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Canonical transient receptor potential 4 (TRPC4) forms non-selective cation channels that contribute to phospholipase 
C-dependent Ca2+ entry into cells following stimulation of G protein coupled receptors and receptor tyrosine kinases. More- 
over, the channels are regulated by pertussis toxin-sensitive Gi/o proteins, lipids, and various other signaling mechanisms. 
TRPC4-containing channels participate in the regulation of a variety of physiological functions, including excitability of both 
gastrointestinal smooth muscles and brain neurons. This review is to present recent advances in the understanding of physiol-
ogy and development of small molecular modulators of TRPC4 channels. 
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The transient receptor potential (TRP) protein superfamily 
consists of a diverse group of non-selective cation channels, 
which are implicated in multiple signal transduction path-
ways, with particular importance in sensory physiological 
responses to temperature, light, smell, taste, as well as me-
chanical and painful chemical stimuli [1,2]. The canonical 
subfamily of TRP (TRPC) channels are closely related to 
the prototypical Drosophila TRP protein, with 30%40% 
amino acid sequence identity [3]. Seven mammalian TRPC 
proteins (TRPC17) have been identified and based on 
amino acid sequence similarity, they are further divided into 
three groups: TRPC1/C4/C5, TRPC3/C6/C7 and TRPC2 [4]. 
Channels formed by TRPC proteins are composed of four 
subunits, which are either identical or different. It is well 

accepted that TRPC members within the same group can 
form heterotetrameric channels [5], but evidence also exists 
for heterotetramers formed between members from different 
groups. For example, TRPC3 and TRPC4 can associate to 
form a redox-sensitive cation channel in endothelial cells 
[6]. Notably, TRPC1 has been shown to partner not only 
with members of the TRPC subfamily, e.g., TRPC3, TRPC4, 
and TRPC5, but also with other TRP proteins, e.g., TRPP2, 
TRPV4, and TRPV6 [710]. 

The first full-length TRPC4 cDNA sequence was report-
ed for a clone isolated from bovine adrenal gland [11]. 
Since then, several TRPC4 orthologues, including splice 
variants, had been isolated from a number of other species 
such as rat, mouse and human, and some of them had been 
functionally examined [11,12]. In rat, mouse and human, 
the most abundant transcripts of TRPC4 appear to be 
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TRPC4α and TRPC4β. The two isoforms vary only at the 
C-terminus, in which the TRPC4β variant lacks a region 
containing 84 amino acids as compared to TRPC4 [13,14] 
(Figure 1). While TRPC4 is predominately expressed in the 
brain, it is also found in diverse tissues including endothelia, 
adrenal gland, smooth muscles of the gastrointestinal track, 
placenta and testis [19]. 

1  Structure and biological relevance of TRPC4 

Like other TRP channels, a single TRPC4 subunit has six 
transmembrane segments (S1S6) with a putative 
pore-forming region (P-loop) between the fifth (S5) and 
sixth (S6) segments and intracellularly localized N- and 
C-termini [2]. Within the cytoplasmic N-terminus of 
TRPC4, four ankyrin-like repeats, a calmodulin (CaM) 
binding site, a coiled-coil domain and a caveolin-binding 
site have been identified [2,4]. In the cytoplasmic 
C-terminus, there are a TRP box (a stretch of relatively 
conserved six residues found in all members of TRPCs, 
TRPMs, and TRPVs [1] and in the case of TRPCs is 
EWKFAR), a second coiled-coil domain, a conserved pro-
tein 4.1-binding domain, and a shared binding site for CaM 
and inositol 1,4,5-trisphosphate receptors (IP3Rs) [15,16,20]. 
Interestingly, the CaM and IP3R binding (CIRB) site also 

binds to SESTD1, a protein that contains a SEC14-like lipid 
binding domain and two spectrin domains and binds phos-
phoinositides in a Ca2+-dependent fashion [21]. It also ap-
pears to be critical for the stimulatory effect of Gi/o pro-
teins on TRPC4 channels [22]. These suggest that the CIRB 
site may be the converging point of TRPC4 channel gating 
by multiple factors, such as Ca2+-CaM, IP3Rs, Gi/o proteins, 
phosphoinositides, and cytoskeleton (Figure 1). Additional-
ly, the region immediately downstream of the TRPC4 CIRB 
site also binds spectrins [23]. 

