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Endothelial cells (ECs) not only serve as a barrier between blood and extravascular space to modulate the exchange of fluid, 
macromolecules and cells, but also play a critical role in regulation of vascular homeostasis and adaptation under mechanical 
stimulus via intrinsic mechanotransduction. Recently, with the dissection of microdomains responsible for cellular responsive-
ness to mechanical stimulus, a lot of mechanosensing molecules (mechanosensors) and pathways have been identified in ECs. 
In addition, there is growing evidence that endothelial mechanosensors not only serve as key vascular gatekeepers, but also 
contribute to the pathogenesis of various vascular disorders. This review focuses on recent findings in endothelial mecha-
nosensors in subcellular microdomains and their roles in regulation of physiological and pathological functions under mechan-
ical stress. 
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As a monolayer (endothelium) on the inner surface of vas-
cular wall, endothelial cells (ECs) are constantly exposed to 
mechanical stimuli including shear stress from blood flow 
and circumferential stretch from blood pressure. ECs are 
able to sense mechanical stress, convert it into intracellular 
biochemical signaling and respond by changing their own 
behaviors or cross-talk with surrounding cells in order to 
adapt to the mechanical stimulus. ECs-mediated adaptive 
signaling contributes to the establishment of structural and 
functional plasticity of vessels under various mechanical 
stimuli. It is already known that endothelial adaptive re-
sponse is crucial to the maintenance of vascular homeostasis 
and the regulation of vascular adaptation under physiologi-
cal conditions, while uncontrolled or excessive vascular 
adaptation has been regarded as one of the earliest events 

leading to the generation of various pathological conditions 
[1,2]. Therefore, it has long been one of the main themes in 
vascular biology to study the cellular and molecular mecha-
nisms underlying endothelial mecha- notransduction, a 
complex and dynamic process involving extracellular stim-
uli-sensing, intracellular signaling transduction and regula-
tion of gene expression. 

In the past years, significant progress has been made in 
this filed. A variety of endothelial mechanosensors, which 
are mostly associated with subcellular microdomains or 
organelles, have been identified; in addition, their down-
stream pathways, which may interact with each other at 
multiple levels, have been revealed [315]. The analysis of 
genetic and disease models demonstrated that endothelial 
mechanotransduction not only plays important roles in vas-
cular adaptation or protection against mechanical stress, but 
also contributes to the pathogenesis of various vascular dis-
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orders [1620]. In this brief review, we will discuss recent 
advances in endothelial mechanotransduction with a focus 
on endothelial mechanosensors and their physiol- ogical and 
pathological roles. It should be noted that the term of endo-
thelial mechanosensors used in this review is a collection of 
subcellular microdomains-associated mechanosensing mol-
ecules of ECs reported in literatures; it remains to be deter-
mined at single molecule level whether they sense physical 
forces directly or indirectly.   

1  Subcellular microdomains and their associ-
ated mechanosensors in ECs  

Because ECs are constantly subject to blood flow that has a 
frictional force and hydrostatic pressure, the search for the 
mechanosensors has attracted growing attention. Mech- 
anotransduction is mostly initiated from the cell surface due 
to the deformation and/or fluidity alteration of plasma 
membrane by mechanical stimulus, transmitted along the 
cytoskeleton to sites of intercellular junctions and cell-  
matrix adhesions, and destined to the nucleus for transcr- 
iptional regulation [17], suggesting possible roles of these 
subcellular microdomains in mechanotransduction [21,22]. 
It has become increasingly clear that a variety of subcellular 
microdomains function as platforms of mechanosensors to 
sense and transduce mechanical stimulus. Below are major 
subcellular microdomains and their associated mechan- 
osensors in ECs. 

1.1  Caveolae and lipid rafts  

Plasma membrane of cells has been organized by lipid rafts, 
which are enriched in cholesterol and sphingolipids, into 
various discrete microdomains called caveolae, omega- 
shaped pits in the plasma membrane with a diameter of 
6080 nm [2325]. Accumulated evidence suggests that 
caveolae act as platforms for conducting a variety of cellu-
lar functions including mechanotransduction [2630]. 
Caveolin-1 (Cav-1) protein is one of major components in 
caveolae. A recent study showed that after exposure to shear 
stress for 24 h, Cav-1/caveolae were enhanced and concen-
trated across the apical aspects of ECs [26]. In contrast, 
after stretching vascular caveolae became flattened, which 
may not only serve as a buffering system to decrease mem-
brane tension and prevent cell damage or lysis, but also 
trigger cell protective signaling [27,28]. Altered blood 
pressure and flow changed the gene expression and protein 
phosphorylation levels of resident caveolae proteins includ-
ing caveolins and cavins [29]. Direct in vivo evidence for a 
role of caveolae in mechanotransduction was obtained from 
Cav-1 knockout mice [30]. The Cav-1 deficient mice dis-
played defects in both acute flow-dependent dilation and 
chronic flow-dependent remodeling. Because both effects 

were rescued by Cav-1 re-expression in the endothelium, 
Cav-1 appears to be a critical mechanosensing molecule in 
ECs [30,31]. Accumulated data suggest that caveolae and its 
associated molecules play multiple roles in vascular para-
digms via mechanotransduction [32,33].  

