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Identification of differential regulators is critical to understand the dynamics of cellular systems and molecular mechanisms of 
diseases. Several computational algorithms have recently been developed for this purpose by using transcriptome and network 
data. However, it remains largely unclear which algorithm performs better under a specific condition. Such knowledge is im-
portant for both appropriate application and future enhancement of these algorithms. Here, we systematically evaluated seven 
main algorithms (TED, TDD, TFactS, RIF1, RIF2, dCSA_t2t, and dCSA_r2t), using both simulated and real datasets. In our 
simulation evaluation, we artificially inactivated either a single regulator or multiple regulators and examined how well each 
algorithm detected known gold standard regulators. We found that all these algorithms could effectively discern signals arising 
from regulatory network differences, indicating the validity of our simulation schema. Among the seven tested algorithms, 
TED and TFactS were placed first and second when both discrimination accuracy and robustness against data variation were 
considered. When applied to two independent lung cancer datasets, both TED and TFactS replicated a substantial fraction of 
their respective differential regulators. Since TED and TFactS rely on two distinct features of transcriptome data, namely dif-
ferential co-expression and differential expression, both may be applied as mutual references during practical application.  

differential regulation, differential co-expression, differential expression, simulation, algorithm evaluation, transcrip-
tion factor 
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A gene regulatory network is a representation of the rela-
tionships between molecular regulators (usually transcrip-
tion factors, abbreviated as TFs) and their regulating targets, 
which work collectively to establish simultaneous gene ex-
pression profiles. With recent, rapid improvements from 
both technical and computational aspects, genome-scaled 
regulatory networks have become accessible as scaffolds in 
studies of pathophysiological gene regulatory mechanisms 

[1,2]. Recently, increased awareness that regulatory net-
work scaffolds can differ between conditions has given rise 
to a new research theme called “differential networking” 
[3,4]. Underlying the differential networking approach is a 
“differential regulation” issue, where the loss, gain, or re-
wiring of regulatory links occur at the localized topology of 
a baseline gene regulatory network [5,6]. In normal physio-
logical conditions, differential regulation is occasionally 
observed at switches between different cellular conse- 
quences, such as TP53’s alternative, contrary regulation 
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effects on KLF4, leading to either cell cycle arrest or cell 
death [7]. In pathological conditions, sequence mutation or 
chromosome aberrance might disrupt the normal regulatory 
links between a regulator and its potential targets, causing 
the regulator in question to become a “differential regula-
tor.” For instance, TP53 is a major differential TF in many 
cancer cases, when missense mutations cause it to fail to 
recognize wild-type binding sites [8]. An illustration of an 
instance of differential regulation involving single regulator 
inactivation is shown in Figure 1A. 

Precise identification of underlying differential regulators 
is essential to the elucidation and possibly calibration of 
many pathophysiological processes. In the last few years, 
many computational algorithms have been devised to lev-
erage regulatory relationship information towards identify-
ing differential regulators from transcriptome responses. In 
2010, Essaghir and colleagues [9] proposed an algorithm, 
TFactS, and demonstrated that TF regulation can be accu-
rately predicted from the presence of differential expression 
gene (DEG) signatures in a TF’s target. Almost the same 
time, two other algorithms, RIF1 and RIF2, were introduced 
to integrate differential expression (DE) and differential 
co-expression (DCE) features [10,11]; they successfully 
identified myostatin as the main cause of muscle growth 
divergence between two cattle breeds [11]. Last year, we 
developed two algorithms, TED and TDD, for identifying 
differential regulators [12]. TED is engineered towards the 
enrichment of differential co-expression genes (DCGs) 
within targets, while TDD is directed towards the density of 
targets’ differential co-expression links (DCLs). We noted 
that another approach, the “correlation set analysis” [13], 
calculates the correlation levels between regulatees as an 
indication of a regulator’s activity, and we employed a sim-
ple adaption of its formula to further expand it into two var-
iant forms “dCSA_t2t” and “dCSA_r2t” (see more details in 
Materials and methods). The two variant algorithms could, 

in principle, be used to identify differential regulators. 
These seven algorithms rely more or less on the regula-
tor-target relationships of a baseline regulatory network 
(Table 1), so we generally refer them as “network-based” 
algorithms. Each of these algorithms has its own features 
and was assessed through specific evaluation strategies. It is 
necessary to align these alternative algorithms and subject 
them to uniform, systematic evaluation. The evaluation re-
sults will help users make the most appropriate methodo-
logical selection for their practical application needs. 

To perform a systematic evaluation of the seven 
above-mentioned algorithms in this work, we established a 
simulation-based schema. Specifically, we used pre-defined, 
inactivated single or multiple regulators to benchmark the 
prioritization accuracy of these seven algorithms. The algo-
rithm(s) that performed best using the simulation data were 
then further evaluated in two independent lung cancer ex-
pression profiling datasets, so as to examine the reproduci-
bility of the identified differential regulators. Our simula-
tion-based evaluation tests revealed the complexity of the 
issues surrounding differential regulator identification and 
disclosed some factors influencing discrimination accuracy 
in general. Based on the evaluation of the seven algorithms, 
two (TED and TFactS) had performance that is relatively 
better than the others. We found these two algorithms could 
replicate their findings well in two independent lung cancer 
datasets. Overall, results from this evaluation work may 
benefit applications of and future improvements on the re-
lated algorithms.  

