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The remarkable ability of rapid self-renewal makes the intestinal epithelium an ideal model for the study of adult stem cells. 
The intestinal epithelium is organized into villus and crypt, and a group of intestinal stem cells located at the base of crypt are 
responsible for this constant self-renewal throughout the life. Identification of the intestinal stem cell marker Lgr5, isolation 
and in vitro culture of Lgr5+ intestinal stem cells and the use of transgenic mouse models have significantly facilitated the 
studies of intestinal stem cell homeostasis and differentiation, therefore greatly expanding our knowledge of the regulatory 
mechanisms underlying the intestinal stem cell fate determination. In this review, we summarize the current understanding of 
how signals of Wnt, BMP, Notch and EGF in the stem cell niche modulate the intestinal stem cell fate. 
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The primary functions of the intestinal tract are to digest 
food, absorb nutrients and defend infection from bacterial 
pathogens. To fullfil these functions, the intestinal epithe-
lium has become the most rapidly self-renewing organ in 
adult mammalian [1], with a 45 day turnover rate [2]. This 
remarkable constant self-renewing is fueled by a group of 
special adult stem cells—intestinal stem cells in the crypts.  

1  Intestinal stem cell and its markers 

The intestinal epithelium is composed of numerous repeti-
tive self-renewing crypt-villus units (Figure 1) [3], in which 
each villus is surrounded by several invaginations—crypts 
of Lieberkühn. The crypt harboring stem cells and early 
progenitors is considered as the proliferation compartment, 
while the differentiation compartment is mainly referred to 
as the villus composed of multiple differentiated lineages. 
At the base of each crypt, multiple intestinal stem cells pos-

sess the ability of indefinitely self-renewing while generat-
ing early progenitors—transit amplifying (TA) cells [4]. 
These TA cells divide rapidly and migrate upwards while 
gradually differentiating into one of the absorptive (entero-
cytes) or secretory cell lineages (Paneth cells, goblet cells 
and enteroendocrine cells). Whereas enterocytes, goblet 
cells and enteroendocrine cells keep moving upwards to-
wards villi tips where they are ejected into the gut lumen via 
apoptosis, Paneth cells migrate downwards and reside at the 
bottom of crypts [5,6].  

Over the past 40 years, two theories about the identity of 
intestinal stem cells in crypts have been proposed. The 
“stem cell zone” model was originally proposed by Leblond 
and colleagues in 1974 [7,8], while the “+4 stem cell” 
model was reported later by Potten and colleagues in 1978 
[9]. In the “stem cell zone” model, Leblond and colleagues 
proposed the crypt base columnar cells (CBC) wedged 
between Paneth cells are intestinal stem cells, and these 
CBC cells establish a stem cell permissive zone together 
with Paneth cells at the bottom of crypt. Once exiting this 
zone, their daughter cells gradually commit to multiple 
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Figure 1  The intestinal epithelium and stem cells. The intestinal epithelium is divided into protruding villi and invaginating crypts. Lgr5+ intestinal stem 
cells at the base of crypt are wedged between Paneth cells, and “+4 stem cells” reside right above the Paneth cells. Adjacent epithelial cells, pericryptal stro-
mal cells and the basement membrane constitute the stem cell niche, in which stem cells maintain the ability of self-renewing while generating TA cells. 
These TA cells divide rapidly and migrate upwards while gradually differentiating into one of the absorptive or secretory cell lineages. The enterocytes, 
goblet cells and enteroendocrine cells keep moving upwards towards villi tips where they are eventually ejected into the gut lumen via apoptosis. On the 
contrary, Paneth cells migrate downwards towards the bottom of crypts. 

differentiated lineages [10,11]. On the other hand, however, 
the “+4 stem cell” model suggestes that intestinal stem cells 
reside at position 4 right above the Paneth cells. These +4 
stem cells are capable of retaining labelled DNA, which is 
well consistent with the “immortal strand hypothesis” 
described in the adult stem cells by John Cairns and 
colleagues in 1975 [12]. More specifically, the “immortal 
strand” is achieved through asymmetic segregation of the 
old DNA strands and newly synthesized DNA strands into 
stem cell and its progeny respectively during mitosis. 
However, due to the lack of specific markers for these 
proposed stem cells, the debate has never stopped until the 
first specific intestinal stem cell maker Lgr5 (leucine-rich 

repeat-containing G-protein-coupled receptor 5) was identi- 
fied in 2007. Thereafter, this field has been experiencing an 
accelerated advance.  

