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Aquaculture is one of the fastest developing agricultural industries worldwide. One of the most important factors for sustaina-
ble aquaculture is the development of high performing culture strains. Genome manipulation offers a powerful method to 
achieve rapid and directional breeding in fish. We review the history of fish breeding methods based on classical genome ma-
nipulation, including polyploidy breeding and nuclear transfer. Then, we discuss the advances and applications of fish direc-
tional breeding based on transgenic technology and recently developed genome editing technologies. These methods offer in-
creased efficiency, precision and predictability in genetic improvement over traditional methods. 
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Fish are one of the most important sources of protein for 
humans. As a result of declines in wild fisheries, aquacul-
ture has become one of the fastest developing agricultural 
industries worldwide [1]. To increase the sustainability of 
aquaculture, culturists commonly conduct selective breed-
ing to develop strains that perform well in captivity. Unfor-
tunately, the sustainability of many sectors of the industry is 
negatively affected by inbreeding depression, disease out-
breaks, under production, and low meat quality [2]. To ad-
dress these issues, there is an urgent need for the develop-
ment of high quality fish strains that have high growth rates, 
disease-resistance, and/or higher nutritional value.  

Traditional crossbreeding methods such as intra-species 
crossbreeding [3] and inter-species hybridization [4] have 
been successfully used for several decades. However, 
crossbreeding requires multiple-generations of hybridization 
to introduce a desirable trait to a given strain. Additionally, 
the outcomes of these methods are unpredictable because 
the underlying mechanisms controlling desirable traits are 
unknown. Thus, there is a need to develop more efficient, 

precise and predictable techniques for producing production 
scale numbers of high-quality fish. We review the history of 
fish breeding methods based on classical genome manipula-
tion approaches, including polyploidy breeding [5] and nu-
clear transfer [6]. Then, we discuss directional breeding of 
fish based on transgenic technology and recently developed 
genome editing technologies. Advances in breeding meth-
odology based on classical genome manipulation and re-
cently developed genome editing methods will likely play a 
major role in the future of genetic breeding in fish. 

1  Polyploidy breeding 

Polyploidy, a way to artificially duplicate the chromosome, 
is considered to be a classic approach to genome manipula-
tion [5]. In some fish species, growth rates differ between 
females, males, or infertile individuals. To exploit this, cul-
turists produce monosex or infertile populations to increase 
productivity. A number of methods have been used to 
achieve sex- and fertility-control during fish breeding. Of 
these, polyploidy breeding was one of the earliest and the  
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most efficient. This method can also be used to rapidly ob-
tain a homozygous population, thereby decreasing the gen-
erational length of the genetic breeding process.  

The concept of polyploidy breeding was developed based 
on research into gynogenesis. In fish, the second meiotic 
division is completed shortly after ovulation or fertilization. 
This process can be inhibited by cold-shock treatment, re-
sulting in duplication of chromosomes in the oocyte [7,8]. 
The combination of physical treatments such as heat-shock 
and hydrostatic pressure yields the best results [9,10]. Gy-
nogenesis in fish is induced by thermal shock or hydrostatic 
pressure treatment after fertilization of the egg with inacti-
vated sperm [11,12]. Conversely, androgenesis is induced 
by thermal shock or hydrostatic pressure treatment of an 
inactivated egg fertilized with normal sperm. Both gyno-
genesis and androgenesis have been used on a variety of 
fish species to produce double haploids (reviewed by [9]). 

The production of double haploids can be used to main-
tain a monosex population. In species with XX-XY sex de-
termination, offspring that are produced by gynogenesis are 
expected to be all female and the offspring derived by an-
drogenesis have an XX or YY genome. These traits are re-
versed in species with ZW-ZZ sex determination. The use 
of gynogenesis and androgenesis for sex-control is only 
suitable for production of small populations because of the 
relatively high mortality rate, which is likely caused by ir-
radiation damage, the side-effects from thermal/pressure 
shock, and inbreeding depression [9]. Notably however, 
polyploidy breeding methods can be combined with other 
classical methods, such as induced sex-reversal, to control 
the sex of offspring and decrease the duration of the breed-
ing process. One successful example of this approach is the 
production of super, all-male yellow catfish (Pelteobagrus 
fulvidraco), in which males grows faster than females [13]. 
The YY-super male yellow catfish population is obtained 
from gynogenesis of induced physiological XY females, 
and the YY-strain is maintained by incrossing with induced 
sex-reversed YY females.  