1  Methods 

1.1  Seven differential regulator identification algo-
rithms 

Each algorithm works on a pair of expression matrices cor- 
 

 

Figure 1  Differential regulation problem and the framework of simulation-based evaluation. A, Illustration of two contrasting regulatory networks involv-
ing a single inactivated regulator. The baseline network includes three regulators (genes A, B, and C) and nine targets. In the variant network, all out-going 
edges of gene B disappear. Therefore, a differential regulation occurs and we call gene B a differential regulator. B, The simulation-based evaluation frame-
work. A medium-scale baseline network was sub-selected from an actual transcriptional regulatory network of Escherichia coli (or yeast), and this baseline 
network was perturbed to characterize single or multiple inactivated regulators in the corresponding variant network. With the two expression datasets simu-
lated based on baseline and variant networks, respectively, regulator ranking algorithms were called on to prioritize all candidate regulators. The prioritiza-
tion list was examined against the known inactivated regulator(s) and the discrimination accuracy of each algorithm was assessed. 
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Table 1  Overview of seven algorithms on identifying differential regulators from transcriptome data 

Algorithm Key measurement Featurea) Network Target dichotomy Reference 

TED Enrichment of DCGs in targets DCE Required Yes [12] 

TDD Density of DCLs among targets DCE Required Yes [12] 

TFactS Enrichment of DEGs in targets DE Required Yes [9] 

RIF1 Differential co-expression between regulator and DEGs, variant one DCE & DE Not requiredb) Yes [10] 

RIF2 Differential co-expression between regulator and DEGs, variant two DCE & DE Not requiredb) Yes [10] 

dCSA_t2t Differential co-expression among regulatees DCE Required No [13]c) 

dCSA_r2t Differential co-expression between regulator and regulatees DCE Required No [13]c) 

a) DCE, differential co-expression; DE, differential expression. b) RIF1 and RIF2 do not need a network of regulator-target relationships, but they expect 
a set of regulators as part of their input. c) dCSA_t2t and dCSA_r2t are two variant forms deriving from the CSA algorithm by [13]. 

responding to two contrasting experimental conditions. For 
five algorithms, a network of regulator-target relationships 
is required, while the other two (RIF1 and RIF2) do not 
need such a network but still expect a set of regulators as 
part of their input. Each of these seven algorithms provides 
output results in a similar format; that is, a scoring list of all 
candidate regulators. We recapitulate below the key formu-
lae of each algorithm for calculating the prioritization score 
for a regulator TFi (eqs. (1)(7)), where i refers to a specific 
regulator. Table 1 summarizes the key features of these al-
gorithms. 

Five algorithms are characterized with a dichotomy of 
regulatory target genes (Table 1). This means that, in effect, 
target genes must be identified as either interesting or 
non-interesting, in regards to the desired expression feature. 
The interesting targets of the desired expression feature are 
either DEGs (in algorithms TFactS, RIF1, and RIF2) or 
DCGs (in TED and TDD). In this work, the fraction of in-
teresting target genes (DEGs or DCGs) was designated as 
“key parameter”, and we tested a range of key parameter 
values in the simulation experiments.  

1.1.1  TED: Targets’ enrichment of differential co-    
expression genes 
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Here, N denotes the number of targets (also referred to as 
the “out-degree” in the text below) for all concerned regu-
lators, K denotes the number of all DCG targets, Ti indicates 
the number of targets for a particular regulator (TFi here), 
and Ti′ indicates the number of targets for TFi that are DCGs. 
Of note, here we changed the original base-2 logarithm [12] 
to the more intuitive base-10 logarithm. It should be noted 
that all targets are restricted to those contained in the ex-
pression data.  

In this work, we used the algorithm DCe [14] to deter-
mine DCGs, where we adopted the swiftest link filtration 
method “percent” with a cutoff of 0.1. DCGs were selected 
based on the DCe’s P-value ranking.  

1.1.2  TDD: Targets’ density of differential co-expression 
links 
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Here, Ni is the number of targets for TFi and ki is the num-
ber of DCLs formed within Ni targets. We used the algo-
rithm DCe [14] to determine DCGs and DCLs with the 
same parameter setting as in TED. DCLs were limited to a 
default (coarse) fraction of 0.1, but were then further nar-
rowed down to those connected with DCGs. So the TDD 
result was also dependent on the fraction of DCGs, i.e., key 
parameter value.  

1.1.3  TFactS: Targets’ enrichment of differential expres-
sion genes 
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Here, N is the number of total target genes, ni is the number 
of TFi targets, m is the number of DEG targets, and mi is the 
number of DEG targets of TFi. In this work, genes were 
sorted by their absolute, between-condition mean expres-
sion differences, and a number of top-ranking DEGs were 
selected, depending on their key parameter value. 

1.1.4  RIF1: Regulatory impact factor I 
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Here, ej is the mean log expression value of the jth DEG 
across all samples of the two conditions, and dj is the dif-
ference of the same gene between the two mean log expres-
sion values from the two conditions. nde refers to the total 
number of DEGs. r1ij indicates the Pearson correlation co-
efficient between TFi and the jth DEG in the baseline (or, 
1st) condition, and r2ij indicates the counterpart value in the 
variant (or, 2nd) condition. In this evaluation work, an out-
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most absolute conversion is added to the original formula 
[10]. In our application of RIF1, DEGs were determined in 
the same way as in TFactS.  

1.1.5  RIF2: Regulatory Impact Factor II 
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Here, e1j and e2j indicate the mean log expression values for 
the two conditions, respectively; r1ij and r2ij indicate the 
Pearson correlation coefficient between TFi and the jth DEG 
in the 1st condition and the 2nd condition, respectively. nde 
refers to the total number of DEGs. As in RIF1, here we 
utilize an outmost absolute conversion and add it to the 
original formula [10]. In our application of RIF2, DEGs 
were determined in the same way as in TFactS and RIF1. 

