 

Although pathogenic, lymphocytopenia other than lympho-
cytosis of B cells is often found in active SLE [6]. Disturb-
ance of B cell homoeostasis with an abnormal shift of 
pre-immature B cell pool towards more immature sub-
groups independent of disease activity in peripheral blood 
has been noted, including expanded pre-naïve B cells and 
transitional B cells [31,32]. Marked reduction of naïve   
peripheral CD19+CD27 B cells mainly account for B  
lymphocytopenia [6]. Whereas increased frequency of 
CD27high plasmablasts seems to correlate with active dis- 
ease [6,25,33] and abates significantly after immunosup-
pressive therapy. Ig heavy chain variable (VH) gene analysis 
has demonstrated extraordinary highly mutated and clonally  

 

 
Figure 1  Antibody-dependent and -independent role of B cells in the pathogenesis of systemic lupus erythematosus. Ag, antigen; DC, dendritic cell; IFN, 
interferon; TNF, tumor necrosis factor. 
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related VH gene rearrangements within CD27high plas-
mablasts, indicating autoreactive nature of this population. 
In addition, CD27+IgD antigen-experienced post-switched 
memory B cells are also expanded in SLE patients. These 
cells express less inhibitory IgG Fc receptor-FcRIIB, are 
resistant to immunosuppressive drugs [34], and are easily 
and rapidly activated independent of antigen [35].  

1.1.2  Abnormality of BREG 

BREG are capable of secreting IL-10 and controlling T cell 
proliferation [36]. In mice, CD19highCD1dhighCD5+ B subset 
capable of producing IL-10 is deemed to be BREG [37]. And 
in human, IL-10 secreting B cells with the phenotype of 
CD19+CD24highCD38high are thought to be BREG [27,38]. 
BREG could protect mice from development of lupus dis- 
ease [39]. It has been also reported that BREG in SLE pa-
tients produces less IL-10 and has compromised suppressive 
capacity [27,28]. The role of BREG and IL-10 in SLE is con-
troversial and paradoxical. For example, Yin et al. [40] re-
ported that IL-10 deficient mice developed more severe 
lupus, whereas Llorente et al. [41] reported that blockade of 
IL-10 with antibodies reduced disease activity, indicating a 
double-side role of IL-10 in SLE. 

1.2  Self-tolerance breakdown of SLE B cells 

Multiple mechanisms to eliminate autoreactive B cells exist 
to keep self tolerance and ensure normal humoral response 
to exogenous pathogens. Self-tolerance breakdown contrib-
utes to differentiation and expansion, activation and survival 
of autoreactive B cells in SLE. But the precise mechanisms 
remain to be illuminated.  

1.2.1  Gene associations with the loss of self-tolerance in B 
cells  

Combination of gene loci constitutes the genetic back-
ground of lupus predisposition. Many of these loci are asso-
ciated with abnormalities of B cells [42,43]. Genome-wide 
association studies identify a series of candidate lu-
pus-susceptible genes including those encoding BANK 
(B-lymphocyte scaffold protein with ankyrin repeats), BLK 
(B-lymphoid tyrosine kinase), PTPN22 (protein tyrosine 
phosphatase non-receptor type 22), Blimp-1, Lyn, FcIIRB, 
CD22 (cluster of differentiation 22), CD40L (cluster of dif-
ferentiation 40 ligand) and AID (the activation-induced 
deaminase). These genes are associated with altered BCR 
(B cell receptor) signaling, B cell hyper-responsiveness and 
stimulative differentiation into plasma cells [44–46]. 

In murine lupus, Sle1, Sle2, Sle3, Yaa are found to be 
susceptibility genes and might impair BCR signaling and 
impede antigen-driven negative selection, thus contribute to 
breakdown of self-tolerance in B cells [47,48]. 

1.2.2  Surface molecules on B cells  

CD40 in lipid raft is decreased on activated B cells from 
SLE [49], but functionally active CD154 (CD40L) expres-
sion on SLE B cells is increased [50,51]. CD154 transgenic 
mice have increased number and enhanced survival of B 
cells [52]. Spontaneous proliferation and Ig secretion of 
peripheral B cells from active lupus patients could be inhib-
ited by blockade of CD154-CD40 interaction [50]. Ligation 
of CD40 with CD154 provides an important co-stimulation 
signal and plays an essential role in GC reaction. Studies 
show that CD40-CD154 interaction could not only induce T 
cell priming, promote Th2 type cytokines production and 
enhance T cell medicated immune effects, but also recipro-
cally function to promote B cell proliferation, isotype- 
switching, activation and antibody production [50,53–55]. 