1.1  The CBC cells marked by Lgr5 

As Wnt signal is one of the major forces supporting the 
crypt proliferation [13], Wnt target genes might indicate the 
location of intestinal stem cells in crypts. Hans Clevers and 
colleagues investigated a Wnt target gene expression profile 
with microarray on colon cancer cell line LS174T [14] and 
further revealed that the Wnt target gene Lgr5 is selectively 
expressed in the CBC cells at the bottom of crypt. The se-
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lective expression of Lgr5 in the CBC cells can be clearly 
observed in Lgr5-LacZ and Lgr5EGFP-ires-CreERT2 knock-in 
mouse models established later [15]. Then, a lineage tracing 
experiment in Lgr5EGFP-ires-CreERT2/R26R-LacZ mice identi-
fied Lgr5 to be a reliable marker for intestinal stem cells. 
Through activation of LacZ expression in a single Lgr5+ 
cell by low-dose-tamoxifen-induced Cre recombination, all 
of its daughter cells could express LacZ continuously. The-
se Lgr5+ cells-derived cells expanded from the crypt to the 
villus in a short period and differentiated to all of the four 
cell lineages [15]. Consistently, a single Lgr5+ CBC cell 
can grow into long-term organoid in vitro with the ability of 
self-renewal and differentiation [16]. These pieces of evi-
dence together validate that Lgr5+ CBC cells indeed repre-
sent the intestinal stem cells.  

In a follow-up study, analysis of gene expression pro-
gram in single Lgr5+ intestinal stem cells through FACS 
(fluorescence-activated cell-sorted) further unveiled other 
putative stem cell markers. Thus, another Wnt target gene 
Ascl2 (achaete-scute complex homolog 2) was identified as 
an exquisite marker for CBC cells and a master regulator in 
intestinal stem cells [17]. Besides, Olfm4 (olfactomedin 4) 
was also reported as a specific intestinal stem cell marker 
[18]. Until now, it is generally acknowledged that Lgr5+ 
CBC cells are the best described intestinal stem cells.  

1.2  The +4 stem cells marked by Bmi1 

Attempts to characterize the “+4 stem cell” originally re-
ported by Potten and colleagues have also been made over 
the past few decades. Bmi1 (bmi1 polycomb ring finger 
oncogene) was the first reported marker for “+4 stem cell”, 
which was validated by lineage tracing experiment [19]. 
Further study indicated that the Bmi1+ stem cells represent 
a stem cell population that is relatively quiescent and inju-
ry-resistant. Upon radiation-induced injury, the Bmi1+ stem 
cells can rapidly proliferate to compensate the loss of ac-
tively cycling Lgr5+ stem cells [20]. Other putative +4 stem 
cell markers include mTert (telomerase reverse transcriptase) 
[21], Hopx (hop homeobox) [22] and Lrig1 (leucine-rich 
repeats and immunoglobulin-like domains 1) [23]. However, 
it is worth to note that a series of recent studies argued that 
all these +4 markers exhibit a rather broader expression 
pattern and are even most abundant in the Lgr5+ CBC cells, 
which challenges them as “+4 stem cell” markers. The true 
identity of “+4 stem cell” originally reported by Potten still 
needs further clarification.  

In recent years, researchers in this field have gradually 
acknowledged a plasticity theory [24]. The theory proposes 
that the intestinal crypts harbor two pools of stem cells, 
Lgr5+ CBC cells (actively cycling and responsible for daily 
renewal) and +4 reserve stem cells (relatively quiescent and 
responsible for injury-induced regeneration), and that these 
two pools may interconvert with each other under certain 
circumstance.  

2  Signals modulating the intestinal stem cell 
fate 

Although dispute about the true identity of intestinal stem 
cells still exists, there is a consensus that intestinal stem 
cells live in a specialized niche, where signals of Wnt, BMP 
(bone morphogenetic protein), Notch and EGF (epidermal 
growth factor) work in concert to modulate the intestinal 
stem cell fate including self-renewal, proliferation and dif-
ferentiation (Figure 2).  