The last three C-terminal amino acids (TRL) of TRPC4 
comprise a PDZ-interacting domain. PDZ domains were 
identified as 80–100 amino acid repeated sequences in the 
synapse-associated protein PSD-95, the human homolog of 
the Drosophila Dlg protein (hdlg) and the epithelial 
tight-junction protein zona occludens-1 (ZO-1) [24]. Within 
the TRPC subfamily, this TRL motif is specific for TRPC4 
and TRPC5. The PDZ-binding motif TRL interacts with 
regulatory factor of the Na+/H+ exchanger (NHERF), also 
known as ezrin/radixin/moesin-50 (ERM50). The PDZ mo-
tifs of NHERF/EBP50 bind to the TRPC4/C5 channels and 
phospholipase Cβ (PLCβ), and link the lipase and the chan-
nels to the actin cytoskeleton [25], via the actin-binding 
membrane-cytoskeletal adaptors, ezrin, radixin, and moesin 
(ERM) [26]. As a result, the PDZ-interacting domain regu-
lates the localization and surface expression of TRPC4 [26]. 

 

 

Figure 1  Structural features of TRPC4 which contains an extra region with 84 amino acids as compared to TRPC4. Within this region, two calmoudlin 
(CaM) binding motifs and one IP3 receptor binding domain had been experimentally identified [15,16]. Homer had been suggested to bind to the proline-rich 
region of the related TRPC1 [17]. Stathmin was shown to bind to the N-terminal coiled-coil domains (CC-N) of TRPC4 and TRPC5 [18]. Other domains and 
interacting proteins are described in the text. ANK 14, ankyrin-like repeats 14; CC-C, C-terminal coiled-coil domains, CIRB, calmodulin/IP3 receptor 
binding region; PDZ-B, PDZ binding domain; LFW, amino acid motif conserved in the hydrophobic putative pore region; EWKFAR, sequence of the TRP 
box. Adapted from [4] with modifications. 
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TRPC4 shares an overall 65% sequence identity with 
TRPC5. However, the similarity is not evenly distributed 
throughout the full-length sequences between the two pro-
teins. TRPC4 and TRPC5 are quite similar at the N-termini, 
transmembrane domains, and the beginning of the C-termini 
encompassing the TRP motifs (83% identity for aa1–665 of 
TRPC4 and aa1–669 of TRPC5), as well as the CIRB sites 
and the spectrin-binding sites (77% identity for aa695–754 
of TRPC4 and aa702–761 of TRPC5). However, the rest of 
the C-termini, encompassing >200 residues (aa755974 of 
TRPC4 and aa762975 of TRPC5), bear virtually no ho-
mology, except for the final convergence of the last five 
residues, VTTRL, in which the last three residues are criti-
cal for binding to NHERF, as explained above. Therefore, 
although it has often been thought that TRPC4 and TRPC5 
are regulated similarly, differences should exist between the 
two channels.  