CD5 expression on lupus B cells membrane is character-
istically reduced [56]. CD5+B cells are capable of producing 
IL-10 and possess regulatory potency [37]. Engagement of 
BCR and production of IL-6 down-regulate membrane CD5 
expression through abnormally enhanced demethylation 
which can influence the balance of the transcripts of two 
CD5 isoforms (membrane CD5 and cytoplasmic CD5). As a 
negative regulator of BCR signaling, reduced membrane 
CD5 leads to activation and expansion of autoreactive B 
cells in SLE [56]. 

CD22 is a negative modulator of BCR signaling.    
Expressing on mature B cells, CD22 help to raise activa- 
tion thresholds and regulate homeostasis and survival of B 
cells [57,58]. CD22-deficient mice are found to have hy-
per-responsive B cells, increased titers of serum autoanti-
bodies, heightened calcium flux and increased proliferation 
of B cells [59,60]. Recently, studies in vitro show that 
epratuzumab, an anti-CD22 mono-clonal antibody, can re-
duce B cell count modestly and decrease the proinflam- 
matory cytokines like tumor necrosis factor- and IL-6 
produced by activated B cells without influencing IL-10 
level [61]. What’s more, epratuzumab can substantially re-
duce the expression of multiple functional molecules like 
CD19, CD44, CD62L, then inhibit the hyperactivity and 
migration of B cells without depleting them [62,63]. Alt-
hough epratuzumab could induce internalization of CD22, 
the functional consequence of modulating BCR signaling 
and reducing B cells results in negative regulation of im-
mune reaction and applies to the treatment of autoimmune 
disease. 

CD45 recruitment and retention in lipid raft with altered 
isoform have been observed increasing in lupus B cells [64]. 
CD45 negatively regulates Src family protein tyrosine ki-
nase [65] and increased CD45 is associated with reduced 
Lyn expression (negative more than active BCR down-
stream signaling molecule) in lupus B cells [64]. CD45 also 
lowers BCR signaling threshold thus contributes to B cells 
hyperactivity [66].  

FcRIIB (CD32B) contains an ITIM (immunoreceptor 
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tyrosine based inhibition motif) domain and mediates inhi-
bition of PIP3/PI3K (phosphatidylinositol 3,4,5-trisphos- 
phate/Phosphoinositide 3-kinases) signaling by activation of 
SHIP (the Src Homology 2-containing inositol 5′-phospha- 
tase) and dephosphorylation of CD19 [67,68]. Co-engage- 
ment of FcRIIB and BCR by circulating immune complex 
could transmit negative regulatory signals to B cell activa-
tion and proliferation. Therefore FcRIIB is an inhibitory Ig 
receptor, capable of down-regulating BCR complex signals. 
Defective FcRIIB in SLE B cells contributes to increased 
calcium influx [69]. Polymorphisms of FcRIIB with im-
paired expression and function has reported in SLE, espe-
cially on memory B cells [70]. Mice deficient of FcRIIB 
on B cells are prone to develop SLE-like disease with in-
creased susceptibility to autoimmune glomerulonephritis 
and autoantibodies production [71,72]. Restoration of prop-
er FcRIIB expression prevents the expansion and accumu-
lation of autoantibody-producing plasma cells in lu-
pus-prone mice [73]. Polymorphism of FcRIIB is associ-
ated with SLE susceptibilities due to the failure of localiza-
tion in membrane lipid rafts [74,75]. 

CD80/CD86 are constitutively expressed on B cells, and 
by interacting with CD28 on T cells, they could co-    
stimulate T cell activation. Up-regulation of CTLA4 (Cyto-
toxic T lymphocyte-associated antigen-4) on T cells upon 
activation can block CD80/CD86 binding to CD28 through 
competitive mechanism. A recombinant human IgG Fc 
fragment fusion protein, CTLA4-Ig, functioning like 
CTLA4, could dampen the crosstalk of T cell and B cell by 
binding to CD80/CD86. In murine lupus, CTLA4-Ig could 
reduce autoantibody levels and inhibit B cell class switch 
and ameliorate nephritis [76]. 

