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Vascular injury, remodeling, as well as angiogenesis, are the leading causes of coronary or cerebrovascular disease. The blood 
vessel functional imbalance trends to induce atherosclerosis, hypertension, and pulmonary arterial hypertension. As several 
genes have been identified to be dynamically regulated during vascular injury and remodeling, it is becoming widely accepted 
that several types of non-coding RNA, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are involved in 
regulating the endothelial cell and vascular smooth muscle cell (VSMC) behaviors. Here, we review the progress of the extant 
studies on mechanistic, clinical and diagnostic implications of miRNAs and lncRNAs in vascular injury and remodeling, as 
well as angiogenesis, emphasizing the important roles of miRNAs and lncRNAs in vascular diseases. Furthermore, we intro-
duce the interaction between miRNAs and lncRNAs, and highlight the mechanism through which lncRNAs are regulating the 
miRNA function. We envisage that continuous in-depth research of non-coding RNAs in vascular disease will have significant 
implications for the treatment of coronary or cerebrovascular diseases. 
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Vascular network is an intricate series of vessels that act as 
conduits for blood flow. Their injury and remodeling con-
tribute to atherosclerosis, restenosis after angioplasty, hy-
pertension, and other diseases. Molecular mechanisms that 
underlie vascular injury and remodeling have been inten-
sively studied during the last two decades [13]. As report-
ed, a number of genes have been shown to regulate vascular 
remodeling and angiogenesis [47]. As it is increasingly 
acknowledged that several types of non-coding RNAs are 
also involved in these processes, they have become a new 
focus of scientific research [8]. 

According to the recent discoveries in the field of RNA, 

nearly 60% of transcripts seem to lack protein-coding ca-
pacity, termed non-coding RNAs [9]. Bioinformatics ob-
servations suggest that non-coding RNAs tend to exist in 
greater numbers in more sophisticated organisms [10]. 
Functional studies reveal that non-coding RNAs have es-
sential functions in regulating epigenetic processes, and 
emerge as important regulators of life activities [11]. 
Among non-coding RNAs, miRNAs and lncRNAs are par-
ticularly interesting and are thus intensively investigated. 
Here, we provide an overview of the extant research find-
ings pertaining to miRNAs and lncRNAs in vascular func-
tional maintenance, injury, remodeling, and angiogenesis. 
Moreover, we highlight their implications for the treatment 
of atherosclerosis, hypertension and other vascular-related 
disease. 
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1  miRNAs 

miRNAs are ~2025 nucleotide non-coding RNAs, present 
in almost all organisms, and are extensively involved in 
post-transcriptional regulation of gene expression [12,13]. 
In animal cells, miRNA is transcribed from genome as 
pri-miRNA, which is processed into hairpin pre-miRNA at 
6070 nucleotides length by Drosha-DGCR8 complex. Af-
ter transportation from nucleus to cytoplasm by Exportin-5, 
pre-miRNA is cleaved by Dicer into a double-stranded 
molecule. After separation of duplex RNA, one is degraded 
and the other is integrated into RNA-induced silencing 
complex (RISC), which induces degradation or translational 
inhibition of the mRNA by interacting with its 3′ untransla-
tional region through base pairing doctrine (Figure 1) 
[8,1416]. Since the first miRNA was identified in Caeno-
rhabditis elegans in 1993 [17], transcriptome-wide profiling 
approaches have been increasingly applied, leading to ex-
plosion of documented miRNAs [18,19]. Thus far, more 
than 1800 miRNAs in human species have been registered 
in miRBase 20.0. Bioinformatics analysis has shown that 
one miRNA might suppress hundreds of targets directly. 
Moreover, at least one third of protein-coding mRNAs 
could be regulated by miRNAs, suggesting that miRNAs 
could regulate many important cellular activities and basic 
pathophysiological processes [2024].  