1.2  Membrane proteins: ion channels and receptors   

Several types of membrane proteins, such as some ion 
channels, VEGFR2 and G protein-coupled receptors 
(GPCRs), are known to sense and/or transduce mechanical 
stimuli in ECs. Although some of these membrane proteins 
are located at or associated with caveolae [3235], their 
mechanotransducing functions are not necessarily related to 
subcellular microdomains. We thus use this section to dis-
cuss these proteins, focusing on ion channels and GPCRs.  

More than two decades ago, it was proposed that ion 
channels are endothelial mechanotransducers [3]. Consistent 
with this, shear stress was shown to activate K+ current in 
ECs [36], which was later found to mediate the secretion of 
vasodilators [37] and gene expression [38]. Following these 
findings, shear stress was also shown to be able to activate 
calcium transients [39]; stretch was found to activate 
non-selective cation channels in ECs [40]. It has already 
been known that multiple mechanosensing ion channels, 
including stretch-activated (TRPC1 and TRPV2), shear 
stress-activated (TRPV4 and TRPP1/2), and pressure- acti-
vated (TRPM4 and TRPC6) channels are expressed in ECs 
[41]. It is worth noting that mechanical stimuli may activate 
other signaling molecules that indirectly activate ion chan-
nels, as clearly shown in the case of TRPV4 activation by 
cell swelling [42].  

An early study showed that mechanical stimulus activat-
ed specific GTP binding proteins (G proteins) in ECs within 
1 s of flow onset, representing one of the earliest mechano-
chemical signal transduction events reported to date in 
shear-stimulated endothelium [5]. A recent study showed 
that G alpha (q/11), the heterotrimeric G protein subunits, 
form a protein complex with PECAM-1, another mechano-
sensing molecule in cellular junction involved in rapid 
mechanosensing response of ECs [43]. Interestingly, G al-
pha (q/11) was absent from junctions in atheroprone areas 
as well as in all arterial sections of PECAM-1 knockout 
mice, suggesting that the G alpha (q/11)-PECAM- 1 com-
plex is a critical mediator of vascular diseases [43]. The 
activation of G proteins may be directly [44] or indirectly 
triggered by GPCRs under flow stimulus [45]. Recently, the 
chemokine receptors CXCR1 and CXCR2, known as G 
protein-coupled receptors required for migratory response 
of ECs toward the shear stress- dependent CXCL8 (Inter-
leukin-8), are potentially novel mechanosensors in ECs for 
hemodynamic forces [46]. The detailed role of these recep-
tors in mechanotransduction awaits further investigation. 
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1.3  Primary cilia   

A primary cilium, which connects to the cytoskeletal mi-
crotubules of the cells doublets via the basal body of the cell, 
protrudes from the cell into the lumen of the vessel with the 
length of proximately 15 μm. Primary cilium is increas-
ingly regarded as a mechanosensing organelle in several 
cellular systems including ECs [47]. Primary cilia in ECs 
exposed to unidirectional fluid flow bend in the direction of 
flow. In addition, ECs with cilia displayed a stronger re-
sponse to shear stress in vitro than those without cilia [48]. 
It is known that mechanosensing molecules, such as poly-
cystins and integrins are present in cilia of ECs. Consistent-
ly, ECs without primary cilia failed to convert mechanical 
stimulus into intracellular calcium and nitric oxide signaling 
in ECs [49]. Interestingly, fluid flow has been shown to 
cause loss of primary cilia from the endothelial surface [50], 
suggesting a feedback between mechanical stimulus and 
ciliary structure [51]. A recent study indicated that loss of 
primary cilia primed shear-induced endothelial-to-mesen- 
chymal transition, indicating a functional link between pri-
mary cilia and flow-related endothelial performance [52]. 