1.2.3  Intracellular signal transduction in B cells  

Abnormal BCR down-stream signaling as indicated      
by augmented calcium influx and increased phosphorylation 
of protein tyrosine residues is observed in SLE patients,  
and may lead to disordered transcription and gene expres-
sion [42,77–79]. This may result in defective self-limitation 
of cell activation and breakdown of self tolerance. BCR 
comprises of Ig and Ig heterodimer with intracellular 
ITAM (immunoreceptor tyrosine based activation motif) 
domain. After BCR linking with antigen, phosphorylation 
cascade of multiple downstream signaling molecules is ini-
tiated to tune B cell activation [80,81]. Firstly, ITAMs are 
phosphorylated by Src family kinases such as Lyn and Blk, 
and then Syk (spleen tyrosine kinase) with SH2 (Src ho-
mology 2) domain is recruited and phosphorylated, and it in 
turn activates multiple downstream signaling pathway such 
as Btk (Bruton’s tyrosine kinase), PI3K, ERK (extracellu-
lar-signal regulated kinases), JNK (c-terminal Jun kinases), 
and PLC (phospholipase C 2) [42,82]. These molecules 

are of critical importance in coordinating B cell growth, 
differentiation, survival, activation and apoptosis [83]. Al-
tered BCR intracellular signaling affects calcium influx and 
leads to aberrant cellular activation status.  

Among these key molecules, Lyn has dual role in B cell 
activation [84]. By phosphorylating Ig/Ig ITAM domain 
of BCR complex and CD19, Lyn exerts positive regulation 
in BCR intracellular signal transduction. But Lyn is also 
capable of phosphorylating ITIM domain of inhibitory re-
ceptors including FcRIIB and CD22, to attenuate BCR 
signal [85,86]. Transgenic mice deficient in Lyn developed 
severe nephritis and produced auto-antibodies reminiscent 
of SLE [87–89]. Mice with heterozygotic defect of Lyn 
(Lyn+/) also had similar manifestations, indicating the piv-
otal role of Lyn in negative-regulation of BCR signal- 
ing [90]. Lyn deficiency in B cells has been found in two 
thirds of SLE patients, and is associated with heightened 
spontaneous proliferation, anti-dsDNA antibody and IL-10 
production [91,92]. Studies have also suggested that the 
reduction of Lyn expression on B cells is disease pathog-
nomonic but not related to disease activity [92]. Mechanism 
of Lyn down-regulation is not clear although altered ubiqui-
tination modification and post-transcription inhibition by 
elevated microRNA-30a have been suggested [91,93]. On 
the other hand, mice with constitutively activated Lyn in B 
cells (Lynup/up mice) also develop circulating autoantibodies 
and lethal autoimmune glomerulonephritis [94]. Therefore 
Lyn seems not an ideal therapeutic target because of its dual 
role in immune-regulation which makes the net effect of 
intervention on Lyn hardly predicted.  

Our group together with other groups has demonstrated 
that increased PI3K/Akt activation in SLE patients, both in 
T cells and B cells [95,96]. And PI3K (p110 containing 
PI3K complex) plays an important role in B cell differentia-
tion and function, regulating class switch recombination and 
AID [97,98]. PI3K is also involved in downstream signal 
transduction of BCR, BR3 (B lymphocyte stimulator recep-
tor 3), CD40 and TLRs (Toll like receptors) [99,100]. Inac-
tivation of PI3K could lead to significantly decreased au-
toantibody production and amelioration of autoimmune 
glomerulonephritis with improved survival in mice model 
of SLE [101,102]. 