2.1  The intestinal stem cell niche 

The intestinal stem cells reside in a specialized niche con-
taining adjacent epithelial cells, pericryptal stromal cells 
and the basement membrane. This stem cell niche supplies 
essential signals of EGF, Wnt, BMP and Notch to orches-
trate the self-renewal, proliferation and differentiation of 
intestinal stem cells [25]. Recently, the contribution of Pan-
eth cells in the stem cell niche has received intense attention, 
as each of individual Lgr5+ intestinal stem cells is in close 
contact with surrounding Paneth cells, which secrete various 
important niche ligands including EGF, Wnt3a and Notch 
[2628].  

2.2  Wnt signals 

The Wnt signals exhibit a spatial gradient along the 
crypt-villus axis, with the highest activity in proliferating 
crypt and the lowest activity in differentiating villus [29]. In 
the intestinal stem cell niche, Wnt ligands are mainly se-
creted by epithelial cells and pericryptal stromal cells 
[30,31], among which Paneth cells have been shown to rep-
resent a primary source of Wnt3a ligands [27].  

The Wnt signaling pathway plays an evolutionarily con-
served role in controlling a series of embryonic develop-
ment processes and in modulating the self-renewal of a 
number of adult stem cells [32]. In the absence of Wnt lig-
ands, the destruction complex containing Axin2 (axis inhi-
bition 2), APC (adenomatosis polyposis coli), CK1 (casein 
kinase 1) and GSK-3β (glycogen synthase kinase 3 beta) 
promotes the proteasomal degradation of cytoplasmic 
β-catenin. Once engaging the Frizzled-Lrp5/6 co-receptors, 
Wnt ligands increase the stabilization of β-catenin, resulting 
in the translocation of accumulated β-catenin into the nu-
cleus where it regulates target gene expression together with 
the Tcf (T-cell-specific transcription factor) family of tran-
scription factors [33].  

In intestine, Wnt signals play a critical role in maintain-
ing the self-renewal and proliferation of intestinal stem cells. 
Back to early 1990s, it was found that a majority of colo-
rectal cancers have active Wnt signaling, by harboring mu-
tations of the APC gene [34,35], which encodes a key nega-
tive regulator of Wnt signaling. In rare cases of APC posi-
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Figure 2  Signals controlling intestinal stem cell fate. Along the crypt-villus axis, Wnt, Notch, BMP and EGF signals exhibit spatial gradients. As an exam-
ple, the activity of Wnt signaling decreases gradually towards the villus. These four signaling pathways work together to regulate the intestinal stem cell fate 
including self-renewal, proliferation and differentiation. Firstly, Wnt signals cooperate with Notch signals to maintain the self-renewal of stem cells, while 
BMP signals restrain the stemness. Secondly, Wnt, EGF and Notch support the stem cell proliferation, whereas BMP signals have opposite effects. Thirdly, 
Notch functions in directing the specification of absorptive versus secretory lineages, and BMP mainly promotes the maturation of secretory lineages. Lastly, 
Wnt signaling specifies Paneth cells.  

tive colorectal cancers, oncogenic point mutations of 
β-catenin, the key downstream effector of Wnt pathway, 
were frequently detected [36]. The activating mutations of 
the Wnt/ β-catenin pathway components suggest the central 
role of Wnt signaling in the homeostasis of intestinal epi-
thelium. This note was supported by more direct evidence. 
The Tcf7l2 (encodes TCF4 transcription factor) knockout 
mice died within 24 h after birth due to the lack of prolifer-
ative stem cell compartments in the small intestine [13,37]. 
Similarly, intestine-specific ectopic expression of Dkk1 
(dickkopf Wnt signaling pathway inhibitor 1), a secreted 
Wnt antagonist, greatly reduced the number of stem cells 
and proliferative compartments in the intestine of grown 
mice [38]. These data indicate that Wnt signals are essential 
for the postnatal establishment of stem cell compartment in 
intestine. On the other hand, ample evidence also indicates 
that the maintenance of the proliferative stem cell compart-
ment in adult mice continuously relies on Wnt signals. Ad-
enoviral expression of Dkk1 [39] or intestine-specific in-
duced-knockout of Ctnnb1 (encodes β-catenin) [40] quickly 
results in loss of stem cell compartments and impairs daily 
renewal of epithelium. Consistently, deletion of c-Myc, a 
Wnt target gene, causes rapid disruption of the proliferating 

