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Cryopreservation techniques for mammalian oocytes and embryos have rapidly progressed during the past two decades, em-
phasizing their importance in various assisted reproductive technologies. Pregnancies and live births resulting from cryo-
preserved oocytes and embryos of several species including humans have provided proof of principle and led to the adoption of 
cryopreservation as an integral part of clinical in vitro fertilization. Considerable progress has been achieved in the develop-
ment and application of the cryopreservation of mammalian oocytes and embryos, including preservation of the reproductive 
potential of patients who may become infertile, establishment of cryopreserved oocyte banks, and transport of oocytes and 
embryos internationally. However, the success rates are still far lower than those obtained with fresh oocytes and embryos, and 
there are still obstacles that need to be overcome. In this review, we address the major obstacles in the development of effec-
tive cryopreservation techniques. Such knowledge may help to eliminate these hurdles by revealing which aspects need im-
provement. Furthermore, this information may encourage further research by cryobiologists and increase the practical use of 
cryopreservation as a major part of assisted reproductive technologies for both humans and animal species. 
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In the past few decades, assisted reproductive technology 
(ART) has been used to compensate for infertility of cou-
ples and commercially valuable animals. There have been 
improvements in many ART techniques, resulting in a sig-
nificant increase in the proportion of viable oocytes and 
transferable embryos. However, surplus oocytes and em-
bryos have created the need to develop cryopreservation 
techniques. 

Cryopreservation of female gametes and embryos 

emerged after investigation of the effect of low temperature 
storage on rabbit oocytes, zygotes, and embryos by Chang 
et al. [1,2]. Subsequently, cryopreservation protocols have 
evolved substantially for gametes, embryos, and ovarian 
tissues. In 1977, the first live births from cryopreserved 
ovulated mammalian oocytes were reported in mice [3] fol-
lowed by a number of species including human [4], rabbit 
[5], cow [6], and horse [7]. 

There are two strategies that may fulfill the requirements 
for successful cryopreservation of mammalian oocytes and 
embryos: slow freezing and vitrification. Several studies  
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have indicated that slow freezing results in low survival and 
implantation rates, and can cause spindle abnormalities [8, 9]. 
These negative effects have limited the widespread use of 
slow freezing techniques. Since the invention of vitrification 
by Rall and Fahy [10], it has been widely applied for the 
cryopreservation of human oocytes [11], a variety of do-
mestic and laboratory animals [12–21], as well as other  
mammalian embryos [21–30]. Furthermore, vitrification is 
considered to be a better alternative to slow freezing cryo-
preservation [31]. Regardless of the methodology used for 
cryopreservation, the pregnancy rate obtained with fro-
zen/thawed gametes and embryos is still below that ob-
tained with fresh gametes and embryos [32]. This finding 
suggests that improvements are still needed in oocyte and 
embryo cryopreservation. In this review, we address the 
major obstacles in the development of effective cryopreser-
vation techniques to reveal which aspects require improve-
ment and encourage further development in this field. 

1  Types of cryoinjuries 

During cryopreservation, mammalian oocytes and embryos 
can be damaged by various types of injuries [33]. For suc-
cessful cryopreservation, conditions should be optimized to 
minimize injuries and maintain a high survival rate. The 
incidence of these injuries is closely related to the cryobio-
logical properties of oocytes/embryos, such as sensitivity to 
chilling, permeability of the plasma membrane to water and 
cryoprotectant agents (CPAs), sensitivity to the chemical 
toxicity of the cryoprotectant, and tolerance for osmotic 
swelling and shrinkage. During cooling to subzero temper-
atures, cells may be exposed to several mechanisms of 
damage: as discussed below. 

1.1  Chilling injury 

Chilling injury usually occurs between +15 and –5°C. It 
induces partially irreversible changes in lipid droplets, li-
pid-rich membranes, and microtubuli of the mitotic or mei-
otic spindle [34,35]. Chilling injury is a common cryoinjury 
during application of slow freezing techniques, whereas 
vitrification involves a very high cooling rate and passages 
rapidly through this dangerous temperature zone, thus de-
creasing chilling injury to the oocytes and embryos [36]. 
Accordingly, vitrification is the only successful strategy for 
cryopreservation of intact porcine embryos containing ex-
tremely large amounts of chill-sensitive lipid droplets [37] 
and oocytes of various other species, which are sensitive to 
chilling, such as cattle, sheep, and horse [38]. 