1.2.4  B cell tolerance checkpoints 

Peripheral B cell repertoire in SLE is shaped by abnormal 
selection, exaggerated somatic hypermutation and increased 
receptor editing. Abnormalities of these checkpoints con-
tribute to defective autoreactive B cells selection [26,103]. 
During B cell differentiation, central and peripheral toler-
ance checkpoints serve to eliminate most of the harmful 
autoreactive B cells (Figure 2) [103]. The stage from im-
mature pre-B to naive B in bone marrow is an important 
central checkpoint and the mechanisms include receptor  
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Figure 2  Central and peripheral checkpoints during B cell development. GC, germinal center; TFH, follicular helper T cell; FDC, follicular dendritic cell; 
Blys, B lymphocyte stimulator; CD40L, CD40 ligand. 

editing by V(D)J recombination, clonal deletion by induc-
tion of apoptosis and anergy [104,105]. At the stage of 
pre-BCR, surrogate light chain pairs with Ig heavy chain to 
form pre-BCR, and multiple mediators may be involved in 
this checkpoint [106]. Surrogate light chain-deficient mice 
produce antinuclear antibodies in serum [107]. Decreased 
RAG-2 transcription may contribute to prolonged survival 
and decrease apoptosis of pre-B, leading to accumulation of 
this stage of B cells in lupus mice [108]. Failure of central 
tolerance checkpoints in human remains largely unknown. 
Up to 20% of new emigrant naïve B cells are self-reactive, 
so peripheral tolerance checkpoint is also important by in-
hibiting activation and preventing affinity maturation of 
these self-reactive B cells [30]. In GC, naïve B cells migrate 
from dark zone where they experience fast proliferation and 
somatic hypermutation, to light zone where they receive 
antigen-driven selection under the assistance of follicular 
helper T cells (TFH) [109]. Self-reactive B cells escaping 
from GC checkpoints due to migration failure in SLE pa-
tients have been reported [110]. Chemokines expressing on 
B cells guide the migration and the most important ones are 
CXCR4 and CXCR5 [111,112]. Abnormal expression    
of CXCR4 and its ligand in SLE has been reported in sever-
al studies and its role in SLE is recognized [113,114].  
Considering the important role of TFH in B cells selection, 

functional status of TFH would contribute to autoreactive  
B cells escaping into circulation [113,115,116]. Increased 
numbers of TFH and its association with autoantibody  
production have been reported in SLE patients and    
mice [117–119]. IL-21, as one of the signature molecules of 
TFH, is up-regulated in SLE and leads to expansion of  
TFH [120–122]. But the precise mechanism that expanded 
TFH leading to release of autoreacive B cells is not clear. 
Deficiency of MyD88, IRAK4 (interleukin-1 recep-
tor-associated kinase 4) and UNC-93B contribute to abnor-
mal selection of B cells in central and peripheral check-
points [123,124]. Defective receptor editing and accumula-
tion of autoreactive B cells in peripheral blood can be ob-
served in patients with MyD88, IRAK4 or UNC-93B defi-
ciency. These molecules are regulators of TLRs signaling. 
TLRs signaling especially TLR7, TLR8 and TLR9 are as-
sociated with B cell tolerance breakdown [103,125,126]. 
What’s more, MyD88, IRAK4 or UNC-93B deficient pa-
tients have altered function of regulatory T cells and DCs, 
which could also contribute to self tolerance breakdown of 
B cells [124].  

1.2.5  Cytokines involved in self-tolerance loss of B cells 

Blys (B lymphocyte stimulator, B cell activator of the TNF 
family): Blys could promote B cell development and sur- 
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vival via binding to its receptors: BR3, transmembrane ac-
tivator-1 and calcium modulator and cyclophillin lig-
and-interactor (TACI), and B-cell maturation antigen 
(BCMA) [127–131]. APRIL (a proliferation-inducing lig-
and) is homology to Blys and shares some biological func-
tions with Blys [132]. TACI and BCMA can bind to both 
Blys and APRIL [127]. Excessive Blys could rescue auto-
reactive B cells from deletion and anergy [133,134]. Trans-
genic mice with over-expression of Blys develop a lu-
pus-like phenotype with excessive numbers of mature B 
cells and plasma cells, spontaneous GC formation and 
presence of abundant auto-antibodies [135,136]. In lupus- 
prone mice with elevated circulating Blys levels, blockade 
of Blys with soluble Blys receptor ameliorates disease pro-
gression [137]. Increased Blys levels in serum and occu-
pancy of BR3 on B cells have been demonstrated to be re-
lated to disease activity in SLE patients [138–141]. Raised 
APRIL levels have also been found in SLE patients alt-
hough they do not correlate with disease activity [142,143]. 
Excessive Blys and APRIL contribute at least partly to the 
prolonged survival of auto-reactive B cells [144]. 