crypts [41]. On the contrary, over-activation of Wnt signals 
can induce augmentation of proliferating stem cell com-
partments, and eventually intestinal adenomas. Knockout of 
Apc gene [42,43], intestine-specific overexpression of con-
stitutively active β-catenin [44] or transgenic expression of 
R-spondin [45], a secreted Wnt agonist, readily drive hy-
perplasia in intestine and colon. Rnf43 (ring finger protein 
43) and Znrf3 (zinc and ring finger 3) are two related Wnt 
target genes in intestine and encode transmembrane E3 lig-
ases that induce endocytosis and degradation of Frizzled 
receptors on the membrane [46]. Simultaneous deletion of 
these two genes in intestine rapidly causes growing adeno-
mas with enlarged stem cell compartments and increased 
number of Ki67+ proliferating cells [47]. These data to-
gether suggest that Wnt signaling plays a crucial role in the 
maintenance of intestinal stem cells, and its activity is under 
a tight control of multiplexed mechanisms—over-activation 
leads to hyperplasia.  

Wnt signals can also promote the maintenance of intesti-
nal stem cells by regulating the EphB-Ephrin B signaling 
gradient along the crypt-villus axis to form different com-
partments in intestinal epithelium [48]. Wnt target gene 
EphB2 and EphB3 encode membrane receptors for mem-
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brane-bound Ephrin B ligands and exhibit the highest ex-
pression in the intestinal stem cell compartment with high 
Wnt activity. Upon entering the TA cell compartment with 
lower Wnt activity, the progeny of stem cells gradually lose 
the expression of EphB2 and EphB3 and start to express 
Ephrin B ligands, resulting in the complementary distribu-
tion of EphB and Ephrin B along the crypt-villus axis. EphB 
receptors and Ephrin ligands are best known for their roles 
in mediating cell repulsion. When cells expressing EphB 
receptors and Ephrin ligands come into contact, the 
EphB-Ephrin B complex can induce bidirectional signals: 
forward signals that activate downstream signaling cascades 
including R-Ras to regulate cytoskeleton and cell junction 
in EphB cells, and reverse signals that control cell adhesion 
through phosphorylation of Ephrin B by Src family kinases 
in Ephrin B cells. Clearance of the EphB-Ephrin B com-
plexes at contact sites is crucial for the initiation of repul-
sion response, which is mediated via endocytosis of the cell 
surface EphB-Ephrin B complex or protease-mediated 
cleavage of the extracellular domain of Ephrin B ligands 
[4951]. As a consequence, the cells expressing Ephrin B 
are pushed away from the crypt bottom, while intestinal 
stem cells are restricted in the stem cell compartment. Of 
note, the absence of Ephrin B ligands and the high expres-
sion of EphB3 receptor in mature Paneth cells allow these 
cells to migrate to the bottom of the crypts. Thus, Wnt sig-
nals can promote the maintenance of intestinal stem cells 
through controlling the EphB-Ephrin B gradient.  

Wnt signals in the intestine not only control the mainte-
nance of the stem cell compartment, but also are crucial for 
the lineage specification of stem cells, especially the differ-
entiation of Paneth cells. On the one hand, activation of Wnt 
signaling drives the formation of massive ectopic Paneth 
cells [31,52]. On the other hand, Wnt target gene Sox9 is 
required for Paneth cell differentiation, as Sox9 inactivation 
in intestinal epithelium completely eliminates the Paneth 
cell lineage in crypts [26]. These data suggest that active 
Wnt signaling can induce the formation of Paneth cell line-
age, which in turn provides the main source of Wnt3a lig-
ands in the stem cell niche [27]. Thus, the Wnt dependent 
positive-feedback loop in the crypts plays an essential role 
in stem cell maintenance. Recent studies also suggest the 
function of Wnt signaling in the differentiation of other se-
cretory cell lineages, goblet cells and enteroendocrine cells 
[38,43,53].  

2.3  BMP signals 

In contrary to Wnt signals, the activity of BMP signals is 
gradually elevated towards the villus compartment. Expres-
sion of BMP ligands is mainly detected in intravillus and 
pericryptal mesenchyme [54,55], whereas BMP antagonists 
Noggin and Chordin are highly produced by the submucosal 
region adjacent to the crypt bottom [56].  