1.1.6  dCSA_t2t: Differential correlation set analysis be-
tween regulatees 
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Here, r1jk and r2jk indicate the Pearson correlation coeffi-
cients between the jth and the kth targets of TFi in the 1st 
condition and 2nd condition, respectively. ni is the number 
of targets of TFi. This index derives from the mean scoring 
function from the correlation set analysis study [13].  

1.1.7  dCSA_r2t: Differential correlation set analysis be-
tween regulator and regulatees 
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Here, r1ij and r2ij indicate the Pearson correlation coeffi-
cients between the TFi and the jth targets of TFi in the 1st 
condition and 2nd condition, respectively. ni is the number 
of targets of TFi. We devised this index as analogous to the 
dCSA_t2t index.  

1.2  Simulation-based evaluation framework 

Two tools, SynTReN [15] and GeneNetWeaver [16], were 
adopted for artificial regulator inactivation and expression 
dataset simulation. With each tool, we first randomly se-
lected a medium-scale regulatory network, which became 
the baseline regulatory network. Then, we imposed either 
single-regulator or multi-regulator inactivation, and as a 
result, obtained a variant regulatory network. Two expres-
sion data matrices corresponding to the two contrasting 
networks were simulated. The pair of expression data ma-
trices, together with the regulatory relationships extracted 
from the baseline network, was supplied to each of the sev-
en algorithms for regulator prioritization. Given the ranked  

lists of the candidate regulators outputted by each algorithm, 
we judged the accuracy of regulator prioritization by com-
paring the top-ranking regulators against the artificially in-
activated regulator(s). A diagram of the evaluation frame-
work is shown in Figure 1B. 

1.2.1  Single-regulator inactivation with GeneNetWeaver 

We used GeneNetWeaver [16] to select a 500-gene yeast 
transcription regulatory network and a corresponding ex-
pression dataset (“multifactorial experiment” of GeneNet- 
Weaver’s data output), as if it were profiled for multiple 
biological samples. This baseline network consisted of 1092 
directed edges and 500 nodes (genes), of which 47 were 
candidate regulators (with two or more targets). Since 
GeneNetWeaver provided expression profiles for a total of 
500 individuals, we randomly sampled 20 individuals each 
time and repeated the subsampling 40 times. In this way we 
obtained 40 datasets, each consisting of 20 individuals, for 
the baseline condition.  

To simulate a regulator inactivation, we removed all 
outgoing edges from a particular regulator in the transcrip-
tion regulatory network. In principle, the perturbed regula-
tor and some of its targets can become orphan nodes and, 
thus, be absent from the synthetic expression dataset. When 
such a circumstance happened, we randomly assigned a 
regulator (not the inactivated regulator) to the would-be 
orphan nodes. In this way we obtained a variant network in 
which one particular regulator (the gold standard answer) 
was inactivated by the suspension of its regulations. As we 
did for the baseline condition, we also obtained 40 datasets, 
each consisting of 20 individuals, for this variant condition. 

Collating one dataset from the baseline condition and one 
from the variant condition, we obtained a dataset pair, or 
two 500×20 data matrices. With this dataset pair and the 
regulatory relationships extracted from the baseline condi-
tion as input, each regulator-ranking algorithm worked to 
output a ranked list of the 47 candidate regulators. The 
ranks were converted to decimals so that the regulator at the 
top was assigned a value 1, while the regulator at the bottom 
was assigned a value 0. The decimal rank of the inactivated 
regulator was termed “priority of true answer” (PTA), 
which was used to compare the performance of the seven 
algorithms. 

Outside the inner module, there were three layers of iter-
ations. First, we tested the algorithms on a range of various 
key parameter values, specifically, from 0.01 to 0.20, with 
an increment of 0.01. Second, we applied the algorithms to 
40 redundant dataset pairs (mimicking biological variation 
or technical variation) and evaluated their performances as 
an average of the 40 tests. Lastly, since 47 total regulators 
were involved, we inactivated a different regulator each 
time, that is, repeated the whole procedure 47 times.  

1.2.2  Multi-regulator inactivation with SynTReN 

We used SynTReN [15] to generate 11 pairs of simulated 
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gene expression datasets based on sub-selected E. coli gene 
regulatory networks. We achieved multi-regulator inactiva-
tion in the corresponding variant networks by reducing the 
number of “external regulators.” As explained in the Syn-
TReN work [15], only the explicit external regulators trig-
ger active, condition-specific transcription responses; those 
“turned-off” external regulators and their downstream cas-
cades were excluded from the major transcription regulation 
program and they formed a constitutive background (refer 
to original publication [15] for technical details). The dif-
ference set of external regulators between the baseline and 
the variant networks, as well as their exclusive downstream 
regulators, were thus regarded as the gold standard differen-
tial regulators.  

The baseline networks and variant networks were used 
by SynTReN to simulate data matrices, each involving 1000 
genes and 10 samples. Two 1000×10 data matrices from the 
baseline and variant conditions, respectively, as well as 
those regulatory relationships extracted from the baseline 
network, were fed into each algorithm for regulator priori-
tization. As we did for single-regulator inactivation, here, 
we also investigated a range of key parameter values. Spe-
cifically, we examined these values from 0.05 to 0.5 with an 
increment of 0.05. We evaluated the prioritization of dif-
ferential regulators in the output ranking lists with receiv-
er-operating-characteristic (ROC) curves, and the area un-
der the ROC curve (AUC) was used as a quantitative as-
sessment index. Each algorithm was evaluated at its maxi-
mum AUC obtained at the optimal key parameter value. 

1.3  Lung cancer gene expression datasets and prelim-
inary analyses 

We used two publically available gene expression datasets 
featuring non-small cell lung cancer to test the real data 
performance of two algorithms, TED and TFactS.  