1.2.6  Other cytokines 

IL-21 is an essential cytokine to co-stimulate B cells differ-
entiating into plasma cells [122,145]. IL-21 is mainly pro-
duced by TFH in GC and TFH is essential for GC B cells 
selection [146,147]. Excessive IL-21 in mice can promote 
autoantibodies production and lupus-like disease [148–150]. 
Increased IL-21 has also been reported in SLE patients and 
it correlates with disease activity [121,151,152]. Type I IFN 
(interferon) could promote the differentiation of activated B  

cells into plasmablasts and trigger B cells expansion in 
conjunction with TLR7 [153,154]. IFN/ can also lower 
activation threshold for autoreactive B cells, enhance B cell 
resistance to Fas-mediated apoptosis and prolong its surviv- 
al [155]. Harigai et al. [156] also found IFN could induce 
more Blys production and release from lupus monocytes to 
promote B cells activation. IL-6 is critical for the differenti-
ation of B cells and promotes the survival of plas-
mablasts/plasma cells. Excessive IL-6 is reported to corre-
late closely with lupus disease activity [157]. Anti-IL-6 re-
ceptor antibody is shown to be capable of restoring B cell 
homeostasis by reducing the frequency of abnormally ex-
panded CD27highCD38highIgD plasmablasts/plasma cells 
and CD27+IgD post-switched memory B cells, whereas 
increasing the frequency of reduced CD27IgD+ naïve B 
cells [34]. 

2  B-cell targeted therapy in SLE  

Given the pathogenetic role of B cells in SLE, suppressing 
the production of autoantibodies by depletion of B cells, 
inhibition of B cells proliferation or modulation of B cells 
function is a plausible approach in treating SLE [158]. Of 
course, due to the complicated mechanisms and heteroge-
neous nature of SLE, no individual approach would be effi-
cacious for all patients. So far the main approach of B cell 
targeted therapy can be divided into B cell depletion, B cell 
inactivation and B cell survival blockade. The molecular 
target and related biologics are summarized in Figure 3. 

 

 

Figure 3  Biologics targeting B cell surface molecules. BLys, B lymphocyte stimulator; APRIL, a proliferation-inducing ligand; TACI, transmembrane 
activator-1 and calcium modulator and cyclophillin ligand-interactor; BCMA, B-cell maturation antigen; CTLA-4, cytotoxic T-lymphocyte- associated pro-
tein 4; CD40L, CD40 ligand; BCR, B cell receptor; TCR, T cell receptor. 
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2.1  B cell depletion 

Depletion of B cells protects lupus-prone mice (MRL.lpr or 
NZM 2328) from developing disease [159,160]. B-cell de-
pletion is promising to induce disease amelioration by in-
hibiting autoantibody production and/or by interfering with 
other B-cell pathogenic functions. Ideal B cell target used 
for B cell depletion should be those molecules highly and 
exclusively expressed on B cell surface, not be sheared off 
into circulation, and expressed on both mature B cells and 
plasma cells so that could be targeted quickly and effec-
tively.  

2.1.1  CD20-targeted therapy 

CD20 is a B cell lineage specific surface marker, expressed 
from early preB stage to mature B cells before differentia-
tion into plasma cells. Antibodies binding to surface CD20 
could deplete B cells in circulation by mechanisms includ-
ing antibody-dependent cell-mediated cytotoxicity (ADCC), 
complement-dependent cytotoxicity (CDC), and direct in-
duction of apoptosis [23]. Plasma cells don’t express CD20 
thus being insusceptible to anti-CD20 antibody. Although 
disease remission is always after ultimate elimination of 
autoantibodies, clinical improvement can be observed early 
before autoantibodies elimination. This is attributed to the 
abolishment of antibody-independent function of B cells. 
Current available CD20-targeted biologics include Rituxi-
mab (chimeric anti-CD20 with mouse derived variable re-
gions and human IgG1 derived constant regions), Ocreli-
zumab and Ofatumumab (both are fully humanized an-
ti-CD20).  