As with other animals, sterile fish typically have higher 
growth rates than fertile individuals. Thus, a number of re-
searchers have evaluated methods to produce sterile triploid 
fish. The earliest studies used thermal shock treatment after 
fertilizing the eggs with normal sperm. However, this 
method has a relatively low success rate and is often ac-
companied by high mortality. A higher rate of triploidy can 
be achieved by mating tetraploid fish with diploid fish [14]. 
Because most fish species are diploid, the most critical step 
in this process is the production of fertile tetraploids. Re-
searchers successfully obtained fertile allotetraploid fish by 
hybridizing crucian carp (Carassius auratus) with common 
carp (Cyprinus carpio) until the F3 generation [15,16]. The 
same group also successfully obtained another tetraploid 
fish by crossing crucian carp with blunt snout bream (Meg-
alobrama amblycephala) [17,18]. Although polyploidy 

breeding has been used for a long time and has yielded sev-
eral valuable strains, it is not widely applicable because 
only a few fish species can be used for inter-species cross-
ing to generate tetraploid fish. As this technique is used 
primarily to breed growth-enhanced strains, other desirable 
non-growth characters are unlikely to be obtained through 
this method. Additionally, this method is not of use in spe-
cies that do not exhibit growth differences between males, 
females, or infertile individuals.  

2  Nuclear transfer 

Nuclear transfer (NT), the transfer of one nucleus into an-
other enucleated egg resulting in a re-constructed egg, is a 
method for whole-genome manipulation. Intra-species NT 
refers to transfer of donor cells and oocytes (eggs) from the 
same species. Intra-species NT has been used to study de-
velopmental plasticity and nuclear reprogramming of a nu-
cleus and to produce reprogrammed stem cells from differ-
entiated nuclei [19]. Although animal cloning studies have 
successfully used stem cell nuclei for several decades (re-
viewed by [6]), this approach was not widely applied until 
the birth of the sheep, “dolly”—the first mammal cloned 
from a somatic nucleus [20]. In fish, the “art” of NT was 
first demonstrated by Tung et al. in goldfish (Carassius 
auratus auratus) and bitterling (Rhodeus amarus) [21]. The 
first animal successfully cloned from a short-term cultured 
somatic nucleus was born in 1984. This study was originally 
written in Chinese [22], and was not translated and repub-
lished in English until 2010 [23]. Intra-species NT has 
promised significance for generating genetically manipu-
lated fish from genetically modified in vitro cultured cells. 
The first report of successful intra-species nuclear transfer 
was in zebrafish (Danio rerio) using long-term cultured 
cells [24]. Interestingly, semicloning technology was re-
cently successfully applied by using medaka (Oryzias lati-
pes) haploid stem cells to conduct NT and generate haploid 
cloned fish [25]. However, this technique currently has a 
low success rate and cloned offspring often exhibit a range 
of defects.  

If the oocytes and donor cells are derived from two dif-
ferent species, the NT will be defined as cross-species NT. 
Cross-species NT results in the combination of the nuclear 
genome from one species and the cytoplasmic factors from 
another species, so offers a range of unique possibilities in 
breeding programs [26]. Cross-species NT was first de-
scribed in amphibians, within the genera of Rana and 
Xenopus [27,28]. In those studies, all the NT embryos ex-
hibited early developmental arrest, likely due to the incom-
plete reprogramming of the donor nuclei and/or incompati-
bility between the nuclei and the egg cytoplasm. In mam-
mals, cross-species NT has been successfully applied to 
cloning of endangered mammals within a few closely relat- 
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ed species (reviewed by Sun & Zhu [29]). The cloned ani-
mals are totally identical to their nuclear donors, highlight-
ing the importance of the nuclear genome in phenotypic 
determination. In fish, however, cross-species NT between 
two distantly related species, which have distinct appear-
ances or phenotypes, has resulted in some interesting and 
different outcomes. 