In terms of physiological functions, channels formed by 
TRPC4 are often distinct from those composed of TRPC5. 
TRPC4 has been suggested to be a key determinant of en-
dothelial Ca2+ signaling and of endothelial cell functions, 
such as nitric oxide release and barrier stability [27,28]. 
Vascular endothelial cells from TRPC4 mice lacked 
store-operated Ca2+ currents [27]. Therefore, TRPC4 ap-
peared to be an indispensable component of store-operated 
channels in vascular endothelial cells and these channels 
directly provide a Ca2+ entry pathway essential for the reg-
ulation of blood vessel tone [27]. Similarly, lung vascular 
endothelial cells isolated from TRPC4 mice showed re-
duced Ca2+ responses to thrombin and PAR-1 peptide [28]. 
These were associated with a lack of actin stress fiber for-
mation, deficiencies in the endothelial cell retraction re-
sponse and an increase in vascular permeability [28]. In 
neuroendocrine cells, activation of transiently expressed 
TRPC4 via stimulation of co-expressed histamine receptor 
type 1 (H1R) provided enough Ca2+ influx to trigger a robust 
secretory response comparable to that activated by a train of 
depolarizing pulses [29]. TRPC4 was also shown to be crit-
ically involved in the Ca2+ entry pathway needed for seroto-
nin-induced dendritic release of γ-aminobutyric acid 
(GABA) from interneurons onto thalamic relay neurons 
[30]. In addition, TRPC1-TRPC4 heteromeric channels are 
thought to mediate the plateau potential and epileptiform 
discharge evoked by agonists of group 1 metabotropic glu-
tamate receptors (mGluRs) in lateral septal and CA1 hippo-
campal neurons [3133]. These channels are also involved 
in neurodegeneration induced by severe epileptic seizures in 
these brain regions [32]. Likewise, the TRPC1-TRPC4 
channels are important for neurotransmission at dendrit-
ic-dendritic synapses between mitral/tufted cells and gran-
ule cells in the olfactory bulb, which manifests as long last-
ing depolarization and sustained Ca2+ influx in the granule 
cells [34]. In the gastrointestinal system, comparison of the 
properties between native currents in interstitial cells of 

Cajal (ICC) and ionic currents of heterologously expressed 
TRPC4 in HEK293 cells revealed a very similar cur-
rent-voltage (I-V) relationship, indicating that TRPC4 is a 
strong candidate of the pacemaker channel in ICC [35,36]. 

Similarly, in intestinal smooth muscle cells, TRPC4 forms a 
55-pS cation channel and underlies at least 80% of the 
muscarinic agonist-elicited cation currents (mICAT) [37]. In  
TRPC4-deficient ileal myocytes the carbachol-induced 
membrane depolarization was diminished greatly and the 
atropine-sensitive contraction elicited by acetylcholine re-
leased from excitatory motor neurons was markedly re-
duced as well [37]. TRPC4 and to a lesser extent, TRPC6, 
channels couple muscarinic receptors to depolarization of 
intestinal smooth muscle cells and activation of volt-
age-gated Ca2+ channels to mediate Ca2+ influx and contrac-
tion, and thereby accelerate motility of small intestine in 
vivo [37]. Additional functions of TRPC4 also include for-
mation of normal-sized myotubes during postnatal human 
myogenesis [38], keratinocyte differentiation [39], neurite 
extension of human postmitotic neurons [40]. In sin-
gle-nucleotide polymorphism (SNP) studies, variants of 
TRPC4 have been associated with photoparoxysmal re-
sponse/idiopathic generalized epilepsies [41]; a gain-of- 
function variant (I957V) of TRPC4 was found to be associ-
ated with a lower incidence of myocardial infarction in dia-
betic patients [42]. 

For functions that appear to overlap with TRPC5, both 
TRPC1-TRPC4 and TRPC5 channels may be involved in 
seizure-induced neuronal death in mouse hippocampus [32]. 
In certain populations of proopiomelanocortin neurons, 
channels composed of TRPC1, TRPC4, and/or TRPC5 may 
mediate the effect of leptin acting at the long-form leptin 
receptor [43]. In neurons of lateral amygdala, TRPC4 seems 
to mediate the postsynaptic responses triggered by the acti-
vation of either group 1 mGluRs or cholecystokinin 2 re-
ceptors. This effect is involved in innate fear responses just 
like that mediated by TRPC5 [44,45]. 