1.1  miRNAs regulate behaviors of vascular endothelial 
cells 

Vascular endothelial cells are a monolayer of epithelial cells 

that line the internal surface of blood vessels, and are thus 
essential for the maintenance of vascular function. There-
fore, it is pivotal to understand the mechanisms of endothe-
lial cells in vascular disease for developing therapeutic 
strategies. The overall loss of miRNAs in endothelial cells 
by depletion of Dicer [25,26], a key enzyme for miRNA 
maturation, induces embryonic lethality due to significant 
abnormality in vasculogenesis and angiogenesis, implying 
that miRNAs are essential for maintenance of endothelial 
cell function. Here, we outline the miRNAs that have thus 
far been adequately investigated in endothelial cells. Further, 
we emphasize their essential function in regulating endothe-
lial cell behaviors, such as proliferation, migration, and as-
sociation to form a primitive vascular labyrinth. These 
miRNAs include miR-21, miR-24, miR-34a, miR-92a, 
miR-126, miR-200b, miR-210, and miR-221/222 cluster 
(Figure 2). Many of these miRNAs inhibit angiogenesis by 
suppressing proliferation and migration of endothelial cells, 
such as miR-21 by targeting proliferators-activated recep-
tor-alpha (PPAR-α) and RhoB [27]; miR-200b by 
down-regulating Ets-1, VEGF, VEGFR-2 and GATA2 [28]; 
miR-92a by suppressing integrin subunit a5 [29]; and 
miR-221/222 by negatively regulating the expression of 
c-kit [30]. Moreover, in addition to suppressing angiogene-
sis by regulating GATA2, miR-24 also induces apoptosis by 
targeting p21-activating kinase 4 (PAK4) [31]. Similarly, 
miR-34a is significant in promoting senescence of endothe-
lial cells, while it impedes angiogenesis by suppressing  
SIRT1 [32]. In contrast, a collection of miRNAs have been 
shown to promote angiogenesis. For example, we have re-
cently reported that two loci of miR-126 are present in the  

 

 

Figure 1 (color online)  Standard miRNA biogenesis pathway. Primary miRNA (Pri-miRNA) is transcribed from genome by RNA polymerase II. 
Pri-miRNA is cleaved into hairpin Pre-miRNA in the nucleus by the endonuclease Drosha-DGCR8 complex. Pre-miRNA, at the length of 6070 nucleotides 
in a stem-loop structure, is exported from the nucleus to cytoplasm by Exportin-5. In cytoplasm, pre-miRNA is further cleaved by endonuclease Dicer into a 
double-stranded RNA molecule. Subsequent maturation steps involve degradation of one strand RNA and integration of the other strand into RNA-induced 
silencing complex (RISC). miRNA in RISC induces degradation or translational suppression of target mRNA by interacting with its 3′ untranslational region 
through a base-pairing doctrine. 
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Figure 2 (color online)  miRNAs in behavior regulation of endothelial cells. A collection of miRNAs is involved in regulating angiogenesis. miR-21 inhib-
its angiogenesis by suppressing both peroxisome proliferators-activated receptor-alpha (PPAR-α) and RhoB. Similarly, miR-200b serves as a negative regu-
lator of angiogenesis by down-regulating Ets-1, VEGF, VEGFR-2 and GATA2. MiR-92 partially blocks angiogenesis by suppressing histone deacetylase 
SIRT1 and integrin prime ITGA5. In contrast, miR-210 acts as a key modulator in endothelial cells survival, migration, and differentiation, as well as for-
mation of capillary-like structures, under hypoxic conditions by inhibiting EFNA3. On the other hand, miR-221/222 causes dysfunction of endothelial cells 
in migration, proliferation and angiogenesis, by suppressing c-kit and STAT5, while miR-126 promotes angiogenesis through directly regulating 
p21-activating kinase 1 (PAK1) and SPRED1. Moreover, miR-24 is involved in apoptosis of endothelial cells by suppressing p21-activating kinase 4 
(PAK4), and miR-34a significantly promotes endothelial cells senescence by regulating SIRT1, while both impede angiogenesis. 