In fishes, cross-species NT can be successfully conduct-
ed between distantly related species. For example, NT was 
conducted between two genera by combining common carp 
(Cyprinus carpio, genus Cyprinus) nuclei with crucian carp 
(Carassius auratus, genus Carassius) egg cytoplasm [26] or 
crucian carp nuclei with common carp egg cytoplasm [30]. 
In those studies, and in our recent study of cross-genus 
cloned common carp derived from transgenic common carp 
nuclei and goldfish enucleated eggs [31], the vertebral 
number of some cross-genus NT individuals was consistent 
with that of the egg-donor species, goldfish. This suggests 
that the fish egg cytoplasm can not only support develop-
ment driven by the transplanted nuclei from a distantly re-
lated species at the genus scale, but can also significantly 
modulate development of the nuclear transplants. Notably, 
cross-species NT has also been conducted between mem-
bers of two different families, such as the goldfish 
(Carassius auratus, family Cyprinidae, order Cypriniformes) 
and the loach (Paramisgurnus dabryanus, family Cobitidae, 
order Cypriniformes), and between two orders, such as the 
tilapia (Oreochromis nilotica, order Perciformes) and the 
goldfish, and the tilapia and the loach [32,33]. However, 
offspring of these cross-family or cross-order NT experi-
ments were unable to develop to term. Therefore, current 
evidence suggests that cross-species NT can only be suc-
cessfully applied to a few species that can be artificially 
hybridized. However, the success rate of cross-species NT 
is relatively low, so it is unlikely that cross-species NT can 
be used to introduce desirable traits from a distantly related 
species into a target species of commercial importance. 
Nevertheless, cross-species NT has significant potential for 
cloning or genetic breeding of endangered fish species. 

Because of technical difficulties with the process of nu-
clear transfer, some studies have focused on alternative 
methods. Among these, cell fusion is a means of obtaining a 
large number of re-constructed eggs at a single time. This 
method has been successfully adapted to create hybrid fish 
with common carp nuclei and crucian carp egg cytoplasm 
[34]. The hybrid fish has similar morphology to the nuclear 
donor, common carp. Additionally, a hybrid fish was gener-
ated by fusing grass carp (Ctenopharyngodon idellus) hem-
orrhagic virus (FRV) resistant liver cells with unfertilized 
eggs [35]. Unfortunately, however, the resistant ability of this 
strain has not yet been reported. As with nuclear transfer, the 
success rate of cell fusion-based technologies is extremely 
low, which limits its application in breeding research. 

3  Transgenic breeding  

Recently, there has been rapid progress in functional ge- 
nomic studies in a range of organisms including plants, in-
vertebrates, and vertebrates. As a result, researchers have 
deduced the function of several thousand genes and evalu-
ated the degree of conservation among different species. 
Because transgenic methods can be easily applied to incor-
porate the function of a specific gene, this approach is po-
tentially the most direct and rapid method of obtaining a 
stable and genetically inherited trait in fish.  

A range of gene-delivery methods have been used to 
conduct transgenesis in fish, including electroporation 
[3638], sperm-mediation [39,40], electroporated-sperm- 
mediation [41,42], retrovirus [4345], and liposome-   
mediated methods [46]. However, microinjection is cur-
rently the most popular method for generation of transgenic 
fish [47].   

The first transgenic fish was generated by over-     
expression of humanized growth hormone (hGH) gene 
driven by a mouse metallothionein-1 (MT) gene promoter in 
Chinese goldfish [47]. Since then, growth hormone (GH) 
transgenic fish have been created using a range of fish spe-
cies, including loach [48], common carp [4953], channel 
catfish (Silurus asotus) [37], Atlantic salmon (Salmo salar) 
[54], and tilapia [55,56]. In most cases, the GH-transgenic 
fish grow faster and have higher feed conversion efficiency 
than their non-transgenic siblings, demonstrating that higher 
GH levels induce fish growth.  

In addition to transferring growth hormone genes to 
promote growth rate, a number of other genes have also 
been successfully transferred into fish. For example, the 
anti-freeze protein gene (AFP) was transferred to promote 
cold-tolerant traits [54,57] and the lysozyme gene was in-
troduced into Atlantic salmon to confer disease resistance 
[58,59]. Similarly, the cecropin B gene from hyalophora 
cecropia was inserted into channel catfish genome to in-
crease the survival rate [60]; the human lactoferrin (hLF) 
gene was transferred into grass carp to promote resistance to 
grass carp hemorrhagic virus (GCHV) [42]; the vitreoscilla 
hemoglobin (vhb) gene was transferred into zebrafish to 
increase hypoxia tolerance [61].  