For the first dataset (denoted “Lung-I”), we obtained the 
transcript per million (TPM) values for 20502 genes from 
16 tumor samples and 16 matched normal samples [17]. In a 
differential expression analysis described elsewhere [18], 
we identified 1504 DEGs and 3627 non-DEGs, which 
meant DEGs accounted for 29.3% of the combined set. In 
another aspect, the expression data containing the total 5131 
genes (1504+3627) was analyzed by the differential 
co-expression analysis method DCe for discriminating 
DCGs and non-DCGs. All parameters were set as in the 
simulation experiments, except that the fraction of DCGs 
was fixed at 29.3% for comparability with the differential 
expression analysis.   

For the second dataset (denoted “Lung-II”), we obtained 
the microarray log intensity values for 12756 genes from 
seven tumor samples and seven matched normal samples 
[19]. The concerned genes were reduced to 3910 after in-
tersecting the genes with dataset Lung-I. A two-group dif-
ferential expression analysis was conducted on this 3910× 
14 data matrix using the Limma tool [20]. Based on the  

Limma results, we designated the top 1145 genes (29.3%) 
with an estimated false discovery rate of 0.147 as DEGs and 
designated the other 2765 genes as non-DEGs. Similar to 
the procedure used for dataset Lung-I, we adopted DCe to 
identify DCGs as 29.3% and designated the other genes as 
non-DCGs. 

1.4  Human gene regulatory networks compiled from 
TRANSFAC 

A larger-scale, prediction-based network of human TF-  
target relationships concerning the 5131 genes from dataset 
Lung-I was obtained through a search of TFBSs in the 
TRANSFAC data (release 2011.4) [21], using Match™ 
software [22]. We basically followed the technical pipeline 
proposed earlier [23], changing only the matrix score from 
0.95 to 1.0. The resultant TRANSFAC-A network com-
prised 211417 relationships involving 344 TFs. The median 
number of targets per TF was 124. 

A smaller-scale, experimental validation-based network 
of human TF-target regulatory relationships was derived 
from the gene annotation file (“gene.dat”) in TRANSFAC 
(release 2013.2). After mapping to the same 5131 genes, 
this TRANSFAC-B network comprised 3046 relationships 
involving 572 regulators (mainly TFs, occasionally mi-
croRNAs). The median number of targets per regulator was 
four. 

The two networks were reduced further by excluding TFs 
that were associated with no or only one expression-   
measured target gene. This constraint reduced the numbers 
of concerned TFs to 331 (TRANSFAC-A) or 359 
(TRANSFAC-B) for the Lung-I dataset, and 330 
(TRANSFAC-A) or 349 (TRANSFAC-B) for the Lung-II 
dataset.  

The two networks represented two extremes, one with 
denser targets and the other with sparser targets. They did 
not have much overlap, as the TFs shared between the two 
networks accounted for no more than 45% of either set. 
These two regulatory networks were used as alternative 
baseline networks in testing the performance of TED and 
TFactS on two human lung cancer expression datasets. 

2  Results 

2.1  Validity of the simulation-based evaluation frame- 
work  

As shown in the framework diagram (Figure 1B), the initial 
biological difference between the two conditions lay in the 
network difference, and then this difference flowed down-
ward through simulated expression data to the resultant 
ranking scores of candidate regulators. We first attempted to 
ensure that it was the initial network difference that gov-
erned the resultant ranking scores, ruling out the possibility 
that the observed regulator ranking was attributed to tech-
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nical biases. For this purpose, we performed a “contrasting” 
simulation experiment, which involved dataset pairs origi-
nating from two contrasting regulatory networks, and a 
“homogeneous” experiment, which involved dataset pairs 
originating from two identical regulatory networks. We 
compiled 40 dataset pairs for each scenario, and hence ob-
tained 40 ranked lists for the homogeneous case and another 
40 for the contrasting case. In the homogeneous network 
comparisons, the resultant regulator ranking was random, 
and the alternative rankings should not have substantial 
mutual consistency. In the contrasting network comparisons, 
however, if the regulator ranking algorithm had sufficient 
discrimination power, then the persistent structural differ-
ence should drive the 40 trial results towards a consensus 
reflective of the genuine structural divergence.  

For each algorithm’s multiple results out of the 40 repeti-
tive runs, we calculated the Spearman correlation values for 

each of the 780 combinations formed from the 40 score lists 
for the contrasting experiment and the homogeneous ex-
periment, respectively, and we comparatively showed the 
mean Spearman correlation values as bar plots (Figure 2). 
Remarkably, each algorithm demonstrated more consistent 
results in the contrasting case than in the homogeneous case 
for all or most of the surveyed key parameter values 
(Mann-Whitney test P-value<0.01; Figure 2). While Figure 
2 involved perturbation of one specific regulator, the same 
conclusion held for the perturbation of every regulator (data 
not shown). Such an increase in result consistency in the 
presence of biological difference implied that all existing 
algorithms were able to reflect regulatory difference signals 
introduced through regulator inactivation in their ranking 
results. Therefore, we judged that our simulation framework 
(Figure 1B) was valid for our purposes of evaluating the 
discrimination ability of algorithms in regards to the (inac- 

 

 

Figure 2  Regulator rankings are more consistent in the presence of biological difference than in the absence of biological difference. Seven regula-
tor-ranking algorithms (subplot titles) were implemented to rank 47 candidate regulators based on a pair of simulated expression datasets, which were de-
rived either from two differential regulatory networks (“contrasting”) or from two identical networks (“homogeneous”). Wherever applicable, a series of the 
algorithms’ key parameter values were investigated. With key parameter value being fixed, 40 redundant dataset pairs were simulated for repeated testing. 
Each subplot shows the mean and standard deviation of Spearman correlations of 780 pairs formed from 40 redundant ranking lists. An asterisk (*) indicates 
a significant difference between contrasting result consistency and homogeneous result consistency (Mann-Whitney test P-value<0.01). 
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tivated) differential regulator(s). 
While only mutual result consistency is shown in Figure 