2  Activation mechanism and electrophysiolog-
ical properties 

It is widely agreed that the opening of TRPC4 channels re-
quires activation of receptors coupled to the Gq/11 family of 
G proteins, which communicate with PLCβ, or receptor 
tyrosine kinases, which stimulate PLCγ [13,46]. The activa-
tion of PLC leads to hydrolysis of phosphatidylinositol 
4,5-bisphosphate (PI(4,5)P2), producing diacylglycerols 
(DAG) and inositol 1,4,5-trisphosphate (IP3). Intracellular 
dialysis of PI(4,5)P2 was shown to inhibit TRPC4α but not 
TRPC4β [47]. However, TRPC4 activation seems to re-
quire PI(4,5)P2, as not only manipulations that reduced 
PI(4,5)P2 availability inhibited the channel activation, but 
also supplementation of exogenous PI(4,5)P2 to the cyto-
plasmic side suppressed channel desensitization [22,48]. It 
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would be interesting to know if the PI(4,5)P2 requirement  
depends on the lipid itself, as in the case of several members 
of the TRPM subfamily [4952] or one of its hydrolysis 
products, as suggested for the TRPC3/C6/C7 subgroup [53].  

However, different from the TRPC3/C6/C7 subgroup, 
TRPC4 (and TRPC5) is not activated by DAGs. Uniquely, 
it becomes activated following the stimulation of receptors 
that couple to pertussis toxin (PTX) sensitive Gi/o proteins 
[22]. The muscarinic cation current (mICAT) in intestinal 
smooth muscle cells represents the best characterized native 
channel activity of TRPC4 [37]. It has long been recognized 
that both Gi/o-coupled M2 and Gq/11-coupled M3 muscarinic 
receptors are involved in the activation of mICAT [54]. Not 
surprisingly, treatment with PTX inhibited both native mI-

CAT and heterologously expressed TRPC4 channels no mat-
ter the activation was induced by a muscarinic agonist or 
GTPS [47,55]. Also interesting is that the effect of Gi/o 
appears to be mediated by the G but not G subunits and 
the study using GTPase-deficient Gi/o subunits revealed for 
a preference of Gi2 for TRPC4 and Gi3 for TRPC5 [22]. 
Intriguingly, the same study also found that the critical re-
gion on TRPC4 for interacting and functional coupling by 
Gi proteins overlaps with the C-terminal CIRB site [22], 
implying a pivotal role of this motif in overall gating of 
TRPC channels. Furthermore, the CIRB motif of TRPC4 
and TRPC5 had previously been shown to bind to SESTD1, 
through which the channel could be regulated by phospho-
inositides, Ca2+ and cytoskeleton [21]. Therefore, sorting 
out the interplay among Ca2+, CaM, IP3Rs, Gi’s, SESTD1, 
phosphoinositides, and cytoskeleton at the CIRB motif 
should be of great significance in elucidating molecular 
mechanism(s) of TRPC4 channel activation.  

In addition to the mechanisms discussed above, TRPC4 
channels had also been shown to respond to mercury com-
pounds [56] and nitric oxide (NO) [57]. Early studies had 
implied a role of TRPC4-containing channels in store-  
operated Ca2+ entry [27,28,58,59]; however, it is unclear 
whether this represented a direct gating by STIM1, which 
senses the store depletion signal [60,61], or an indirect  
effect of intracellular Ca2+ rise resulting from either Ca2+ re-
lease from internal stores or Ca2+ influx mediated by “real” 
store-operated channels formed by Orai proteins [62]. The 
latter argument is possible because activation of TRPC4 
channels is dependent on intracellular Ca2+ rise [13].  

In whole-cell recordings, the agonist-induced currents of 
TRPC4 have a nonlinear I-V relationship, typically with an 
outward rectification at positive potentials and a U- or 
V-shaped I-V relation at negative potentials [13,47]. The 
currents reverse at close to 0 mV, but there is a flat region 
between 0 and +40 mV (Figure 2), which can be eliminated 
by the removal of Mg2+ from both sides of the membrane 
[13,14]. In excised inside-out patches, TRPC4 has a report-
ed single channel conductance of 42 pS [13].  