zebrafish genome, and both miR-126 can regulate vascular 
integrity and angiogenesis through directly regulating its 
target genes p21-activating kinase (PAK1) [33]. According 
to the results obtained in another study, miR-126 knockout 
mice displayed defects in angiogenesis and collateral circu-
lation formation after myocardial ischemia. Consequently, 
the affected mice could not provide enough nutrients and 
oxygen to the ischemic myocardium, resulting in signifi-
cantly increased death rate in this population [34]. Similarly, 
miR-210 acts as a key modulator in endothelial cell survival, 
migration, and differentiation, as well as formation of ca-
pillary-like structures, under hypoxic conditions [35].    
In addition to the aforementioned miRNAs, other miRNAs 
might also participate in regulating behaviors of endothelial 
cells, such as miR-16, miR-424, miR-130a, Let-7, and so  
on [36]. 

1.2  miRNAs regulate proliferation, migration and 
phenotypic switch of VSMC 

In addition to directly regulating gene expression in endo-
thelial cells, a number of remarkable findings show that a 
variety of miRNAs are also involved in modulating prolif-
eration and migration of VSMC by mediating vasoactive 
molecules, cytokines, matrix metal proteases and growth 
factors [37,38]. More specifically, knockout of Dicer in 
VSMC induces embryonic lethality, showing obviously 
abnormal development of vascular vessels. These findings 
suggest that miRNAs play important roles in proliferation, 
migration and phenotypic transformation of VSMC [39], 

such as miR-21, miR-133, miR-143/145, miR-221/222 and 
miR-663 (Figure 3). In response to PDGF treatment, miR- 
221/222 is up-regulated, while miR-133, miR-143/145 and 
miR-663 are down-regulated. Up-regulation of miR- 
221/222 leads to increased proliferation and migration of 
VSMC, as well as reduces expression of contractile markers, 
by directly suppressing cyclin-dependent kinase inhibitors 
p27Kip1 and p57Kip2 [40]. Similarly, over-expression of 
miR-21 increases proliferation and reduces apoptosis of 
VSMC [41]. On the other hand, miR-133 reduces prolifera-
tion and migration of VSMC through repressing transcrip-
tion factor Sp-1 [42], while miR-143/145 inhibits prolifera-
tion and increases differentiation of VSMC, leading to re-
pressing neointima formation following carotid artery bal-
loon injury by directly suppressing transcription factor 
KLF4/5 [37]. Further knockout studies have demonstrated 
that loss function of the miR-143/145 significantly com-
promises the contractile phenotype of VSMC [43]. Another 
miRNA, miR-663, also increases differentiation of VSMC 
and inhibits PDGF-induced VSMC proliferation and migra-
tion by repressing the transcription factor JunB and myosin 
light chain 9 [44]. 

These studies demonstrate that miRNAs play important 
roles in vascular endothelial cells and VSMC, the two main 
vascular cell types, suggesting that regulation of miRNAs 
might be able to mediate the progress of pathological vas-
cular damage, remodeling, as well as angiogenesis. This, in 
turn, might lead to improvements in the therapeutic treat-
ment of atherosclerosis, hypertension, and restenosis after 
angioplasty, stroke and other vascular-related disease.
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Figure 3 (color online)  miRNAs regulate proliferation, migration and phenotypic switch of VSMC. In response to PDGF treatment, miR-221/222 is 
up-regulated, while miR-133, miR-143/145 and miR-663 are down-regulated. miR-21 increases proliferation by suppressing PTEN and PDCD4. Similarly, 
miR-221/222 promotes proliferation and migration by directly inhibiting cyclin-dependent kinase inhibitors p27Kip1 and p57Kip2. On the other hand, 
miR-143/145 inhibits proliferation by suppressing CAMKⅡ and EIK-1, deduces migration by inhibiting Fascin, PDGF-Ra and PKC-epsilon, and switches 
contractile phenotype by suppressing transcription factor KLF4/5. Finally, miR-133 reduces proliferation and migration of VSMC through repressing tran-
scription factor Sp-1. Over-expression of miR-663 increases differentiation of VSMC and inhibits PDGF-induced VSMC proliferation and migration by 
repressing transcription factor JunB and myosin light chain 9. 