2, we could have a glimpse of some technical characteristics 
of the surveyed algorithms therein. The contrasting result 
consistency actually indicated the algorithms’ robustness 
against variation arising from sample choice or technical 
noise. As a result, TED, TDD, and TFactS appeared more 
stable in this regard than other algorithms (Figure 2). The 
homogeneous result consistency indicated how much an 
algorithm was biased towards a certain default regulator 
ranking. And indeed we observed certain result consistency 
in the absence of differential regulation for TED, TDD, 
TFactS, dCSA_t2t, and dCSA_r2t (Figure 2). Coincidental-
ly, these five algorithms all require a defined regula-
tor-target network (Table 1), and in particular, TED and 
TFatS rely on statistical tests in which a regulator’s 
out-degree plays a decisive role (eqs. (1) and (3)). We pre-
sume that many of these algorithms may be biased towards 
regulators with larger out-degrees. This notion was further 
supported, as shown in the next section. Nevertheless, we 
noticed that, in general, smaller key parameter values were 
associated with lower homogeneous result consistency but 
higher contrasting result consistency, a pattern most evident 
in TED yet still discernable in TDD and TFactS (Figure 2). 
This observation may suggest technical biases were less 
severe with reasonably small key parameter values. 

2.2  TED and TFactS outperformed other algorithms in 
simulation evaluation 

In single-regulator inactivation tests, we had 47 sets of re-
sults, each for a particular inactivated regulator. In each set 
of results, PTA scores were retrieved for seven algorithms 
across a range of tested key parameter values. The two sets 
of results for the regulators with maximum and minimum 
out-degrees, respectively, are shown in Figure 3A and B, 
while all 47 sets of results were averaged and shown in Ta-
ble 2. In the results for the most extensively regulating reg-

ulator (Figure 3A), we observed that TED and TFactS over-
all outperformed the other algorithms with the highest PTA 
scores throughout a majority of the key parameter value 
range. Actually, when all results for the total 47 regulators 
were summarized, TED and TFactS indeed turned out to be 
the best and second-best algorithms, respectively, as meas-
ured by accuracy (Table 2, column “PTA”). TED and 
TFactS also had better robustness against data variations 
than most other algorithms (Table 2, column “RAV”), sug-
gesting that their results might be more stable in varied 
sample recruitment in real practical usage. However, TED 
and TFactS were sensitive to key parameter value (Table 2, 
column “RAP”), which means that special attention must be 
paid to the fraction of interesting genes (DEGs or DCGs) in 
real practical application. 

As shown in the two subplots of Figure 3, there was a 
major difference in accuracy between the regulator with the 
maximum out-degree and the regulator with the minimum 
out-degree. As we reasoned earlier, differential regulator 
prioritization accuracy may be correlated with the regula-
tor’s out-degree. When we systematically analyzed this re-
lationship for the 47 separately inactivated regulators, we 
did find a significant positive correlation between PTA 
scores and TF out-degrees for TED, TDD, TFactS, and 
RIF1 (Figure 4A), implying that an extensively regulating 
regulator was likely more discoverable. Another algorithm, 
dCSA_r2t, demonstrated a significant negative correlation 
between the PTA scores and mean in-degrees of the targets 
of perturbed regulators (Figure 4B). As small in-degrees 
correspond to dominant influences of the single regulator on 
its targets, it is indicated that an exclusively regulating reg-
ulator may also likely be discovered.  

Once the PTA scores for four algorithms over each single 
regulator were plotted on Figure 4A, we could compare the 
accuracies of the involved algorithms over a broad view. 
Still, it was evident that the upper portions, characterized by 
higher PTA scores, were dominated by TED and TFactS. 
Examining the points on each vertical line led to a degree-  

Table 2  Evaluation results based on 47 single-regulator inactivation experiments 

 
PTAa) RAPb) RAVc) 

PTA value PTA rank RAP value RAP rank RAV value RAV rank 

TED 0.621±0.171 1 0.038±0.017 5 0.332±0.091 3 

TDD 0.571±0.188 5 0.036±0.021 4 0.440±0.055 2 

TFactS 0.616±0.225 2 0.110±0.048 7 0.768±0.032 1 

RIF1 0.509±0.067 7 0.036±0.014 3 0.035±0.033 7 

RIF2 0.550±0.128 4 0.054±0.035 6 0.106±0.054 6 

dCSA_t2t 0.515±0.159 6 0d) 1 0.317±0.041 4 

dCSA_r2t 0.597±0.240 3 0d) 1 0.296±0.060 5 

a) PTA, a measure of discrimination accuracy. Here, the value is the “priority of true answer” (see detailed explanation in text), summarized across mul-
tiple dataset pairs, multiple parameter settings, and multiple regulator manipulations. b) RAP, robustness against parameter variation. Here, the value is the 
standard deviation of PTA scores over parameter settings, summarized across dataset pairs and varied regulators. c) RAV, robustness against data variation. 
Here, the value is PTA scores’ Spearman correlation values among repetitive dataset pairs, summarized across parameter settings and varied regulators. d) 
dCSA_t2t and dCSA_r2t did not rely on a key parameter value, so their results were static against any parameter value variation. 
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Figure 3 (color online)  Performance comparison of seven methods in the scenario of one single regulator being inactivated. A, Results for the regulator 
with maximum out-degree (72). B, Results for the regulator with minimum out-degree (3).  