3  Pharmacology 

3.1  TRPC4 activators 

To date, no specific activator of TRPC4 has been reported. 
In most studies, TRPC4-containing channels, either native 
or heterologously expressed, are commonly activated by the 
stimulation of G-protein coupled receptors or receptor tyro-
sine kinases [13,37,47,54]. Sometimes, intracellular dialysis 
of GTPS or NaF was used to activate TRPC4 through di-
rect stimulation of G proteins [13,47,63]. In inside-out 
membrane patches, TRPC4 currents were strongly increased 
by application to the cytoplasmic side of calmidazolium, a 
CaM antagonist, or a peptide that represented the TRPC- 
binding domain of the type 3 IP3R [15].  

Lanthanides are the most commonly used inhibitors of 
nonselective cation channels and Ca2+ channels and they do 
inhibit TRPC3, C6, and C7. However, in the case of TRPC4 
and TRPC5, high micromolar concentrations of lanthanides 
potentiate their currents [64]. Neutralization of negatively 
charged amino acid residues, E543, E595 and E598, situat-
ed close to the segments S5 and S6 of TRPC5, resulted in a 
loss of potentiation by lanthanides [64]. These residues are 
conserved in TRPC4. Because other TRPC isoforms and 
native cation channels are inhibited by lanthanides, the po-
tentiation of TRPC4 and TRPC5 by micromolar La3+/Gd3+ 
represents a unique property that is useful for establishing 
the contribution of these TRPC isoforms in native tissues 
[43,65]. 

3.2  TRPC4 inhibitors 

ML204 has been reported as a novel, potent, and selective 
TRPC4 channel inhibitor [66]. ML204 inhibited intracellu-
lar Ca2+ rise mediated by TRPC4β with an IC50 value of 
approximately 1 μmol L1 and it exhibited a 19-fold selec-
tivity for TRPC4 over TRPC6 [66]. Results from whole-cell 
patch clamp recordings suggested that ML204 most likely 
exerted a direct inhibitory effect on the TRPC4 channel 
rather than acted through an interference with the signal 
transduction pathways [66]. Selectivity studies showed that 
ML204 had no appreciable inhibition on TRPV1, TRPV3, 
TRPA1, and TRPM8, or native voltage-gated sodium, po-
tassium, and calcium channels in mouse dorsal root gangli-
on neurons. Therefore, ML204 appears to be an excellent 
chemical tool for modulating TRPC4 or TRPC5 channels 
[66]. Recently, ML204 has been successfully used to iden-
tify the functions of native TRPC4 and/or TRPC5 channels 
in visceral pain [67], kidney filtration barrier deregulation 
[68], and neuronal excitability regulation [69]. 

Flufenamic acid (FFA), mefenamic acid (MFA), niflumic 
acid (NFA) and diclofenac sodium (DFS) have been shown 
to inhibit TRPC4 and TRPC5 channels in a concentra-
tion-dependent manner [70]. However, these drugs are 
known to have other targets [71,72] and they are not potent
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Figure 2  Agonist-activated currents in a HEK293 cell that co-expressed mouse TRPC4β and μ-opioid receptor (µOR). A, For whole-cell experiments, the 
standard extracellular solution contained (in mmol L1): 140 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 glucose, 10 HEPES, pH 7.4 adjusted with NaOH. The intra-
cellular solution consisted of (in mmol L1): 140 CsCl, 0.1 EGTA, 1 MgCl2, 10 HEPES, pH 7.2 adjusted with CsOH. Currents were measured using 500-ms 
voltage ramps from +100 mV to 100 mV in 2-s intervals with the holding potential of 0 mV. Shown are time courses of currents at +100 mV (open circles) 
and 100 mV (filled circles), in response to the application of 10 μmol L1 Oxo-M and 100 nmol L1 DAMGO to simultaneously activate the muscarinic 
(endogenously expressed) and μ-opioid (transfected) receptors, respectively. B, Current-voltage relationships recorded from the same cell by the voltage 
ramp collected before agonist application (basal, blue line) and at the peak of the agonist response (red line). 