Because of concerns surrounding transgenic safety and 
bioethics, researchers have focused on using endogenous 
fish genes (“all fish” transgenesis) rather than exogenous 
genes such as human GH. For example, an “all-fish” trans-
genic construct was re-designed by using a common carp 
β-actin promoter to drive expression of the grass carp 
growth hormone gene (gcGH) [52,53]. Similarly, an AFP 
promoter from ocean pout (Zoarces americanus) was linked 
to a Chinook salmon (Oncorhynchus keta) GH cDNA clone 
[54]. In both studies, transgenic fish had significantly higher 
growth rates than non-transgenic controls.  

In addition to transgenesis with natural gene, molecular-
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ly-designed genes have also been delivered into fish to test 
their viability. For example, we designed a constitutively 
activated growth hormone receptor (CA-GHR) gene and 
transferred it into zebrafish, in which two GHR molecules 
maintain dimerization by Jun-zippers and constitutively 
activate downstream signaling. The CA-GHR transgenic 
fish exhibit higher growth rates than GH transgenic fish 
[62]. Thus, there is considerable scope for future studies of 
transgenic fish to evaluate the utility of highly-activated 
transgenes using a “molecular design” approach. 

Another application of transgenic technology was de-
rived from synthetic biology approaches used to improve 
the nutritional value of fish. N3 and n6 polyunsaturated fat-
ty acids such as Omega-3 and Omega-6 are beneficial to 
human health, and particularly important for brain and reti-
na development [63]. Fish-derived desaturase and elongase 
were transferred to develop n3 polyunsaturated fatty acid 
(PUFA) and n6 PUFA rich fish strains [6466]. However, 
the production of high levels of n3 or n6 PUFA is depend-
ent on the level of n3 or n6 PUFA in the diet. Thus, feeding 
costs are increased because of the need to supplement diets 
with extra n3 or n6 PUFA. Recently, de novo LC-PUFA 
biosynthesis was induced in zebrafish by using fat1 and 
fat1/fat2 double transgenic fish, resulting in robust n-3 
LC-PUFA production even when using low PUFA food 
[67]. Transgenic fish can also be used as a bioreactor. Sev-
eral studies have used zebrafish eggs to produce recombi-
nant proteins such as human coagulation factor VII [68], 
luteinizing hormone [69] and insulin-like growth factors 
[70]. 

To obtain multiple traits-related genetic improvement 
within one fish species, researchers could use of 2A pep-
tides to combine those traits, instead of outcrossing between 
different transgenic strains. 2A peptides allow for more ef-
ficient expression of multiple genes, separated by a 2A se-
quence, within the same cell. This approach has been used 
in fish [71], mice [72], and pigs [73]. Introducing 2A pep-
tides into a transgene construct allows for incorporation of 
multiple desirable characters and significantly shortens the 
breeding process by combining two or more phenotypes.  

Genetically modified animals should be subject to eco-
logical safety assessment because of the risk of escape [74]. 
Evaluation and analysis should be conducted on a 
case-by-case basis. In addition to an intensive evaluation of 
the impact of GM fish on other species [75], the production 
of sterile triploid transgenic fish can reduce such impacts 
[76,77]. At least two transgenic fish are close to being mar-
ket-ready. Growth hormone transgenic salmon produced by 
the AquaBounty Technology Company have been submitted 
to the Food and Drug Administration (FDA) for approval 
(http://www.fda.gov/AnimalVeterinary/DevelopmentAppro 
valProcess/GeneticEngineering/GeneticallyEngineered-  
Animals/ucm280853.htm). Similarly, sterile triploid GH- 
transgenic carp are close to satisfying regulatory require-
ments [77]. 

4  Genome editing 

In recent years, there has been rapid development of target-
ed nuclease technologies, such as ZFNs (zinc finger nucle-
ases) [78], TALEN (transcription activator-like effector 
nucleases) [79,80], and CRISPR (clustered regularly inter-
spersed short palindromic repeats)/Cas9 [8183]. These 
methods can be used for targeted knock out or targeted ge-
nome editing, and they have been applied to quite a few 
species including zebrafish. Compared to ZFNs and 
TALENs, the components of the CRISPR/Cas9 system are 
much simpler but the CRISPR/Cas9 system can achieve 
similar or even higher efficiencies. Furthermore, the time to 
prepare constructs for CRISPR/Cas9 is significantly shorter 
than for the other two. As a result, the CRISPR/Cas9 system 
has become widely adopted by researchers. The CRISPR/ 
Cas9 system uses a short guide RNA, which contains an 
~20-bp target sequence, to bind to its complementary DNA 
target and direct the Cas9 nuclease to the target site to make 
double-strand breaks (DSBs). The DSBs are typically re-
paired by either homology-directed repair (HDR), which 
results in precise genome editing if a exogenous DNA re-
pair template exists, or non-homologous end-joining 
(NHEJ), which usually results in indel mutations [84]. To 
date, there have been limited reports documenting the suc-
cessful application of this method for directional breeding 
purposes. For instance, the Celtic POLLED, a non-horned 
allele, was introduced into the genome of horned dairy cat-
tle breeds, and the endogenous horned POLLED allele was 
removed by TALEN specific cleavage to obtain the 
non-horned trait [85]. Several genes were edited in pig, 
sheep and cattle, in order to obtain virus-resistant or 
growth-enhanced characteristics in those livestock species 
[86,87]. In fish, using zebrafish as model and using TALEN 
technology, we knocked out socs2 which belongs to the 
SOCS superfamily—the major negative regulators of the 
GH signaling pathway. The mutation of socs2 resulted in 
increased stimulation of the GH signaling pathway and the 
zebrafish mutant had higher growth rates during early larval 
stages [88]. 