BMPs belong to the transforming growth factor beta 

(TGFβ) superfamily, and play essential roles during em-
bryonic development and adult stem cell homeostasis 
through modulating cell proliferation, differentiation and 
apoptosis [57,58]. Upon binding to BMP ligands, the type-II 
receptor BMPRII phosphorylates and activates the type-I 
receptor BMPRI, which in turn phosphorylates R-Smads 
including Smad1, Smad5 and Smad8. Phosphorylated 
R-Smads form a complex with Co-Smad (Smad4) and 
translocate into the nucleus where they cooperate with other 
transcription factors to regulate target gene transcription 
[59].  

The BMP signals act as a negative regulator of self-  
renewal and proliferation of intestinal stem cells, thereby 
playing essential roles in preventing the intestinal hyper-
plasia. Consistently, frequent mutations of BMP compo-
nents including type-I receptor BMPRIA and SMAD4 were 
identified in Juvenile polyposis syndrome, an inherited syn-
drome with a high risk of adenocarcinoma [60,61]. In Nog-
gin transgenic mice, ectopic crypts containing stem cell 
compartments and proliferating cells could be easily de-
tected in the intestinal epithelium including villus compart-
ments, which eventually resulted in gastrointestinal cancers 
[54]. Similarly, conditional deletion of Bmpr1a in mice in-
duced expansion of intestinal stem cell compartments, ulti-
mately leading to intestinal adenomas. It was suggested that 
BMP signals exert this function through directly suppress-
ing Wnt signaling [62].  

The BMP signals have also been reported to play im-
portant roles in promoting terminal differentiation of several 
secretory lineages. Mice lacking Bmpr1a exclusively in the 
intestinal epithelium exhibited not only increased prolifera-
tion but also impaired maturation of all three secretory lin-
eages including goblet cells, Paneth cells and enteroendo-
crine cells. BMP signals could be important for the terminal 
differentiation of several secretory lineages but not fate de-
termination [63].  

2.4  Notch signals 

Notch signaling is highly conserved across the metazoa [64]. 
In mammals, membrane-bound Notch ligands (Jagged1, 
Jagged3, Dll1, Dll3 and Dll4) interact with Notch receptors 
(Notch1, Notch2, Notch3 and Notch4) on adjacent cell, 
leading to liberation of the Notch intracellular domain 
(NICD) by γ-secretase-mediated proteolytic cleavage. Re-
leased NCID translocates into the nucleus and modulates 
target gene expression through binding to Rbpj (recombina-
tion signal binding protein for immunoglobulin kappa J re-
gion) transcription factors [65].  

In the intestine, several Notch ligands and receptors are 
specifically expressed in crypt cells, thus limiting the activ-
ity of this signaling within the crypt compartment [66]. The 
Notch signals have been shown to play a major role in con-
trolling differentiation, self-renewal and proliferation of 
intestinal stem cells. Firstly, Notch signals act as the key  
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regulator of secretory versus absorptive fate determination 
by inhibiting the secretory lineage specification while driv-
ing absorptive lineage differentiation. Knockout of Rbpj 
[67], double deletion of Notch1 and Notch2 [68] or simul-
taneous inactivation of Dll1 and Dll4 [69] all quickly re-
sulted in the complete conversion of proliferating cells into 
goblet cells and meanwhile loss of Lgr5+ stem cells. Similar 
phenotype of secretory cell hyperplasia was also observed 
in mice administrated with γ-secretase inhibitor [67,70]. 
Conversely, activation of Notch signaling in intestinal epi-
thelium impaired secretory lineage specification while am-
plifying the proliferative compartment [71,72]. These fate 
decisions are achieved through the Notch downstream cas-
cade: activation of Notch signaling induces the expression 
of transcription factor Hes1 (hairy and enhancer of split 1) 
[7375], which in turn represses transcription of Math1, a 
transcription factor required for the commitment into the 
secretory lineage [76,77]. Thus Notch signaling inhibits the 
commitment of stem cells toward the secretory lineage and 
allows stem cells to proliferate and further differentiate to 
the enterocyte lineage [67]. Notch signaling is also essential 
for the maintenance of proliferation and self-renewal of 
intestinal stem cells. Dll1 and Dll4 are actively expressed in 
Paneth cells in the stem cell niche [16]. Moreover, intestinal 
stem cell-specific marker Olfm4 is under direct transcrip-
tional control of Notch signaling [78]. In summary, Notch 
signaling protects the Lgr5 stem cells from differentiation 
into the secretory lineage while cooperating with Wnt sig-
naling to maintain the stemness of stem cells with high Wnt 
activity, and directs absorptive versus secretory lineage fate 
specification in TA cell compartment with low Wnt activity 
[79].  

