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Heme is an iron-containing tetrapyrrole that plays a critical role in regulating a variety of biological processes including oxy-
gen and electron transport, gas sensing, signal transduction, biological clock, and microRNA processing. Most metazoan cells 
synthesize heme via a conserved pathway comprised of eight enzyme-catalyzed reactions. Heme can also be acquired from 
food or extracellular environment. Cellular heme homeostasis is maintained through the coordinated regulation of synthesis, 
transport, and degradation. This review presents the current knowledge of the synthesis and transport of heme in metazoans 
and highlights recent advances in the regulation of these pathways.  

heme, iron, synthesis, transport, regulation  

 

Citation:  Sun FX, Cheng YJ, Chen CY. Regulation of heme biosynthesis and transport in metazoa. Sci China Life Sci, 2015, 58: 757–764, 
doi: 10.1007/s11427-015-4885-5  

 

 
 

Heme is an iron-containing tetrapyrrole that serves as a 
critical cofactor for numerous proteins. Globins and cyto-
chromes require heme for their biological functions [1,2]. 
Heme is also the activity center of such enzymes as cat-
alases, myeloperoxidases, thyroperoxidases, lactoperoxi-
dases, cytochrome P450s, inducible nitric oxide synthases 
(iNOS), and soluble guanylate cyclases (sGC) [1,2].  

Besides serving as a cofactor, heme is an essential regu-
lator of several cellular processes. Heme can bind and regu-
late the transcriptional factors BACH1, Rev-erbs, CLOCK, 
neuronal PAS domain-containing protein 2 (NPAS2), and 
P53. BACH1 is a transcriptional repressor. Binding of heme 
relieves the transcriptional repression and up-regulates 
downstream genes, which are involved in hematopoiesis, 
macrophage development, and antioxidation [3–6]. Heme 
also regulates the circadian rhythm by physically interacting 
with the nuclear receptors Rev-erb  and , CLOCK, and 
NPAS2 [7–10]. Additionally, the activity of tumor suppres-
sor protein P53 is regulated by heme availability [11]. Heme 
inhibits the interaction between P53 and its target DNA 

element and facilitates the nuclear export and proteasomal 
degradation of P53 [11]. Heme is also required for the 
proper binding of the microprocessor subunit DGCR8 to 
primary microRNA transcripts (pri-miRNAs), and thus 
plays a critical role in the processing of pri-miRNAs [12–14].  

Given the important biological role of heme in diverse 
cellular pathways, either insufficient or excess heme would 
have detrimental effects on cell metabolism and function. 
Further, free heme is a cytotoxic compound due to its in-
trinsic peroxidase activity. Thus, cells have developed ex-
quisite mechanisms to regulate heme metabolism in order to 
maintain its homeostasis. This review presents the current 
knowledge of heme synthesis and trafficking in metazoans, 
and highlights recent advances in the regulation of these 
pathways. The regulation of heme degradation has been 
reviewed recently [15,16] and is not discussed here. 

1  Regulation of heme biosynthesis 

1.1  Uptake of iron for heme synthesis 

In most metazoan species, heme is synthesized via an 
eight-step pathway from the substrates ferrous iron, glycine, 
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and succinyl-CoA (Figure 1). Most cells, especially devel-
oping erythrocytes, take up iron through transferrin  
cycle [17,18]. Transferrin receptor (TFR) on the cell surface 
interacts with di-ferric transferrin, followed by clathrin- 
mediated internalization into early endosomes. During the 
maturation of endosomes, the associated iron is released. 
The rest of transferrin complex is recycled to the cell sur-
face, where TFR and transferrin dissociate.  