on TRPC4. TRPC4 was blocked by FFA, MFA, NFA and 
DFS with IC50 values of 55±5, 84±8, 102±9, and 138±7 
μmol L1, respectively [70]. The potency of inhibition was 
shown to depend on modifications of the 2-phenylamino- 
benzoate skeleton and a structure-activity relationship has 
been described for FFA analogues with modifications of the 
phenylamino ring [70]. Interestingly, fenamate analogues 
with differential effects on TRPC4 and TRPC5 channels, 
showing inhibition with acute but potentiation with long 
exposure, have also been identified [70]. SKF-96365 and 
2-aminoethoxydiphenyl borate (2APB) are non-specific 
blockers commonly used to inhibit TRPC channels. Recep-
tor-activated TRPC4 was blocked by 50 μmol L1 
SKF-96365 [73,74] or by 75 μmol L1 2APB [73,75]. 
However, the lack of specificity is a major concern for the 
use of these drugs in establishing the contribution of 
TRPC4-containing channels in native systems. 

The steroid hormone progesterone was found to inhibit 
TRPC4 channel activity with an IC50 of 6.2 μmol L1 [76]. 
However, this effect appears to be common for most TRPC 
channels, except TRPC5, suggesting that at the high gesta-
tional levels of progesterone, TRPC channels could be in-
hibited. It was conducive that this effect may be important 
for minimizing uterine contractility and immunosuppression 
during pregnancy [76]. Table 1 shows the structures and 
potency of small molecules that have been shown to inhibit 
TRPC4 channels. 

In whole-cell recordings, receptor-evoked activation of 
TRPC4α, but not TRPC4β, was strongly inhibited by the 
application of diC8 form of PI(4,5)P2 through pipette dialy-
sis. In contrast, several other phosphoinositides, including 
PI(3,4)P2, PI(3,5)P2, and PI(3,4,5)P3, did not mimic the in-
hibitory effect of PI(4,5)P2; some of them even potentiated 
the activity of TRPC4α [47]. PI(4,5)P2 bound to the C ter-
minus of TRPC4α but not that of TRPC4β in vitro and its 

inhibitory action was abolished by the treatment with cyto-
chalasin D or by the deletion of the C-terminal PDZ-binding 
motif, indicative of a dependence on the association of 
TRPC4α with actin cytoskeleton [47]. On the other hand, as 
mentioned above, PI(4,5)P2 has been suggested to be an 
essential lipid for sustaining the open state of TRPC4β [48]. 
Furthermore, intracellular dialysis of a short peptide, 
EQVTTRL, representing the last seven C-terminal amino 
acids of TRPC5 with the PDZ-binding motif, inhibited the 
carbachol-induced plateau potentials in entorhinal cortical 
neurons, which were thought to be mediated by channels 
formed by TRPC4 and/or TRPC5 [77].  

4  Outlook and challenges 

TRPC4 isoforms form nonselective cation channels that 
integrate signaling pathways activated from stimulation of 
G protein-coupled receptors and receptor tyrosine kinases. It 
remains debated about the activation mechanism of TRPC4 
channels. A number of early studies supported the view that 
TRPC4 was essential for store-operated or Ca2+ re-
lease-activated Ca2+ (CRAC) channels [27,28,58,59]. How-
ever, subsequent studies showed that only neurotransmit-
ter-induced receptor-operated channels were impaired in the 
TRPC4 knockout mice [37,45]. Because of the recent 
demonstration of the involvement of STIM and Orai pro-
teins in CRAC channel [62], physical and functional inter-
actions between STIM1/Orai1 and with TRPC1 or TRPC4 
channels to contribute to store-operated Ca2+ entry have 
been suggested [60,61]. Further studies are warranted to 
examine the interaction between TRPC4 and STIM/Orai 
and define the role of TRPC4 in store-operated Ca2+ entry.  