1.3  miRNAs in vascular injury and remodeling-related 
disease 

Endothelium damages and vascular lumen stenosis often 
initiate and propagate atherosclerosis, hypertension, pul-
monary arterial hypertension (PAH) and other cardiovascu-
lar diseases. Thus far, many miRNAs have been shown to 
participate in the pathogenesis of these processes. Here, we 
review the extant studies of miRNA in atherosclerosis, hy-
pertension and PAH (Figure 4). 

Atherosclerosis is one of the most common arterial syn-
dromes stemming from vascular endothelium injury, in-
volving multiple complex pathological processes, such as 
inflammation, lipid deposition, fibrosis, and plaque for-
mation. Several miRNAs have been shown to be related 
with these processes. For example, we first reported a new 
regulatory pathway of YY1/HDACs/miR-155/HBP1 in 
macrophage-derived foam cell formation during early ath-
erogenesis. We found that miR-155 was significantly in-
creased in macrophages from atherosclerosis (ApoE) mice 
and was required to mediate oxLDL-induced lipid uptake 
and reactive oxygen species (ROS) production of macro-
phages. More importantly, inhibition of miR-155 by a sys-
temically delivered antagomiR-155 can decrease clearly 
lipid-loading in macrophages and reduce atherosclerotic 
plaques in ApoE mice, suggesting that miR-155 is a po-
tential therapeutic target for atherosclerosis [45]. Mean-
while, Nazari-Jahantigh M1 also found that leuko-
cyte-specific miR-155 deficiency reduced plaque size and 
number of lesional macrophages after partial carotid liga-

tion in atherosclerotic (ApoE) mice by decreasing the ex-
pression of the chemokine CCL2 [46]. In contrast, expres-
sion of miR-181b is reduced in the aortic intimae of 
apolipoprotein E-deficient mice fed with high-fat diets. 
Over-expression of miR-181b inhibits the expression of 
NF-κB responsive genes in endothelial cells, such as 
VCAM-1 and E-selectin, by directly suppressing im-
portin-α3, a protein required for nuclear translocation of 
NF-κB [47]. These findings suggest that systemic delivery 
of miR-181b in vivo can suppress the progression of ather-
osclerosis [48]. These observations suggest that regulation 
of miRNAs might provide a novel therapeutic approach for 
atherosclerosis. 

Hypertension and PAH are important outcomes of vas-
cular remodeling, often inducing further vascular remodel-
ing. Recent studies have shown that a collection of miRNA, 
such as miR-130a, miR-145, miR-155, miR-20, miR-424 
and miR-503, play important roles in hypertension or PAH 
(Figure 4). miR-130a is up-regulated in arteries of sponta-
neously hypertensive rats or in angiotensin II-induced 
VSMC. Further inhibition of miR-130a suppresses angio-
tensin II-induced VSMC proliferation and vascular remod-
eling [36]. In contrast, miR-155 is down-regulated in arter-
ies of spontaneously hypertensive rats, and over-expression 
of miR-155 inhibits hypertension by suppressing angioten-
sin II type 1 receptor [49]. Several miRNAs are involved in 
PAH, regulating the effects of cytokines and growth factor 
on vascular endothelial cells or VSMC. miR-204 is 
down-regulated in pulmonary VSMC of humans or rodents 
suffering from PAH. Down-regulation of miR-204 corre-
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Figure 4 (color online)  miRNAs in vascular disease. Over-expression of miR-181b inhibits NF-κB responsive genes in endothelial cells, by direct suppres-
sion of importin-α3, which is required for nuclear translocation of NF-κB. miR-155 mediates oxLDL-induced lipid uptake and reactive oxygen species (ROS) 
production of macrophages by suppressing HMG box-transcription protein1 (HBP1) and BCL6. Inhibition of miR-130a suppresses angiotensin II-induced 
VSMC proliferation and vascular remodeling. Over-expression of miR-155 inhibits hypertension by suppressing the expression of angiotensin II type 1 
receptor. Down-regulation of miR-204 correlates with severity of PAH, and contributes to the proliferative and antiapoptotic phenotypes of pulmonary 
VSMC by derepressing SHP2. Similarly, over-expression of miR-424 or miR-503 in the pulmonary artery endothelial cells directly suppresses FGF2 and 
FGFR1, promotes endothelial cells into a quiescent state, inhibits the ability of pulmonary artery endothelial cells to recruit VSMC, and therefore reduces 
PAH. In contrast, miR-145 knockout mice display decreased right ventricular systolic pressure and hypertrophy, as well as pulmonary vascular remodeling, 
to a certain extent. 