Two major classic RCT (random controlled trial) studies 
of Rituximab in treating SLE, the exploratory phase II/III 
SLE evaluation of rituximab (EXPLORER) and the lupus 
nephritis assessment with rituximab (LUNAR) trial have 
not achieved their primary endpoints but certain beneficial 
effects can be observed in a proportion of the enrolled pa-
tients [161,162]. Among other small sample open clinical 
trials, encouraging results of Rituximab, such as ster-
oid-sparing effects and histological improvement in treating 
LN, were reported [163–165]. The negative results of 
EXPLORER and LUNAR trials may mainly due to the im-
perfect study design such as the enrollment criteria of base-
line severity, evaluation tools and endpoints settings, in-
stead of inefficiency. What’s more,the use of background 
mycophenolate mofetil (MMF) and high-dose steroids in 
these trials may have overwhelmed and masked the benefi-
cial effect of Rituximab. Both guidelines from American 
College of Rheumatology (ACR) and European League 
against Rheumatism (EULAR) still suggest Rituximab   
be used in patients with active nephritis that fail to respond 
to conventional therapies based on real-life experience re-
ports and open label studies that justify the efficacy of 
Rituximab [166,167].  

A phase III clinical trial examining Ocrelizumab in 

treating patients with active LN also gained negative results, 
with no statistically significant superiority of both 400 and 
1,000 mg dosage versus placebo, although the overall re-
sponse rates are numerically higher. The increased rate   
of serious infections in group of Ocrelizumab which    
may partly due to combined MMF has caused early termi-
nation [168].  

Another humanized anti-CD20 mAb—Ofatumumab now 
is in clinical trial for B cell hematological malignancy and 
rheumatoid arthritis. 

2.2  Inactivating B cells 

2.2.1  CD22-targeted therapy 

Epratuzumab is a humanized anti-CD22 antibody. An 
open-label study show Epratuzumab could reduce the cir-
culating B cells by about 35%–40% and inhibit lupus dis-
ease activity, though serum levels of Ig and autoantibodies 
have not been significantly affected [169]. Recently    
published data from a phase I/II RCT study in Japanese 
show Epraruzumab could down-regulate CD22 expression 
as well as decrease total B cell count to a mild-to-moderate 
extent [170]. Two other RCT studies have been launched 
previously to evaluate the efficacy of Epratuzumab in SLE: 
ALLEVIATE-1 and ALLEVIATE-2. The results showed 
Epratuzumab could reduce British Isles Lupus Assessment 
Group (BILAG) scores and improve health-related quality 
of life (HRQOL) with reduced corticosteroid exposure. But 
premature termination due to cessation of drug supply led to 
a small sample of study population (only enrolled 90 pa-
tients), which maybe the cause of failure to achieve primary 
endpoint [171,172]. EMBLEM was a phase IIb RCT study 
targeting moderate to severe SLE patients and the results 
showed 2,400 mg (cumulative dose in four weeks) 
Epratuzumab was well tolerated with considerable clinical 
improvements. A higher proportion of responders than pla-
cebo group was observed [173], whereas both of the two 
phase III trials (EMBODYTM-1 and -2)have not meet their 
primary clinical efficacy endpoints, announced on 28 July, 
2015. (http://www.ucb.com/ presscenter/News/article/UCB- 
announces-Phase-3-clinical-trial-program-for-epratuzumab- 
in-Systemic-Lupus-Erythematosus-did-not-meet-primary-en
dpoint-nbsp). 

2.2.2  FcRIIB-targeted therapy 

XmAb5871 is a genetically modified anti-CD19 mAb bind-
ing FcRIIB with high affinity, which could promote coen-
gagement of FcRIIB with BCR complex and amplify 
FcRIIB mediated inhibitory signal in activated B cells 
without depletion of B cells physically. In vitro study 
showed that XmAb5871 could reduce calcium influx and 
expression of CD80/CD86, and improve survival of lupus 
mice [174]. SM101, a soluble, recombinant non-glycosyl- 
ated FcIIB receptor, functions to inhibit the binding of 
immune complexes to cell surface Fc receptors and in turn 
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prevent FcR signaling. Preliminary result from a phase IIa 
RCT is promising and encouraging. It seems prolonged 
SM101 treatment may lead to higher SLE response rate  
and patients with LN may benefit even more. (http://      
acrabstracts.org/abstract/sm101-a-novel-recombinant-soluble-  
human-fciib-receptor-in-the-treatment-of-systemic- 
lupus-erythematosus-results-of-a-double-blind-placebo- 
controlled-multicenter-study/). 