Single stranded oligonucleotides are an effective repair 
template for HDR via a single strand annealing (SSA) 
mechanism. Co-injection of targeted nucleases and single 
stranded DNA was successfully used to introduce single 
nucleotide alterations in zebrafish and mice, an approach 
that is comparable to the occurrence of single nucleotide 
polymorphisms (SNP) in nature [79,89]. This method can 
also be used to introduce a small DNA fragment such as the 
HA (Hemagglutinin) tag or loxP sequence at specific sites 
[79,81,90]. However, off-target effects are common and are 
caused primarily by NHEJ repair. Instead of constructing 
DSBs with the general Cas9, a recently improved Cas9 can 
create single-strand breaks by point mutating the RuvC or 
HNH nuclease domains on the Cas9 [9193]. The use of 
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mutated Cas9HNH+/RuvC- along with pairs of guide RNAs al-
lows efficient indel formation while reducing off-target ef-
fects and improves specificity by up to 1500 fold when 
compared to the general Cas9 [94,95]. 

TALEN mediated homologous recombination (HR) has 
been successfully applied in zebrafish [96]. CRISPR/Cas9 
mediated HR has been successfully applied in C. elegans 
[97], Drosophila [98100], and even human cells [101,102]. 
Although, targeted nucleases have largely improved the 
efficiency of HR, the rate of HR is less than satisfactory. To 
address this, studies have shown that inhibition of NHEJ by 
disruption of specific genes involved in the NHEJ process 
significantly increase the efficiency of HR [103107]. A 
number of studies have shown that homology-directed DNA 
repair occurs primarily in somatic tissue, which makes the 
screening process longer and more costly. The ability to 
detect germ cell specific HDR in F0 and subsequent genera-
tions would save significant effort screening individuals. 
We generated a primordial germ cell (PGC) specific manip-
ulation system based on UAS/Gal4 and Cre/LoxP in 
zebrafish, a tool that may prove useful to fill this gap [108].  

The recently developed genome editing techniques allow 
researchers to modify multiple genes at precise sites with 
high efficiency and in a comparably short time [109]. These 
characteristics make the approach suitable for improving 
aquaculture strains. More importantly, the process is based 
on homology-directed DNA repair so does not bring in any 
foreign DNA elements, but instead modifies the endogenous 
DNA itself. Therefore, when combined with PGC specific 
manipulation and conventional genome manipulation tech-
niques (such as polyploidy manipulation), this technique 
should make fish breeding (and other animals) more effi-
cient, more precise and more predictable.  

5  Conclusion 

The development of scientific technology accelerates scien-
tific research and turns “impossible” into “possible”. Alt-
hough the commercialization of transgenic fish faces sig-
nificant non-scientific concerns, there is currently no con-
clusive evidence of a safety problem associated with com-
mercialized genetically modified organisms (GMO). Nev-
ertheless, there is a need to conduct a careful and long-term 
evaluation before authorizing GM animals into the com-
mercial market. In addition to transgenesis, recently devel-
oped genome editing techniques provide an enormously 
valuable tool for fish breeding. In the near future, the intro-
duction of genome editing into conventional fish breeding 
will allow researchers to directly and precisely improve 
specific traits without affecting other traits. Because this 
approach no longer uses exogenous gene fragments, but 
instead modifies the genetic information itself in a minimal 
manner, it deserves to play a major role in the future of fish 
genetic breeding and the breeding of other animals. 
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