1.4  Glycocalyx   

Glycocalyx, a mesh-like structure of hydrated proteoglycans 
and glycosaminoglycans, covers the luminal side of ECs in 
both arteries and veins. Glycocalyx thickness increases with 
vessel diameter, ranging from 2 to 4.5 µm in arteries [53,54]. 
In addition to be a barrier that determines the vascular per-
meability and restricts the molecules and leukocytes from 
reaching the endothelium, glycocalyx is also involved in 
endothelial mechanotransduction. Flow stimulus modulated 
the production and distribution of glycocalyx [55]. After 
exposure to shear stress for 24 h, the glycocalyx compo-
nents, e.g., heparan sulfate, chondroitin sulfate, glypican-1 
and syndecan-1, were enhanced and associated with the 
changes in membrane rafts and the actin [26]. In contrast, 
the removal of glycocalyx by heparitinase significantly re-
duced flow-induced endothelial responses [8,56,57]. The 
redistribution of the glycocalyx also appears to act as a 
cell-adaptive mechanism by reducing the shear gradients 
that the cell surface experiences, which play a central role in 
mediating fluid shear stress-induced cell motility and pro-
liferative response [26,55]. Further in vivo study found that 
the glycocalyx is present as soon as blood flow is initiated, 
which contributes to normal vascular development [58]. 
Evidence has been provided to show the glycocalyx is the 
first line of defence against atheror- ombotic disease and 
specifically its dysfunction is thought to be the first step 
during atherothrombosis [59]. 

1.5  Cellular junction and adhesion molecules   

Endothelial cellular junctions include tight, gap and ad-

herens junctions that are mediated by occludin/claudins, 
connexins and VE-cadherin, respectively [60]. These junc-
tion molecules have been proposed as putative mecha-
notransducers, which are able to sense blood flow [61]. A 
mechanosensory complex of proteins at cellular junctions, 
which include PECAM-1, VE-cadherin and VEGFR2, has 
been well studied in flow and stretch-mediated mecha-
notransduction in ECs [2,6265]. Cellular adhesion to the 
surrounding extracellular environment is essential to nu-
merous aspects of cellular physiology including mechano-
biology. Focal adhesions constitute discrete contact sites 
where integrin receptors connect the extracellular filamen-
tous meshwork to the intracellular cytoskeleton, mediating 
bidirectional mechanical transduction through endothelial 
cell [66]. The integrins in ECs are known to be mecha-
notransducers critically involved in force-sensing processes 
by exerting their action between the extracellular matrix and 
the contractile actomyosin cytoskeleton [67]. Notably, in-
tegrin ligation by matrix proteins at focal adhesions in ECs 
is possibly required to initiate the signaling pathway leading 
to shear stress-induced vasodilation and blood pressure reg-
ulation [6,68,69]. As a key focal adhesion component and 
intracellular signaling transducer, the role of focal adhesion 
kinase (FAK) in endothelial mechanotransduction has been 
mostly studied. Mechanical stretch rapidly increased tyro-
sine phosphorylation of FAK [70]. Up to now, the studies 
have showed that FAK is involved in endothelial responses 
to various patterns of mechanical stimuli including cyclic 
stretch and shear stress, regulating vascular cell prolifera-
tion, remodeling and vascular inflammation [71]. 

1.6  Other subcellular microdomains   

In order to effectively and coordinately sense, transmit and 
respond to mechanical stimuli, other parts/compartments, 
such as cytoskeleton and nuclei, of cells also play important 
roles [7274]. Cytoskeletal components determine and 
maintain cell shape and integrity. Mechanical stimuli, such 
as shear stress and stretch, cause to some extent the changes 
of cellular morphology, which exerts effects on intercon-
nected network of cytoskeleton and triggers cellular re-
sponse. A delicate study with a laser trap showed that the 
mechanical force even as small as 5.5 pN applied to actin 
stress fibers was strong enough to trigger an influx of cal-
cium ions, presumably owing to the activation of mechano-
sensitive ion channels in the plasma membrane [75]. Such a 
stimulus-response process may be very fast, sometimes at 
the speed of the order of hundreds of milliseconds [76]. 
Shear stress activates eNOS and endothelin-1 gene expres-
sion through a pathway involving the intermediate filament 
vimentin, the microtubule network and actin [77,78]. Inter-
estingly, blood flow-induced vascular remodeling is facili-
tated by the genetic absence of the intermediate filaments, 
vimentin and desmin suggesting that these elements oppose 
the process [79,80]. Recent studies suggested that the nu-
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cleus is an important contributor to the overall mechanics of 
the cell [81]. The nucleus can serve as an intracellular 
“mechanostat”, a structure that is able to sense and respond 
to changes in the mechanical properties of the cellular en-
vironment by changing its own stiffness [81,82]. A very 
recent study proposed that endothelial nucleus is a sensor of 
blood flow direction and strength via the hydrodynamic 
drag applied to their nuclei [15]. The detailed mechanism in 
nucleus-mediated mechanotransduction and its significance 
in vascular biology and in mechanical stress-related diseas-
es need to be further explored. 