lates with the severity of PAH, and contributes to the pro-
liferative and anti-apoptotic phenotypes of pulmonary 
VSMC by derepressing SHP2 [50]. Similarly, over-expres- 
sion of miR-424 or miR-503 in pulmonary artery endotheli-
al cells promotes endothelial cells into a quiescent state, 
inhibits the ability of endothelial cells to recruit VSMC, and 
therefore reduces PAH by directly suppressing FGF2 and 
FGFR1 [51]. In contrast, miR-145 has been shown to in-
crease in lung tissues of patients with PAH, as well as PAH 
mice. Knock-down of miR-145 results in decreased right 
ventricular systolic pressure and hypertrophy, and attenu-
ates proportion of pulmonary vascular remodeling [52]. 
These studies suggest that regulation of miRNA expression 
might lead to new therapeutic strategies for treating hyper-
tension or PAH (Figure 4). 

Recently, several studies have revealed the coordinative 
effects of miRNAs in phathological processes. For instances, 
the 3′ UTR of CD44 can be combined by miR-216a, 
miR-330 and miR-608 to affect the expression of CDC42, 
thereby regulating the proliferation, apoptosis and angio-
genesis phenotype of human breast cancer cell line MT-1 
[53]. These studies suggest that miRNAs might also have 
functional relationships in vascular remodeling. Neverthe-
less, there is no direct experimental demonstration that 
miRNAs have coordinative effects in vascular remodeling 
thus far. However, several miRNAs were reported to be 
able to target the same genes in vascular injury and remod-
eling-related diseases, as exemplified by studies that both 
miR-217 and miR-34a can target Sirt1 to induce endothelial 
cell senescence [54,55]. Therefore, it is intriguingly inter-
esting to evaluate the coordinative effects of miRNAs in 
vascular remodeling processes. 

1.4  Serum miRNAs might serve as biomarkers for 
vascular disease 

As miRNA exhibits high stability in plasma, it might be 
possible to utilize this characteristic in the development of 
molecular markers for vascular disease. We have previously 
found that miR-208a can be used as a serum marker for 
myocardial ischemia with high sensitivity and specificity 
[56]. Similarly, a variety of miRNAs change in plasma of 
patients with PAH. It has been shown that a collection of 
miRNAs, such as miR-451 and miR-1246, decreased, while 
several miRNAs, such as miR-23b, miR-130a and miR-191, 
increased in the plasma of patients with PAH. These studies 
might have important implications for clinical research 
aiming to establish whether miRNAs could be used as bi-
omarkers for PAH [57]. However, as the currently available 
methods used for PAH detection are limited to catheteriza-
tion performed under X-ray fluoroscopy, extensive work on 
developing simple and effective detection methods using 
high specificity and sensitivity plasma markers is needed. 
Although this study screened a variety of abnormal miR-
NAs in PAH plasma, it could not ascertain whether miR-
NAs could serve as a marker with high sensitivity and spec-
ificity for PAH. 