 

Figure 4 (color online)  Correlation between discrimination accuracy of 47 separately inactivated regulators and their regulatory characteristics. A, A sig-
nificant, positive Pearson correlation (P-value<0.01) was observed between PTA (priority of true answer) scores and out-degrees of the regulators in four 
algorithms (TED, TDD, TFactS, and RIF1). B, A significant negative Pearson correlation (P-value<0.01) was observed between PTA scores and the mean 
in-degree of each regulator’s targets in algorithm dCSA_r2t. 

specific comparison of algorithm accuracies, and the results 
may suggest an advantage of TED over TFactS for differen-
tial regulators with higher-degrees (Figure 4A).  

Lastly, we showed the discrimination accuracies when 
multiple regulators were inactivated (Table 3). In total, we 
designed 11 simulation cases, where the first eight (Table 3, 
cases A1A8) shared a common baseline regulatory net-
work, and the next three had separately selected baseline 
networks (Table 3, cases B, C, and D). On average, TED 
and TFactS were ranked the best and the second-best of the 
seven algorithms, respectively. However, there was consid-

erable variation in the AUC values between cases, in partic-
ular, between different baseline networks (Table 3). The 
AUC value did not appear to correlate with the fraction of 
differential regulators, as the toughest case (case B, Table 3) 
for most algorithms happened to have the smallest fraction 
of differential regulators. We earlier found that the out-   
degrees of individual regulators, and at times, the in-degrees 
of the targets, were important factors affecting the discrim-
ination accuracy of the algorithms. Thus, when multiple 
regulators were simultaneously inactivated, the scenario 
became much more complex. More rigorous tests are
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Table 3  Prioritization accuracies in multi-regulator inactivation experiments 

Case # nodes # edges # regulators DR fractiona) 
AUCb) 

TED TDD TFactS RIF1 RIF2 dCSA (t2t) dCSA (r2t) 

A1 

1000 2309 103 

30% 0.69 0.61 0.60 0.62 0.48 0.53 0.57 

A2 29% 0.70 0.67 0.62 0.51 0.67 0.51 0.61 

A3 28% 0.69 0.58 0.64 0.62 0.43 0.48 0.61 

A4 27% 0.77 0.60 0.60 0.48 0.68 0.51 0.54 

A5 26% 0.76 0.62 0.63 0.42 0.51 0.58 0.49 

A6 24% 0.66 0.64 0.58 0.69 0.77 0.59 0.53 

A7 23% 0.69 0.58 0.55 0.63 0.68 0.61 0.52 

A8 18% 0.63 0.56 0.55 0.68 0.65 0.54 0.62 

B 1000 2293 95 16% 0.50 0.37 0.47 0.44 0.38 0.42 0.78 

C 1000 2322 105 49% 0.65 0.71 0.54 0.33 0.63 0.48 0.50 

D 1000 2301 98 20% 0.63 0.55 0.69 0.54 0.62 0.49 0.47 

a) Fraction of differential regulators of the total regulators. b) Area under the curve (AUC) of receiver-operating-characteristic (ROC). 

Table 4  Summary of differential regulators identified from two lung cancer datasets  

Network Dataset TED TFactS TED+TFactS 

TRANSFAC-A 

Lung-I 21 63 3 

Lung-II 9 30 3 

Replicated 0 16 0 

TRANSFAC-B 

Lung-I 7 7 0 

Lung-II 10 2 0 

Replicated 2 1 0 

 
warranted to elucidate the mechanisms underlying multi- 
regulator inactivation scenarios. 

2.3  TED and TFactS replicated multiple differential 
regulators in two lung cancer datasets 

Since TED and TFactS were found the most accurate algo-
rithms in the above simulation evaluations, we extended the 
evaluation of these two algorithms by using two real lung 
cancer expression datasets. The ranked TF lists outputted by 
TED and TFactS, respectively, were limited to a threshold 
of 1.3, corresponding to a nominal P-value of 0.05. De-
pending on the network and the algorithm choice, anywhere 
from a couple to tens of differential regulators were re-
trieved (Table 4). In general, more differential regulators 
were associated with dataset Lung-I (with more samples) 
than dataset Lung-II, and more differential regulators were 
associated with the TRANSFAC-A (with more regulatory 
relationships) than with the TRANSFAC-B network. A mi-
nor violation to this general pattern was found when TED 
run on dataset Lung-II with the TRANSFAC-B network; 
this combination led to 10 differential regulators, which was 
slightly greater than that (9) out of the larger network or that 
(8) out of the larger dataset.   

We first compared TED and TFactS in terms of the 
number of prioritized regulators. As shown in Table 4, 
TFactS identified more differential regulators than TED 
with the larger network TRANSFAC-A (63 vs. 21, or 30 vs. 
9), but equal or fewer differential regulators with the small-

er network TRANSFAC-B (7 vs. 7, or 2 vs. 10). Then, we 
checked the replication scenario of each algorithm from 
dataset Lung-I to dataset Lung-II. Using the larger network 
TRANSFAC-A, those reproduced numbered 0 of TED’s 
initial 21 regulators, and 16 (25.4%) of TFactS’s initial 63 
regulators. Using the smaller network TRANSFAC-B, those 
reproduced were two (28.6%) of TED’s initial seven regu-
lators, and one (14.3%) of TFactS’s initial seven regulators 
(Table 4). Given these two layers of comparative results, we 
might speculate that TFactS worked better in a larger-scale, 
denser regulatory network, while TED is comparable to 
TFactS in a smaller-scale, sparser regulatory network. 
However, due to the limited number of datasets, the com-
parative conclusion may not be generalizable to future cases. 
Of note, genes contained in dataset Lung-I were more dis-
criminable from the DE perspective than from the DCE 
perspective, as genes with borderline DE features were not 
included (see more details in [18]); accordingly, dataset 
Lung-II was also biased towards the DE feature. Indeed, 
from Lung-I to Lung-II, we observed significant consisten-
cy in the DEG/non-DEG classification (Fisher’s exact test, 
P-value<2.2×106), but no significant consistency in the 
DCG/non-DCG classification. Though these two datasets 
were apparently favorable to TFactS, TED still showed 
comparable performance under the TRANSFAC-B network. 
It is expected that TED may show an even better perfor-
mance in real applications involving unbiased sets of genes. 