2.2.3  Sirukumab/Olokizumab/Tocilizumab 

Both Sirukumab and Olokizumab are human anti-IL-6 
monoclonal antibody, and Tocilizumab is a humanised  
anti-IL-6 receptor monoclonal antibody. All these three  
biologics could block IL-6 mediated effects. In patients  
with rheumatoid arthritis, significant improvement of   
disease activity by blocking IL-6 signaling has been report-
ed [175–177]. But till now no concrete data about efficacy 
in patients with SLE have been obtained and phase I studies 
indicate that adverse effects such as neutropenia and infec-
tion are worthy of attention [178,179]. 

2.3  Blocking crosstalk between B cells and T cells 

2.3.1  Abatacept 

Abatacept is a fusion protein of CTLA4 (cytotoxic 
T-lymphocyte- associated protein 4) and IgG Fc that could 
block the interaction of CD28 and CD80/CD87 (B7), which 
is the co-stimulation signal for T/B activation. The 
abatacept and cyclophosphamide combination: efficacy and 
safety study (ACCESS) trial did not demonstrate extra ben-
efit of Abatacept on the basis of pulse cyclophosphamide 
followed by azathioprine [180]. Another phase II/III study 
enrolled patients with class III/IV LN, and showed im-
provement in serum immunological abnormalities and urine 
protein, although these studies did not meet primary end-
point of complete remission of LN [181].  

2.3.2  IDEC-131/BG9588 

Data from a phaseII RCT demonstrated no superiority in 
efficacy of IDEC-131 (a humanized anti-CD40L antibody) 
versus placebo in active SLE patients [182]. BG9588 is an-
other humanized anti-CD40L antibody that blocks the in-
teraction of CD40 and CD40L. In an open-label study on 
patients with proliferative LN, BG9588 therapy decreased 
anti-dsDNA antibodies by 50% two months after last treat-
ment, increased serum complement 3 (C3) levels and elim-
inated hematuria. But serious thromboembolic events 
caused premature discontinuation [183]. 

2.4  Affecting B cells growth and survival by blocking 
Blys 

2.4.1  Belimumab 

Belimumab is a fully humanized monoclonal antibody 

against Blys. By blocking the binding of Blys to its recep-
tors (mainly but not limited to BR3), Belimumab could re-
settle the apoptosis and maturation of B cells. It has re-
ceived marketing approval for lupus treatment by the Euro-
pean Medicines Agency and USA, and it is the first biolog-
ical medication officially approved for refractory SLE. Ev-
idence comes primarily from two clinical trials, BLISS (the 
study of Belimumab in Subjects with SLE) 52 and BLISS 
76, both enrolled lupus patients with mild or moderate dis-
ease from different ethnic origins, excluding those with ac-
tive nephritis or neuropsychiatric involvement, and both 
have met their endpoints [184–186]. Combined results show 
Belimumab is effective in treating musculoskeletal and 
mucocutaneous manifestations and slows down the wors-
ening of the BILAG haematological and renal domains than 
placebo [186]. Post Hoc analysis suggests that patients with 
renal involvement especially those with serological activity 
or receiving MMF at baseline might also benefit from 
Belimumab [187]. In addition, Belimumab treatment helps 
to normalize complement levels and reduce anti-dsDNA 
antibodies and decrease certain B cells populations [188]. 
Responses more likely occurr in patients with higher disease 
activity [189]. 