1.7  Features of mechanosensing and transducing sys-
tem 

The localization of the mechanosensors in microdomains 
mentioned above is not absolute; in addition, their behaviors 
are dynamic. For example, caveolae harbor VEGFR2 [33] 
and PECAM-1 [34], which are known to be mechanosen-
sors in cellular junctions [2,62,63]. Consistently, VEGFR2 
activation was impaired in endothelial cells from Cav-1 KO 
mice [33]. Furthermore, the mechanosensing molecules 
frequently interact with each other. Recent studies showed 
that G alpha (q/11), the heterotrimeric G protein subunits, 
form a protein complex with PECAM-1 to rapidly respond 
to mechanical stimuli [43,83]. Such dynamic and interactive 
feature allows the mechanosensors to finely and synergisti-
cally sense and respond to environmental stimuli. 

Although mechanosensors transmit different signaling 
pathways, their downstream pathways are often integrated 
to activate some key enzymes or to induce the expression of 
a set of genes to perform certain functions. For example, the 
shear stress or acute stretch induced activation of eNOS, 
which is crucial in maintaining vascular homeostasis by 
dilating vessel and inhibiting inflammatory responses, can 
be finely-tuned by several upstream kinases [84,85]. The 
production of reactive oxygen species (ROS), a key mole-
cule initiating many pro-atherogenic events, is tightly con-
trolled by a variety of stimulatory and inhibitory pathways 
under various flow patterns and hypertensive stretch 
[8688]. Similarly, the activity of NF-B, a critical 
pro-inflammatory nucleus factor, is modulated by several 
signaling pathways [89]. So far, however, little is known 
about the signaling adaptors that mediate signal transduc-
tion between mechanosensors and downstream pathways. 
The scaffolding molecules, i.e., Shc and Grb2-associated 
binding protein 1 may be the candidates as they are mecha-
nosensitive and able to coordinate multiple signaling path-
ways from various receptors [6,9094]. 

2  Physiological and pathological roles of 
mechanosensors  

In the in vivo setting, endothelial mechanosensing system 

operates in the context of cell-cell contact and under various 
patterns of flow in blood vessels. Therefore, the mecha-
nosensors in different ECs in different parts or organs ap-
pear to be heterogenous. It is known that in response to 
mechanical stress, ECs interact with vascular smooth mus-
cle cells (VSMCs) [95,96]. Since VSMCs, which are also 
heterogenous throughout the vascular system, are able to 
control vessel diameter by contraction or relaxation via pu-
tative mechanosensors, i.e., DEG/ENaC proteins [97], the 
physical contact between ECs and VSMCs generates the 
heterogeneity of endothelial mechanosensors. Studies sug-
gested that the expression of some mechanosensors is de-
pendent on the location of the vessel and the local flow pat-
tern. For example, the layer of glycocalyx in the internal 
carotid sinus region is thinner than that in the common ca-
rotid artery [16], whereas primary cilium is present in areas 
of low and disturbed flows in the adult aortic [98]. Accu-
mulated results indicate that several types of hemodynamic 
forces are important in maintaining normal functions of the 
EC under physiological condition, while other types may 
lead to endothelial dysfunction under physiological status, 
contributing to the development of vascular diseases. 

2.1  Requirement of endothelial mechanosensors for 
vascular adaptation and remodeling  

Mechanical stress-induced immediate responses include 
biochemical changes, such as the activation of mecha-
nosensors and secondary signaling pathways, increase in 
calcium concentration and nitric oxide release; cellular re-
sponses, such as membrane deformation, cytoskeletal re-
modeling and cell secretion; vessel changes, such as 
flow-mediated dilatation and pressure-mediated vascular 
tone. These responses serve to maintain vascular homeosta-
sis through locally changing hemodynamics and prevent 
vascular cells from damage by mechanical injury [65,85,99]. 
Mechanical stress-induced sustained responses are relative-
ly slow, adaptive and eventually lead to structural-wall re-
modeling, involving gene expression, cell differentiation 
and growth. Previous studies found that the vessel diameter 
is determined by an endothelium-dependent interplay be-
tween shear stress and the local pressure profile [100102], 
suggesting the importance of endothelial mechanotransduc-
tion in sensing and transducing vascular mechanical stress 
in vascular remodeling. Consistently, lack of caveo-
lae-mediated mechanotransduction impaired acute 
flow-dependent dilation and chronic flow-dependent re-
modeling [30]. 