Regulatory molecules exist to ensure the unidirectional 
movement of the transferrin complex. Three studies unani-
mously reported that the phosphatidylinositol binding clath-
rin assembly protein (PICALM) plays an essential role in 
TFR endocytosis [19–21]. Picalm-deficient mice developed 
severe anemia, which is due to impaired uptake of iron in 
erythroid precursors. Further cell biological evidences sug-
gest that PICALM facilitates the maturation of clathrin coat 
and the endocytosis of transferrin complex. Another traf-
ficking protein required for the transferrin cycle is sorting 
nexin 3 (SNX3) [22]. SNX3 is highly expressed in the hem-
atopoietic tissues of mice and zebrafish. Knockdown of 
snx3 in zebrafish embryos caused profound anemia, a phe-
notype that can be rescued by supplementing non-transfer- 
rin bound iron. Snx3-deficient erythroid cells had accumula- 
tion of transferrin complex within early endosomes, indi- 

 

 
Figure 1  Regulation of heme synthesis in animals. Heme is synthesized 
via a conserved pathway comprised of eight enzyme-catalyzed reactions. 
Aminolevulinic acid synthase (ALAS) and ferrochelatase (FECH), the first 
and the last enzymes in the pathway, are regulated by the oxygen level and 
cellular iron status. Iron is imported into cells by the transferrin cycle, a 
process that is regulated by phosphatidylinositol binding clathrin assembly 
protein (PICALM), sorting nexin 3 (SNX3), and exocyst complex compo-
nent 6 (SEC15L1). Mitoferrin mediates iron import into mitochondria. 
Glycine may be imported by glycine transporter 1 (GLYT1) and solute 
carrier family 25 member 38 (SLC25A38) or be generated within the mi-
tochondria, and succinyl-CoA is provided by the Krebs cycle. Transmem-
brane protein 14C (TMEM14C) may translocate protoporphyrinogen IX 
(PPgenIX) across the inner mitochondrial membrane. The Feline Leukemia 
Virus subgroup C receptor 1b (FLVCR1b) may transport heme out of 
mitochondria.  

cating impaired trafficking from early to recycling endo-
somes. Once reaching recycling endosomes, the transferrin 
complex requires the exocyst complex component 
SEC15L1 for returning to the cell surface [23,24].  

The net outcome of transferrin cycle is the translocation 
of iron from the blood circulation to endosomes. How does 
the imported iron move out of the endosomes and get into 
the mitochondria for heme synthesis? First, six-transmem- 
brane epithelial antigen of the prostate member 3 (STEAP3) 
and related proteins reduce the ferric iron to ferrous iron 
[25,26]. Second, the ferrous iron is exported out of the en-
dosomes. The divalent metal transporter DMT1 is known to 
translocate iron across the endosomal membranes [27]. The 
cation channel protein mucolipin 1 was also reported to be 
an iron channel in endolysosomes [28]. However, the pri-
mary function of mucolipin 1 is likely to transport calcium 
[29]. Third, following endosomal release, iron is transported 
to the mitochondria. Cytosolic iron chaperones, such as poly 
(rC) binding protein 1 (PCBP1) and PCBP2, deliver iron to 
the iron storage protein ferritin and cytoplasmic 
iron-containing proteins [30–32]. The specific chaperone 
that mediates iron transport from endosomes to the mito-
chondria has yet to be identified. Next, iron is imported into 
the mitochondria by mitoferrins [33]. Mitoferrin 1 is highly 
expressed in vertebrate hematopoietic tissues and plays a 
primary role in supplying iron for heme synthesis in 
erythroid cells [33]. Its ubiquitously expressed paralog, mi-
toferrin 2, may be responsible for mitochondrial iron import 
in non-erythroid cells [34].  

1.2  Supply of succinyl-CoA and glycine for heme syn-
thesis 

The first and rate-limiting reaction in heme biosynthesis 
pathway is the condensation of succinyl-CoA and glycine to 
form -aminolevulinic acid (ALA) (Figure 1). Suc-
cinyl-CoA is derived from the Krebs cycle (also called citric 
acid cycle). Over 50 years ago, it was proposed that the 
production of succinyl-CoA could be an important factor 
regulating heme production [35,36]. To date, however, it is 
still unclear whether succinyl-CoA is a limiting factor dur-
ing heme synthesis and whether the rate of succinyl-CoA 
formation is increased to meet the high demand of heme 
production in such tissues as bone marrow and liver. 