Regardless of algorithm choice, quite a few differential 
TFs reproduced from Lung-I to Lung-II. A total of 19 repet-
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itively identified regulators are listed in Table 5 as a refer-
ence for other researchers. Of these 19 TFs, five (ARID5B, 
IRF1, MAX, SPI1, and TCF3) were covered in our two ex-
pression data matrices. These five TFs generally had me-
dium to high expression levels in Lung-I dataset as com-
pared to the total genes, but some showed a dramatic de-
crease of expression level in the other dataset Lung-II. Two 
TFs were considered as DCGs in dataset Lung-I but not in 
Lung-II; three TFs were considered as DEGs in dataset 
Lung-I and two of them (TCF3 and SPI1) were repetitively 
differentially expressed in dataset Lung-II. According to 
these observations of specific cases, we might infer that 
differential regulators might not demonstrate remarkable 
and stable expression features on their own. The algorithms 
could discern their importance through analyzing the sys-
tematic expression changes among their target genes.   

We found that SPI1 was detected as a reproduced differ-
ential regulator by TFactS (Table 5). The oncogenic TF 
SPI1 reportedly accelerates DNA replication and promotes 
genetic instability in the absence of DNA breakage in leu-
kemia [24]. However, reports on the role of SPI1 in lung 
cancer development are rare. TED identified two TFs 
(MAX and E2F1) as reproducible in two independent lung 
cancer cohorts (Table 5). Intriguingly, MAX inactivation in 
lung cancer disrupts the MYC-SWI/SNF program, and an 
aberrant MYC-SWI/SNF network is essential for lung can-
cer development [25]. Another TF, E2F1, is required for 
GCN5 (a lysine acetyltransferase that generally regulates 
gene expression) to mediate lung cancer cell growth and 
promote the proliferation of a lung cancer cell line [26]. 

These additional evidences from literature indicate that the 
repetitively identified differential regulators are highly 
likely causal to lung cancer development.  

Other than the three TFs (SPI1, MAX, and E2F1) dis-
cussed above, some other TFs in Table 5 may also be worth 
noting for follow-up investigation. According to a cancer 
gene compendium NCG v4.0 [27], GLI1, ZIC3, TCF3, and 
HNF1B are either known or candidate cancer genes, but 
existing studies have not linked them to lung cancer yet. 
Four TFs repeatedly identified by TFactS, GTF2I, GLI1, 
ZIC1, and ZIC3, were also accredited by TED in either the 
Lung-I or Lung-II dataset. These highlighted TFs likely 
have more pathogenic potential in the development of lung 
cancer. 

3  Discussion 

In a simulation evaluation framework, we defined a specific 
type of differential regulation, i.e., regulator inactivation, as 
the loss of all regulations from a single regulator or multiple 
regulators. With this problem-definition and the pre-defined 
gold standard differential regulators, we evaluated the ac-
curacy and robustness of seven network and transcrip-
tome-based differential regulator identification algorithms. 
We found that all algorithms could discern signals arising 
from genuine differential regulation, indicating the validity 
of our simulation-based evaluation framework. We inferred 
that extensively regulating or sometimes exclusively regu-
lating regulators are easier to identify if they are individual- 

Table 5  Differential TFs identified from both lung cancer datasets by TFactS or TED  

Algorithm/network TF 
Dataset Lung-I Dataset Lung-II 

Score Rank Score Rank 

TFactS/ TRANSFAC-A 

GTF2I 3.8 8 2.2 2 

IRF1 3.4 15 1.7 16 

RBPJ 2.8 19 1.4 26 

GLI1 2.5 23 2.1 3 

NKX2-2 2.2 25 1.3 30 

ZIC1 1.9 35 1.5 24 

ZIC3 1.9 35 1.5 24 

MYOD1 1.8 39 1.8 13 

NR4A2 1.7 40 2.1 1 

ASCL1 1.7 44 1.8 7 

MYF5 1.7 44 1.8 7 

MYF6 1.7 44 1.8 7 

TCF4 1.7 44 1.8 7 

ARID5B 1.6 47 1.9 5 

TCF3 1.6 51 1.8 14 

HNF1B 1.6 53 1.8 15 

TFactS/ TRANSFAC-B SPI1 2.1 3 2.0 1 

TED/ TRANSFAC-B 
MAX 1.8 1.5 1.3 9.5 

E2F1 1.4 7 1.4 8 
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ly inactivated. Based on our evaluation results, two algo-
rithms, TED and TFactS, have shown to be more robust, as 
they excelled in single and multi-regulator inactivation tests. 
These two algorithms were further found to replicate a sub- 
stantial fraction of their identified regulators across two 
independent lung cancer expression datasets.  