2  Functional relationships between miRNAs 
and lncRNAs 

Findings of numerous studies also indicate that the function 
of miRNAs is regulated post-transcriptionally by lncRNA 
(Figure 5). For example, BACE1as, an antisense lncRNA 
that arises from BACE1 locus, could increase the stability  
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Figure 5 (color online)  Functional regulating miRNA by LncRNA. A, 
BACE1as, an antisense LncRNA, can increase stability of BACE1 mRNA 
through competing for the same binding site in BACE1 with miR-485-5p. 
B, Aside from competing with miRNAs on target mRNAs, a widespread 
crosstalk between miRNAs and lncRNAs also exists, in which lncRNAs 
act as decoys to attenuate the amount of miRNAs in regulation of targets 
mRNAs. LINCMD1, a muscle-specific lncRNA, can bind and sequester 
miR-133 and miR-135 to abolish their effects. Several lncRNAs have a 
highly stable circular structure (circRNA) and use a collection of miR-
NA-binding sites to fulfill their functions. 

of BACE1 mRNA through competing with miR-485-5p for 
the same binding site in BACE1 [58,59]. Aside from com-
peting with miRNAs on target mRNAs, there also exists a 
widespread crosstalk between miRNAs and lncRNAs. In  

this network, lncRNAs act as decoys to attenuate the 
amount of miRNAs in the regulation of target mRNAs 
(Figure 5) [60]. For instance, LINCMD1, a muscle-specific 
lncRNA, can bind and sequester miR-133 and miR-135 to 
abolish their effects on suppressing myocyte enhancer fac-
tor 2C (MEF2C) and mastermind-like 1 (MAML1) in mus-
cle differentiation [61]. As shown in Figure 5, several 
lncRNAs have a highly stable circular structure (circRNA) 
[62,63], and can find a collection of miRNA-binding sites to 
fulfill their functions [64]. 

3  lncRNA in vascular physiological or patho-
logical processes 

The function and mechanism of lncRNAs in human disease 
are extensively studied, demonstrating that lncRNAs regu-
late transcription via chromatin modulation, post-transcrip- 
tional regulation, organization of protein complexes, cell- 
cell signalling and allosteric regulation of proteins [6567]. 
However, the effects of lncRNAs, a largest part of mamma-
lian non-coding transcriptome, are still not well understood. 
Only a few reports have shown that lncRNAs are involved 
in vascular pathophysiology. These important research ad-
vances will be reviewed below (Figure 6). 

Discovery of the link between chromosome 9p21 
(Chr9p21) locus and coronary artery disease by genome- 
wide association studies marked an important landmark in 
vascular pathology [68,69]. This prompted extensive re-
search, which indicated that this locus is associated with 
several vascular diseases, such as atherosclerosis, aneu-  

 

 

Figure 6 (color online)  lncRNA in vascular physiological or pathological processes. Antisense non-coding RNA in the INK4 locus (ANRIL) was identified 
to be transcribed from the Chr9p21 locus, acting as an epigenetic regulator to modulate atherosclerosis, stroke and other artery disease. Tie-1AS, a natural 
antisense lncRNA for tyrosine kinase (tie-1), selectively binds to tie-1 mRNA to regulate its expression levels, causing specific defects of contact junctions 
among endothelial cells. MALAT1 promoted proliferation of endothelial cells, and thus increased angiogenesis. lncRNA MVIH is associated with micro-
vascular invasion as well as overall survival in hepatocellular carcinoma (HCC) by promoting tumor-inducing angiogenesis through suppressing the secre-
tion of phosphoglycerate kinase 1 (PGK1). Lnc-Ang362, the host transcript for miR-221 and miR-222, has been shown to be essential for Ang II-induced 
proliferation of VSMC. 
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rysms, hypertension, stroke and peripheral artery disease. 
Recent work has shown that antisense non-coding RNA in 
the INK4 locus (ANRIL) is transcribed from the Chr9p21 
locus and acts as an epigenetic regulator to modulate cardi-
ovascular risks [70]. Functional studies have shown that this 
lncRNA may be involved in atherosclerotic process, there-
fore inducing ischemic and hemorrhagic stroke. This 
non-polyadenylated RNA was observed to resist RNase R 
digestion and could be amplified using outward-facing pri-
mers by PCR, suggesting that they might adopt a circular 
RNA structure [71]. 