The amino acid glycine can be synthesized within the 
cell through several metabolic pathways [37,38]. For exam-
ple, the serine hydroxymethyltransferase SHMT2 catalyzes 
the formation of glycine from serine and tetrahydrofolate 
within the mitochondria [39,40]. Glycine can also be pro-
duced from other sources such as choline and threonine [37,38]. 
Currently, the contribution of endogenously synthesized 
glycine to heme biosynthesis is unclear.  

In addition to its biosynthesis, glycine can be imported 
into cells by transporters. Neuronal tissues use glycine 
transporters GLYT1 and GLYT2 to take up glycine [41–43]. 
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A recent transcriptome analysis detected GLYT1 as one of 
the mRNAs enriched in developing erythrocytes [44]. The 
Glyt1 knockout mice developed microcytic hypochromic 
anemia [45]. Glycine uptake and heme production were 
both reduced in the Glyt1-deficient erythroid cells [45]. 
These studies suggest that GLYT1 may be the primary 
transporter supplying glycine for heme synthesis in 
erythroid tissues. After entering the cytoplasm, glycine 
needs to be delivered to the mitochondria for heme synthe-
sis. The solute carrier family protein SLC25A38 was pro-
posed to transport glycine across the inner membrane of 
mitochondria [46]. Mutation of this gene caused nonsyn-
dromic congenital sideroblastic anemia in humans [46,47]. 
Deletion of SLC25A38 homolog in yeast led to reduced 
ALA production, indicating that this carrier protein regu-
lates the first step of porphyrin synthesis [46].  

1.3  Regulation of heme synthesis enzymes 

While the regulatory mechanisms for most enzymes in 
heme biogenesis are unclear, the first and final enzymes 
have been shown to be regulated by iron status, oxygen lev-
els, and other related factors.  

Aminolevulinic acid synthase (ALAS) is the enzyme cat-
alyzing the first step of heme biosynthesis. Two ALAS pa-
ralogs exist in vertebrate animals. The expression of ALAS1, 
a ubiquitously expressed gene, is stimulated by the circadi-
an clock gene NPAS2 and repressed by heme [7,48,49]. 
ALAS2, or eALAS, is specifically expressed in erythroid 
cells [50]. The expression of ALAS2 is regulated post-   
transcriptionally by iron through the iron regulatory protein 
1 (IRP1) [51,52]. When cellular iron is insufficient, IRP1 
binds to the iron regulatory element in the 5′ untranslated 
region of ALAS2 mRNA, leading to its reduced translation [51,52]. 
Besides, ALAS2 expression is induced by hypoxia [53]. 
Hypoxia-inducible factor 1 (HIF1) can activate the tran-
scription of ALAS2 [54]. 

Ferrochelatase (FECH) catalyzes the final step of heme 
synthesis—the incorporation of iron into protoporphyrin IX 
(PPIX). Similar to ALAS2, the expression of FECH is also 
regulated by oxygen levels through HIF1 [55]. Animal 
FECHs contain iron-sulfur [2Fe-2S] clusters. Both the sta-
bility and the enzymatic activity of metazoan FECH pro-
teins are regulated by iron availability as well as the pro-
duction of iron-sulfur clusters [56,57]. Because of the pres-
ence of [2Fe-2S] clusters, animal FECHs are also regulated 
by mitochondrial pH and redox potential. For example, al-
kalization of mitochondria due to deficiency of ATPase 
inhibitory factor 1 reduced the activity of FECH and the 
production of heme [57].  

The insertion of iron into PPIX is facilitated by the ATP 
binding cassette protein ABCB10. ABCB10 physically in-
teracts with both mitoferrin 1 and FECH [58]. This interac-
tion ensures that the imported iron is preferentially utilized 
for heme production. Deletion of Abcb10 in mice impaired 

heme biosynthesis, erythropoiesis, and caused embryonic 
lethality [59]. Tissue-specific knockout of Abcb10 in mouse 
hematopoietic cells resulted in accumulation of iron and 
PPIX in reticulocytes, confirming its role in the final step of 
heme synthesis pathway [59].  