2.5  EGF signals 

The EGF receptors comprise four members of the ErbB 
family of receptor tyrosine kinase (EGFR, ErbB-2, ErbB-3 
and ErbB-4) that can be activated by EGF-like growth fac-
tors to regulate cell proliferation and differentiation through 
a series of downstream signaling cascades (PI3K/Akt, 
Ras/Raf/Mek/Erk and/or PLCγ/PKC pathways) [80,81].  

In intestine, EGF signals provide strong supports for  
the proliferation and survival of stem cells and TA cells 
[82,83]. Consistent with this, the EGF downstream signal-
ing cascade Ras/Raf/Mek/Erk is active in the crypts [84]. It 
is worth noting that a strict negative-feedback loop also 
exists in the stem cell compartment to control an appropri-
ate level of mitogenic EGF signaling. For example, intes-
tine-specific inactivation of Lrig1, an ErbB negative regu-
lator that is normally expressed in stem cell and progenitor 
compartment, resulted in duodenal adenomas with ampli-
fied stem cell compartment, indicating that the ErbB nega-
tive regulator Lrig1 acts as a tumor suppressor in the intes-
tine [84,23].  

2.6  In vitro culture of intestinal stem cell assisted by 
growth factors 

Previous studies on intestinal stem cells mainly rely on 
transgenic mouse models. Although this genetic approach 
has provided ample and clear information, it is also 
time-consuming and laborious with limits on mechanistic 
insights. Recently, the identification of Lgr5+ intestinal 
stem cells and the advances in niche research have made it 
possible to establish in vitro models for mechanistic studies. 
In 2009, Hans Clevers and colleagues successfully estab-
lished an in vitro three-dimensional culture system, in 
which single Lgr5+ stem cells can grow into intestinal or-
ganoids in Matrigel supplemented with certain growth fac-
tors including R-spondin-1, EGF, Noggin and Notch ligands 
[16]. The intestinal organoids retain many key features of 
the in vivo intestinal epithelium, such as the architecture, 
cell type composition and basic characteristics of stem cells 
(self-renewal and differentiation). R-spondin-1 is thought to 
act as a Wnt agonist to amplify Wnt signaling via engaging 
Lgr5/4 receptors [85,86]. The establishment of this in vitro 
culture system further demonstrates the critical roles of the 
four signals in stem cell maintenance and fate determina-
tion. 

3  Summary and perspectives 

The ability of rapid self-renewal and the simple physical 
architecture have made the intestinal epithelium become an 
ideal model system in adult stem cell research. More im-
portantly, the recent characterization of Lgr5+ stem cells 
made it possible to make a deep investigation on the stem 
cells.   

Signals of Wnt, BMP, Notch and EGF exert tight con-
trols on the fate determination of intestinal stem cells in its 
niche. In the stem cell compartment, Wnt signals cooperate 
with Notch signals to maintain the self-renewal of stem 
cells, while BMP signals restrain the stemness. In the stem 
cell compartment and TA cell compartment, Wnt signals, 
Notch signals and EGF signals work in concert to support 
the proliferation, while BMP signals represent the counter-
force that fights against the intestinal hyperplasia. In the TA 
cell compartment, Notch signals play a critical role in spec-
ifying absorptive versus secretory lineage, and BMP signals 
mainly promote the terminal differentiation of secretory 
cells. Also, Wnt signaling is essential for the differentiation 
of Paneth cells, which are crucial for the establishment of 
stem cell niche. In summary, intestinal homeostasis is 
tightly controlled by a complicated signaling network in the 
niche, and disfunction of this network results in gut carcin-
ogenesis or other types of disorders.  

Until now, despite recent great advancements in our un-
derstanding of the regulatory mechanisms underlying 
self-renewal and fate specification of intestinal stem cells, 
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there are still many questions to be resolved. For instance, 
the identity of “+4 stem cells” is still unclear. How do the 
“+4 stem cells” respond to the signals in the niche? How do 
multiple signals coordinate to control the fate determination 
of stem cells? It is certain that our increasing knowledge 
about the signaling network of maintaining intestinal ho-
meostasis can not only provide important insights into the 
study of other adult stem cells, but also have outstanding 
implications in gut disease treatment and stem cell-based 
regenerative medicine.  
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