2.4.2  Atacicept 

Atacicept is a fusion protein of extracellular domain of 
TACI conjugated with human IgG Fc. Atacicept could 
block Blys and APRIL binding to TACI. Phase Ib place-
bo-controlled trial displayed biological activity of Atacicept 
in abating Ig levels and reducing total B cell numbers, in a 
dose-dependent manner [190]. Two phase II RCT of 
Atacicept in treating refractory rheumatoid arthritis dis-
played a rapid and profound decline of Ig and rheumatoid 
factor levels as well as circulating mature B cells and plas-
ma cells in Atacicept group, although the primary endpoint 
of ACR20 was not met [191,192]. The biologic effects jus-
tify clinical trials in SLE. But a clinical trial aiming at LN 
patients was terminated prematurely because of serious in-
fections associated with hypogammaglobulineamia which 
might be due to simultaneous MMF therapy [193]. In an-
other SLE randomized trial, 150 mg but not 75 mg 
Atacicept showed benefits in reducing flare rates and pro-
longing prior-relapsing time compared to placebo, although 
both dosages have improved serological index [194]. Nota-
bly, 150 mg arm was discontinued early because of two 
deaths. 

2.4.3  Blisibimod/Tabalumab 

Blisibimod (AMG 623) is a human IgG-Fc fused protein 
with high affinity to soluble and membrane-bound Blys. As 
for NZB/NZW F1 lupus mice, Blisibimod led to decreased 
B cell number and improvement of disease activity [195]. In 
PEARL-SC study, a phase II/III trial of Blisibimod which 
enrolled moderate to severe SLE patients, reduced pro-
teinuria and decreased B cell number, as well as restoration 
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of serum C3 levels and lowering of anti-dsDNA antibodies 
have been observed with a favorable outcome on cumula-
tive severe flare in Blisibimod therapeutic group [196]. 
Tabalumab is another human neutralizing monoclonal anti-
body targeting both membrane and soluble Blys [197]. Alt-
hough in rheumatoid arthritis, phase II clinical trials of 
Tabalumab show inconsistent results [198–200] and phase 
III RCT is terminated due to lack of efficacy [201,202], 
recently published data from two multicentre phase III RCT 
of Tabalumab in treating moderate to severe SLE 
(ILLUMINATE-1 and -2) (NCT00111306 and NCT00- 
383214) seems promising. Both trials show significantly 
improvement in serum biomarkers of disease activity like 
anti-dsDNA and C3. But the primary endpoint of SLE re-
sponder index 5 has been only met in ILLUMINATE-2 at 
the dose of 120 mg Q2w, but not met at the dose of 120 mg 
Q4w and in ILLUMINATE-1 study. These trials suggest 
that the dosing strategy and the demographic characteristics 
have important influence on the therapeutic effects, and 
regime for different patients should be optimized [203,204]. 

2.5  Proteasome inhibitor  

Long-lived plasma cells, being capable of continuing pro-
ducing autoantibodies and resistant to conventional treat-
ments and anti-CD20 biologics, are responsible for refrac-
tory disease and flare. Bortezomib, a proteasome inhibitor 
that has been approved for multiple myeloma treatment, 
shows effects in efficiently depleting long-lived plasma 
cells, ameliorating nephritis, reducing disease activity and 
prolonging survival in lupus mice [205,206]. The mecha-
nism is explored and inhibition of IFN production by sup-
pressing TLR-activated plasmacytoid DC is proposed, 
probably through interrupting the translocation and intra-
cellular trafficking of TLR [207,208]. Data from 
non-controlled small sample clinical trial indicates Borte-
zomib could significantly reduce anti-dsDNA titers and 
plasma cell numbers as well as disease activity [209]. But 
these effects could not perpetuate, and the adverse effects 
occur frequently, leading to discontinuation in more than 
half of the patients. Further randomized controlled 
well-designed studies are needed for evaluation of its appli-
cation in SLE. 

3  Perspective of SLE targeted therapy focusing 
on B cells 

B cell-targeting therapy seems to be a promising approach 
in the treatment of SLE, but more effective agent and ap-
propriate enrollment criteria and further elucidation of B 
cells pathogenesis in SLE are needed. Strictly speaking, all 
these so far developed targeting therapy do not accurately 
“target” pathogenic B cells without affecting “good” B cell 
populations. Thus we should be always vigilant about the 

increased risks of infection and other adverse effects. 
Moreover, due to the complicated mechanisms and various 
components involved in the pathogenesis of SLE, no single 
drug will be appropriate for all SLE patients at each stage of 
disease course. More precise targeting therapy and rational-
ly combined medications should be explored in the future.  
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