1.4  Transport of heme synthesis intermediates 

The biosynthesis of heme starts and ends in the mitochon-
dria, while four intermediate reactions take place in the cy-
tosol. Therefore, the products of several reactions need to be 
shuttled between the mitochondria and the cytosol in order 
to be used as substrates for the subsequent reactions (Figure 
1). First, ALA needs to be transported across the mitochon-
drial membranes to the cytosol, where the subsequent four 
heme synthesis enzymes are located. A study suggested that 
ABCB10 might mediate this translocating event [60]. 
However, other biochemical and genetic studies indicate 
that ABCB10 is more likely to be involved in the final step 
of heme synthesis, as discussed above [59,61].  

Coproporphyrinogen III (CPgenIII) is formed from ALA 
via four enzyme-catalyzed reactions in the cytosol. The en-
zyme receiving CPgenIII, coproporphyrinogen oxidase 
(CPOX), is anchored on the mitochondrial matrix with the 
active site in the intermembrane space [62]. ABCB6 was 
proposed to be responsible for transporting CPgenIII across 
the mitochondrial outer membrane [63]. However, a more 
recent study revealed that ABCB6 specifies the blood group 
Langereis and is not required for erythropoiesis [64]. 
Therefore, the real identity of CpgenIII transporter remains 
elusive.  

The product of CPOX, protoporphyrinogen IX (PPge-
nIX), is then converted into PPIX by protoporphyrinogen 
oxidase (PPOX), which forms a complex with the final en-
zyme FECH in the mitochondrial matrix [62,65,66]. A re-
cent report showed that PPgenIX may be transported to 
PPOX by transmembrane protein 14C (TMEM14C) [67]. 
TMEM14C was first identified by a large-scale bioinfor-
matics analysis to co-express with heme synthesis genes [68]. 
Silencing of tmem14c with morpholinos resulted in pro-
found anemia in zebrafish embryos [68]. Tmem14c- 
deficient mice die during embryonic development [67]. 
These mutant mice had CPgenIII accumulation accompa-
nied by reduced level of PPIX in the fetal liver. This obser-
vation was further validated by the rescue of heme defects 
with a PPIX analog, deuteroporphyrin IX, in Tmem14c- 
deficient cells [67]. As a transmembrane protein localized to 
the inner mitochondrial membrane, TMEM14C may medi-
ate the import of PPgenIX into the mitochondrial matrix [67].  

2  Heme transport and regulation of heme ho-
meostasis 

Besides biosynthesis and degradation, cellular heme home-
ostasis is also maintained by trafficking. A number of mol-
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ecules and pathways have been identified to transport heme 
within and between cells (Table 1).  

2.1  Heme import 

Heme is absorbed by human intestine at a much higher effi-
ciency than inorganic iron, indicating the presence of spe-
cific heme uptake system. Heme carrier protein 1 (HCP1) 
was reported to be a heme importer in mammalian intestine [69]. 
However, HCP1 is actually a high-affinity, proton coupled 
folate transporter [82]. It remains to be tested whether the 
low affinity heme transport activity of this folate transporter 
has physiological relevance.  

By using the model organism Caenorhabditis elegans, 
Rajagopal et al. [70] identified a high-affinity heme import-
er—heme responsive gene-1 (HRG-1). Because C. elegans 
and related nematodes are unable to synthesize heme, they 
completely rely on food for heme nutrition. In the worm 
intestine, HRG-1 is responsible for mobilizing heme out of 
the endosomal-lysosomal organelles, whereas its paralog 
HRG-4 imports dietary heme through the apical surface of 
intestinal cells. The heme transport activities of C. elegans 
HRG-1 and HRG-4 have been verified in worms, Xenopus 
oocytes, and yeast [70,83]. In a similar way, the homolog of 
HRG-4 in Leishmania amazonensis, Leishmania Heme Re-
sponse-1 (LHR-1), mediates heme uptake in the parasites 
[84]. HRG-1, HRG-4, and LHR-1 are all transcriptionally 
up-regulated under heme-limiting conditions [70,84].  