TFactS and TED rely on two distinct features of gene 
expression data—differential expression and differential 
co-expression, respectively. Differential expression is the 
most intuitive feature of gene expression and may be vali-
dated in a straightforward manner. When differential regu-
lation is most characteristic of target genes’ differential ex-
pression, it corresponds to changes to node properties (i.e., 
gene expression levels) within the regulatory network, in-
stead of changes to edge wiring (i.e., regulatory links). In 
many cases, differential edge wiring, or edge loss in partic-
ular, occurs in association with node property change, such 
as the decreased expression of targets resulting from an ac-
tivating TF’s inability to bind targeted DNA segments. This 
supposition may explain why TED and TFactS, designed 
from quite different rationales, both stood out from the sev-
eral other investigated algorithms. However, more essential 
to general differential wiring is the change in correlation 
between the expression levels of the TF and its targets [28], 
and consequently (and probably more legibly), the change 
of correlation among the TF’s target genes. Examining all 
the simulation-based evaluations together, we noticed that 
TED showed a slight advantage over TFactS (Tables 2 and 
3). Another differential co-expression-based algorithm, 
TDD, was occasionally comparable or even superior to 
TFactS (Table 3). Due to their comparable performances 
demonstrated in the current simulation study, we recom-
mend that TED and TFactS be used as mutual references to 
each other during practical application. 

Our evaluation results are useful for future improvement 
of such differential regulator identification algorithms. For 
instance, while it appeared a wise strategy to integrate DE 
and DCE together, RIF1 and RIF2 surprisingly returned 
with unsatisfactory discrimination accuracy (Tables 2 and 
3). As they are the only algorithms to neglect the accessible 
regulator-target relationships, we speculated that the results 
of RIF1 and RIF2 would have improvement if they were 
modified to accommodate this available information. Also, 
dCSA_t2t and dCSA_r2t are two algorithms that do not 
require target dichotomy; they directly deal with the co- 
expression difference measured between gene pairs involv-
ing regulatees and at times, the regulator. Their current 
suboptimal results remind us that perhaps a soft-threshold- 
ing or a half-thresholding of pairwise expression correlation 
values may enhance their performance [14]. Finally, we 
observed many zero TDD scores in most simulation exper-
iments (data not shown) and realized that the design of TDD 
should be adjusted, as it lacks the resolution to quantify the 
density of DCLs among the targets of a common regulator. 
In fact, this issue and improvement was recently proposed 

elsewhere [29]. Despite its limited resolution, TDD showed 
a comparable performance to TFactS in multi-regulator in-
activation tests (Table 3). Of note, the key parameter values 
tested in this work were the fractions of interesting genes 
rather than the fractions of interesting gene pairs (links), so 
TDD, a method dependent more on DCL fraction than DEG 
fraction, was not evaluated closely enough. Given necessary 
methodological improvement and a more targeted evalua-
tion strategy, TDD may potentially show better results than 
what was demonstrated in the present work. 

It is advocated to target transcription factors for cancer 
gene therapy [30,31]. Based on the cancer gene compendi-
um NCG 4.0 (including 2000 cancer genes) and a compre-
hensive set of human TFs [32] (including 1987 TFs), we 
found 313 TFs whose genes are cancer-annotated, of which 
35 were explicitly associated with lung cancer. The multi-
tude of cancer TFs or lung cancer TFs were statistically 
significant when a total of 22836 human genes (according 
to Ensembl statistics as of 3/27/2014, http://www.ensembl. 
org/index.html) were used as the background of hypergeo-
metric tests for enrichment (P-value=7.1×104 for general 
cancer, and 0.0019 for lung cancer). Therefore, it would be 
intriguing to investigate if the cancer TFs were involved in 
differential regulating mechanisms. As a tentative explora-
tion, we tested TED and TFactS on two independent lung 
cancer expression datasets. Both algorithms could repro-
duce a substantial fraction of differential regulators given 
their respective favorable regulatory networks, and many of 
them were previously deemed as cancer genes or related to 
(lung) cancer in wet-lab studies. Therefore, as we demon-
strated in the tentative trial with two lung cancer datasets, 
differential regulator identification as a specific approach to 
this long-term goal may contribute to the fight against can-
cer using TFs. 

Although we attempted to perform our evaluation study 
to as many as the available network-based algorithms for 
differential regulator identification, there are still some al-
gorithms not covered in our survey. For instance, TFrank 
[33], a method with characteristic design in network fea-
tures, was not included, because it exists as a web service. 
We could not easily adapt it to batch-executable codes. An-
other limitation is that we have not extended the algorithm 
testing to other types of molecular regulators, such as   
microRNA. One major obstacle to this attempt is the lack of 
simulation models based on microRNA regulatory networks. 
We used the general term of “differential regulators” in this 
study because the principles of the surveyed algorithms can 
be applied to microRNA and other types of regulation as 
well. However, whether these algorithms, which have been 
demonstrated for TFs, can indeed effectively identify dif-
ferential microRNAs has not been tested yet. Lastly the 
simulated differential regulation in this work is likely too 
simple to reflect the complex deregulation in a real physio-
logical condition. In reality, a regulator may lose part of its 
initiated regulations but not all. It may even gain new regu-
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lations beyond the loss of wild-type regulations. Sometimes 
a mutant regulator may cause differential regulation of other 
regulators through competitive binding or protein-protein 
interaction, as demonstrated in the mechanisms of mutant 
p53 [8]. Therefore, in real cases, the differential regulation 
program is far more complex than conceptualized here in 
our simulation framework. Hence, wherever possible, the 
identification of differential regulators should not rely sole-
ly on transcriptome data, but ideally should extend to evi-
dence from other sources, such as mutations inferred from 
DNA-Seq and differential binding from ChIP-Seq. Never-
theless, our evaluation in this study represents the first sys-
tematical assessment of the main network-based identifica-
tion algorithms for differential regulators from transcrip-
tome data. 
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