Tie-1AS, a natural antisense lncRNA for tyrosine kinase 
(tie-1), selectively binds to tie-1 mRNA to regulate its ex-
pression levels in vivo and in vitro, causing specific defects 
in the contact junctions between endothelial cells [72]. 
lncRNA MVIH is associated with microvascular invasion, 
tumor node metastasis, decreased recurrence-free survival, 
as well as overall survival, in hepatocellular carcinoma by 
promoting tumor-inducing angiogenesis through suppress-
ing the secretion of phosphoglycerate kinase 1 (PGK1) [73]. 
Therefore, by mediating the transcriptional regulation of 
gene expression, lncRNA could control vascular physiolog-
ic processes. 

In endothelial cells, MALAT1 was significantly up-  
regulated by hypoxia. Silencing of MALAT1 promoted 
sprouting and migration of endothelial cells. In vivo genetic 
ablation of MALAT1 suppressed proliferation of endotheli-
al cells, and thus reduced neonatal retina vascularization. 
Additionally, pharmacological inhibition of MALAT1 re-
duced blood flow recovery and capillary density after 
hindlimb ischemia by impairing the expression of various 
cell cycle regulators. These results suggest that knockdown 
of MALAT1 impairs the balance of endothelial cell from a 
proliferative to a migratory phenotype, and further reduces 
vascular growth [74]. 

The ability of lncRNAs to associate with miRNAs and 
take their functions has also been investigated. For instance, 
aberrant regulation of angiotensin II (Ang II) results in hy-
pertension and atherosclerosis. Using RNA-sequencing 
analysis, a collection of novel lncRNAs was identified in 
Ang II-induced VSMC. Among them, Lnc-Ang362, the host 
transcript for miR-221 and miR-222, was essential for pro-
liferation of vascular smooth muscle. These results provide 
novel insights into lncRNAs in mediating cellular responses 
to Ang II [75]. 

4  Problems and prospects 

Although the association between miRNAs, lncRNAs and 
vascular disease has been extensively studied, there are still 
many issues that restrict their large-scale clinical application. 
First, as one miRNA or lncRNAs might target dozens or 
even hundreds of genes, artificial intervention of these 
miRNAs or lncRNAs might cause unwanted changes in 

numerous downstream targets. Moreover, toxicity of miR-
NAs with chemical modification is yet to be established, 
and their off-target effects are still largely unknown. Thirdly, 
current pharmacokinetic knowledge of miRNAs or 
lncRNAs metabolism is still insufficient. Thus, further 
studies need to focus on advancing the understanding of 
miRNA or lncRNAs function and mechanism, in order to 
pave the way for clinical application of miRNAs or 
lncRNAs in vascular remodeling and homeostasis mainte-
nance. 

Recent studies in RNA field have primarily focused on 
the effects of miRNAs or lncRNAs on endothelial cells and 
VSMC. However, the research scope should be extended to 
include miRNAs or lncRNAs in other cellular components 
of blood vessels, such as fibroblasts and macrophage, all of 
which remain to be investigated. Although thousands of 
lncRNAs, formed as circRNAs, might be expressed across a 
broad range of eukaryotes, studies focusing on their func-
tions in blood vessels are currently limited. In addition to 
miRNAs and lncRNAs, other non-coding RNAs, such as 
rasiRNAs and piRNAs, might also be involved in the de-
velopment of vascular-related disease. 

In this review, we highlight the mechanism of lncRNAs 
on vascular injury and remodeling by regulating the effects 
of miRNAs. However, lncRNAs also have been reported to 
modulate every aspects of gene expression, including chro-
matin remodelling, mRNA transcription and processing, and 
post-transcriptional pathways [66,67,76]. It is important, 
therefore, to explore whether lncRNAs could be involved in 
vascular disease through these mechanisms. Indeed, tech-
nical advances are already under the way to discover the 
functional motifs within lncRNAs and miRNAs. For in-
stance, the application of high-throughput microfluid-
ics-based screening technologies has the potential to ana-
lyze the functional motifs of lncRNAs and miRNAs librar-
ies [77]. Continuing the research of the functions and 
mechanisms of these non-coding RNAs is urgent for their 
further understanding, which would clarify their mechanis-
tic, clinical and diagnostic implications in vascular disease. 
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