Another C. elegans gene, hrg-2, is also induced by heme 
deficiency [85]. HRG-2 localizes to the endoplasmic retic-
ulum and apical plasma membrane of the hypodermal cells. 
It binds heme and facilitates heme utilization by the hypo-
dermis of worms. The precise function of HRG-2 in heme 
homeostasis is currently unclear. 

2.2  Heme export 

The Feline Leukemia Virus subgroup C receptor (FLVCR 
or FLVCR1) is the first heme transporter identified in eu-
karyotes [71]. Two isoforms of FLVCR1, FLVCR1a and 
FLVCR1b, may play distinct roles in mammalian heme 

homeostasis. FLVCR1a is a heme exporter [71], whereas 
FLVCR1b may be an intracellular heme transporter [74]. In 
macrophages of the reticuloendothelial system, FLVCR1a 
exports heme that is derived from ingested senescent red 
blood cells [72]. The heme export activity of FLVCR1a was 
also reported in hepatocytes and T cells [86,87]. Hypoxia 
induces the expression of FLVCR through HIF2 and the 
HIF-dependent transcription factor v-ets avian erythroblas-
tosis virus E26 oncogene homolog 1 (ETS1) [88].  

Korolnek et al. [73] identified the multidrug resistance 
protein MRP-5/ABCC5 as another heme exporter in ani-
mals. In C. elegans, MRP-5 localizes to the basolateral sur-
face of the intestinal cells and mediates heme export out of 
the intestine. Deletion of mrp-5 results in embryonic death, 
which is due to impaired heme transfer to extra-intestinal 
tissues [73]. In vertebrate cells, MRP-5 localizes to both 
plasma membrane and intracellular compartments [73]. De-
ficiency of mrp-5 led to reduced heme loading into the se-
cretory compartments in mouse embryonic fibroblasts and 
profound anemia in zebrafish embryos [73].  

2.3  Intracellular heme transport  

Within the cell, heme is produced in the mitochondria. 
However, many hemoproteins are present in other subcellu-
lar compartments. It was proposed that FLVCR1b, the mi-
tochondrial isoform of FLVCR1a, is responsible for trans-
locating heme out of the mitochondria [74]. Based on the 
observations that the Flvcr1 (the gene expresses both 
Flvcr1a and Flvcr1b) knockout mice die during embryonic 
development and Flvcr1a knockout mice had normal eryth-
ropoiesis [72,74], Chiabrando et al. [74] concluded that the 
phenotypes observed in Flvcr1 knockout mice were due to 
deficiency of Flvcr1b. Furthermore, silencing of FLVCR1b 
resulted in heme accumulation within the mitochondria. 
Therefore, it was proposed that FLVCR1b regulates heme 
export from the mitochondria while FLVCR1a regulates 
heme efflux through the plasma membrane [74]. 

Once inside the cytoplasm, heme needs to be delivered to 
target hemoproteins. Glyceraldehyde-3-phosphate dehy- 

Table 1  Proteins involved in heme transport in animals 

Category Protein Reported function Reference 
heme import HCP1 import heme into intestinal cells [69] 

HRG-4 import heme into intestinal cells [70] 
heme export FLVCR export heme out of macrophages [71,72] 

MRP5 export heme out of intestinal cells [73] 
intracellular heme transport FLVCR1b export heme out of mitochondria [74] 

HRG1 export heme out of endosomal-lysosomal organelles and phagolysosomes [70,75] 
GAPDH insert heme into iNOS [76] 
HSP90 insert heme into sGC [77] 

intercellular heme transport hemopexin bind heme in the blood and deliver heme to hepatocytes and macrophages [78–80] 
HRG-3 deliver heme from maternal intestine to developing oocytes [81] 
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drogenase (GAPDH) and 90 kD heat-shock protein (HSP90) 
were reported to mediate heme insertion into iNOS and sGC, 
respectively. GAPDH is known to be an enzyme catalyzing 
the conversion of glyceraldehyde-3-phosphate into 
1,3-bisphosphoglycerate. Chakravarti et al. [76] found that 
GAPDH interacts with both heme and iNOS. Knockdown 
of GAPDH or mutation of the heme-binding site in GAPDH 
significantly reduced heme incorporation into iNOS. The 
product of iNOS, nitric oxide (NO), also inhibited heme 
insertion into iNOS through S-nitrosylation of GAPDH [76]. 
Heme insertion into sGC was found to be mediated by 
HSP90, which preferentially interacts with apo-sGC [77]. 
HSP90-mediated heme incorporation converts apo-sGC into 
a mature active form that is responsive to NO [77]. The in-
sertion of heme into sGC is positively regulated by NO [89]. 