TRPC4 proteins are abundantly expressed in brain neu-
rons and smooth muscle cells, where they form Ca2+-  
permeable nonselective cation channels implicated in di-
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Table 1  Summary of TRPC4 channel inhibitors  

Compound name Structure Concentration effect on TRPC4 Selectivity on channels Refs 

ML204 

 

 

IC50=0.96 μmol L1 
No effect on TRPV1, TRPV3, TRPA1 

and TRPM8 or native voltage-gated Na+, 
K+, Ca2+ channels 

[66] 

Flufenamic acid (FFA) 

 

IC50=55±5 μmol L1 
Effect on Ca2+- activated Cl channels, 
voltage-gated Na+, K+ or Ca2+ channels, 

and other TRP channels 
[70] 

Mefenamic acid (MFA) 

 

IC50=84±8 μmol L1 
Effect on Ca2+- activated Cl channels, 
voltage-gated Na+, K+ or Ca2+ channels, 

and other TRP channels 
[70] 

Niflumic acid (NFA) 

 

IC50=102±9 μmol L1 
Effect on Ca2+- activated Cl channels, 
voltage-gated Na+, K+ or Ca2+ channels, 

and other TRP channels 
[70] 

Progesterone 

 

IC50=6.2 μmol L1 
Effect on TRPC3, TRPC5, TRPC6 

channels 
[76] 

2-aminoethoxydiphenyl 
borate (2APB) 

 

Blocked at 75 μmol L1 
Inhibits IP3Rs, TRPC and TRPM chan-
nels, activates TRPA1 and some TRPV 

channels 
[73,75] 

SKF-96365 

 

Blocked at 50 μmol L1 
Nonselective for TRPC channels, 

store-operated Ca2+ entry, and volt-
age-gated Ca2+ channels 

[73,74] 

DIDS 
(4,4′-dixothiocyanatositben

e-2,2′-disulfonic acid) 
 

Blocked at 10 μmol L1 
Inhibits Cl– uptake, activates volt-

age-gated K+ channels 
[36] 

 
verse physiological functions, including smooth muscle 
contractility and synaptic transmission [30,34,37,45]. In 
addition, genetic analyses have found association of TRPC4 
variants with human disease [41,42]. It is thus foreseeable 
that TRPC4 channels have important physiological signifi-
cance and are valuable therapeutic drug targets. However, 
functional characterization of TRPC4 channels in native 
tissues has been hampered by the lack of specific pharma-
cological tools. Efforts have been undertaken to screen for 
small molecular modulators using a cell-based fluorescence 
assay. Uniquely, co-expression of TRPC4 with the μ opi-
oid receptor in HEK293 cells resulted in an intracellular 
Ca2+ response to stimulation by the μ agonist, DAMGO, 

which was lacking with the expression of either TRPC4 or 
the opioid receptor alone [66]. The very low background of 
this system allowed for fluorescence-based high throughput 
screening using cells loaded with the calcium specific fluo-
rescent indicator, such as fluo-4. The DAMGO-induced 
intracellular Ca2+ concentration rise was almost entirely 
dependent on TRPC4-mediated Ca2+ entry. This approach 
had led to identification of multiple lead compounds, which 
were further tested to remove those that targeted the μ opi-
oid receptor and G proteins. Promising lead compounds 
have been confirmed using patch-clamp recordings, the gold 
standard for ion channel drug screening [66]. It is anticipat-
ed that more new small molecular probes for TRPC4 will be 



 Fu J, et al.   Sci China Life Sci   January (2015) Vol.58 No.1 45 

uncovered in the near future and some of them will possess 
the desired high potency and selectivity and be suitable for 
development of drug therapies targeting at TRPC4. 

This work was supported in part by the National Natural Science Founda-
tion of China (81228021) and US National Institutes of Health 
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