2.2  The interaction between mechanosensors and me-
chanical stresses is an important determinant of vascu-
lar diseases 

The geometric distribution of mechanical stress is closely 
associated with site-specific susceptibility to pathological 
changes [1,2,18,103], such as atherosclerosis and inflamma-
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tion in arteries, suggesting the effects of mechanical stress 
on the phenotypic changes of ECs and vascular wall. Clini-
cal studies suggested that the sites of atherosclerosis are not 
random, but preferentially located at arterial branches and 
curvatures where the local flow is disturbed. The effects of 
disturbed flow on vascular homeostasis, the signaling path-
ways and the involvements in pathological conditions have 
been well studied. For the details, please refer to recent ex-
cellent reviews [1,2,89,104]. On the other hand, recent 
studies showed that the increased density and expression of 
mechanosensors could initiate the mal-adaptation of vessels 
[105,106]. The pressure-activated cation channel up-   
regulation in intact endothelium of aorta was suggested to 
contribute to severe genetic hypertension in a rat model 
[106]. Interestingly, PECAM-1-knockout mice did not acti-
vate NF-B and downstream inflammatory genes in regions 
of disturbed flow, suggesting that this mechanosensing 
pathway is required for the earliest-known events in ather-
ogenesis [63]. Therefore, the interaction between endotheli-
al mechanosensors and mechanical stresses determines the 
site-specific susceptibility of vascular pathogenesis. So far, 
except for the atherosclerosis, which is well known to be 
associated with endothelial mechanotransduction [1,2], ab-
normal cilia function (ciliopathy) in ECs has been linked to 
renal diseases [107,108], while endothelial glycocalyx dys-
function has been regarded as a key factor in the develop-

ment of microvascular hyperpermeability-related diseases 
[109,110]. It can be expected that in the near future, more 
and more mechanosensor-related diseases will be revealed. 

The main feature of endothelial dysfunction is unable to 
sense the changes in hemodynamic forces and blood-borne 
signals, and to respond suitably. Besides, conventional risk 
factors were shown to damage mechanosensors [111]. In 
this regard, the suitable density and normal function of 
mechanosensors of ECs are the gatekeepers of cardiovascu-
lar functions. However, many vascular pathological changes 
are mediated through endothelial mechanosensing and 
transducing system [1]. Such opposite roles imply mecha-
nosensors are double-edged swords, whose functions de-
pend on the complex interactions among geometric me-
chanical stimuli, the expression and functional status of 
endothelial mechanosensors, and conventional risk factors. 

3  Perspectives 

In the last decades, with assembling of pieces of our under-
standing about mechanosensing and mechanotransducing 
process, a preliminary network of mechanosensing mecha-
nisms and biological functions of mechanotransduction in 
ECs has gradually emerged (Figure 1). However, there are 
two major challenges in the field. 

 

 

Figure 1 (color online)  Endothelial mechanotransduction. Major mechanosensors and signaling pathways involved in EC mechanotransduction. 
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The first challenge lies in the basic research aspect. A 
single endothelial mechanosensor unlikely exists; rather, 
mechanosensing and transducing process occurs at multiple 
subcellular microdomains. How do those multiple mecha-
nosensors work together to effectively sense the mechanical 
stimulus and transmit into biochemical signaling pathways? 
How do ECs integrate multiple signaling pathways to exert 
functionally unified responses to mechanical stresses? How 
do ECs transmit mechanical signaling into surrounding cells, 
especially smooth muscle cells, to coordinate various re-
sponses to maintain vascular homeostasis and adapt to me-
chanical stress? To answer these questions, we need to use 
approaches from biophysics, molecular cell biology, physi-
ology, developmental biology, bioengineering and bioin-
formatics to carry out comprehensive studies. 

Another challenge comes from translational medicine 
research. With better understanding of endothelial mecha-
notransduction, we are prompted to develop new diagnostic, 
therapeutic and pharmacological approaches for treatment 
of cardiovascular diseases. Since current cardiovascular 
drugs are mostly aimed at lowering the risk factors (e.g., 
diabetes, hyperlipidemia, and hypertension), targeting at 
endothelial mechanosensors and/or intracellular regulators 
together could be more beneficial. Because those mecha-
nosensors and signaling regulators are required for other 
fundamental cellular processes, caution should be rendered 
when translating the bench data into clinical applications. 

This work was supported by the National Natural Science Foundation of 
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