HRG-1 and its mammalian homologs also transport heme 
within the cell. As discussed above, C. elegans HRG-1 
transports heme from the endosomal-lysosomal organelles 
to the cytosol within the intestinal cells [70]. Similarly, ma- 
mmalian HRG1 transports heme from the phagolysosomes 
to the cytosol of the reticuloendothelial macrophages [75]. 
During erythrophagocytosis, macrophage phagolysosomes 
are responsible for breaking down ingested red blood cells 
to release heme. HRG1 specifically localizes to the phago-
lysosomal membranes during erythrophagocytosis. Silenc-
ing of HRG1 significantly reduced the heme levels in the 
cytosol of bone marrow-derive macrophages [75]. Knock-
down of hrg1 in zebrafish resulted in hypochromic anemia [70]. 
The expression of HRG1 in reticuloendothelial macrophages 
is up-regulated by both erythrophagocytosis and heme [75]. 
Thus, vertebrate HRG1 plays a critical role in recycling 
heme and heme iron from the senescent red blood cells [75].  

2.4  Intercellular heme transport 

Hemopexin is a high-affinity heme binding protein in the 
blood [78]. It accepts heme from FLVCR through direct 
protein-protein interactions [90]. Binding of heme by 
hemopexin may be a critical step in the recycling of heme 
during erythrophagocytosis. Low-density lipoprotein recep-
tor-related protein (LRP1) was found to be the receptor for 
hemopexin [79]. LRP1 is expressed in several cell types 
including hepatocytes, macrophages, neurons, and syncyti-
otrophoblasts. Hada et al. [80] confirmed that hepatocytes 
and macrophages are able to take up the hemopexin-heme 
complex. Uptake of hemopexin-bound heme but not free 
heme was inhibited by treating the cells with the inhibitor of 
clathrin-mediated endocytosis, validating that the hemopex-
in-heme complex enters cells through endocytosis [80]. 

The heme responsive gene 3 (HRG-3) is an intercellular 
heme trafficking protein in C. elegans [81]. Heme deficien-
cy induces hrg-3 expression in the worm intestine. HRG-3 
protein binds stoichiometric amounts of heme and is se-
creted into the worm circulation pseudocoelom. HRG-3- 
heme can be taken up by tissues such as developing oocytes. 

During this process, heme is transferred from maternal in-
testine to the oocytes and embryos. The progeny of hrg-3- 
deficient worms are arrested during embryonic development 
or at early larval stages due to heme deficiency. Therefore, 
HRG-3 plays a critical physiological role in delivering heme 
to oocytes and related tissues in worms.  

3  Conclusion 

Sixty years ago, Shemin and other researchers [91,92] dis-
covered the enzymes and substrates for the heme synthesis 
pathway. Since then, heme-related research has attracted a 
lot of interest. The recent years have witnessed a rapid ex-
pansion of knowledge in heme metabolism. A number of 
regulatory molecules and mechanisms have been identified 
in iron uptake and heme synthesis pathways. Importantly, 
discoveries of heme transporters such as FLVCR and HRG1 
proved that heme does not move around freely in the cell. 
Several key gaps still remain in our knowledge of heme 
metabolism: (i) What is the real identity of the heme recep-
tor in human intestine? (ii) What mechanisms regulate the 
intermediate steps of heme synthesis? (iii) How does heme 
enter nuclei, lysosomes, peroxisomes, and the secretory 
pathway? By using yeast, worm, zebrafish, and mouse as 
the model systems, researchers are actively trying to address 
these questions and to further our understanding of heme 
metabolism.  
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