1.2  Ice crystal formation 

Ice crystal formation is considered to be the major source of 
injury [39] in the medium surrounding cells and inside the 
cells, including the cytoplasm and nucleus. It may occur 
between –5 and –80°C. In contrast to slow freezing, oocytes 
and embryos cryopreserved by vitrification are exposed to 
high concentrations of CPAs before immersion in liquid 
nitrogen at very high cooling rates (2000–20000°C min1) 
(Figure 1). Consequently, vitrification avoids ice crystal 
formation [39].  

1.3  Fracture damage 

Fracture damage occurs between –50 and –150°C, because 
of the mechanical effect of the solidified solution, especially 
in relatively large biological objects such as oocytes and 
embryos [40]. 

 
 

 

Figure 1  Vitrification versus conventional slow freezing. 
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1.4  Multiple aster formation 

A newly discovered type of cryoinjury is multiple aster 
formation [41]. During vitrification, exposure of oocytes to 
highly concentrated CPAs and an ultrarapid cooling rate 
induces the formation of multiple asters near the male pro-
nucleus. Thus, there is disruption to migration and devel-
opment of pronuclei, resulting in delay in the first cleavage, 
and reduced potential for blastocyst formation [41]. A low 
concentration of glutathione in oocytes or low quality oo-
cytes that cannot maintain the single sperm aster may be 
reasons for the increase of aster formation in vitrified oo-
cytes. A recent study found that, high concentrations of 
glutathione in mature oocytes does not decrease the inci-
dence of multiple aster formation after in vitro fertilization 
(IVF) of vitrified/warmed oocytes [42]. 

1.5  Osmotic stress 

During cryopreservation of cells with high osmolar cryo-
protectant solutions, the cells shrink immediately as water 
leaves in response to the difference in osmotic pressure be-
tween intracellular and extracellular solutions. It has been 
reported that water leaves a cell at about 5000 times faster 
than that of macromolecules and other solutes present in the 
cytoplasm [43]. Thawing is the reversal of the freezing pro-
cess and is equally important. Because oocytes and embryos 
are more permeable to water than CPAs, frozen cells will 
swell or burst if they are placed directly in medium without 
CPAs after thawing. For this reason, a high concentration of 
non-permeating CPAs, such as sucrose, is usually used as an 
osmotic buffer to counteract the high concentration of CPAs 
in the cell. Changes in the cell shape can lead to cytoskeleton 
damage and fracture of the zona pellucida [44,45]. 

2  Cellular effects of cryopreservation on oo-
cytes and embryos 

2.1  Cytoskeleton 

The oocyte cytoskeleton consists of three main components,  
microtubules (polymerized tubulin), microfilaments (pol-
ymerized actin), and intermediate filaments. During cryo-
preservation, at equilibration, osmotic shock may result in a 
shrunken and misshapen oocyte, which can damage the cy-
toskeleton. Exposure of oocytes to cooling [35], CPAs [46], 
or the freeze/thaw process [45] may cause microtubule de-
polymerization and DNA fragmentation [47], abnormal 
spindle configurations [48,49], chromosomal abnormalities 
[49], altered distribution or exocytosis of cortical granules 
[48], and cytoplasmic membrane fracture [50]. Similarly, 
after oocyte cryopreservation, there is a negative influence 
on microfilament functions [46]. These developmental per-
turbations can lead to abnormal distributions of mitochon-
dria in the oolemma [51,52] and consequently result in re-

duced meiotic competence and fertilizability of oocytes, as 
well as developmental failure in the preimplantation em-
bryo.  

In oocytes, the meiotic spindles consist of microtubules 
that are constructed by polymerization of α- and β- tubulin. 
Meiotic spindles play vital roles in meiotic progression as 
well as chromosomal alignment and segregation [53]. Many 
technological advances have enabled visualization of the 
spindle. Two of these methods are confocal microscopy and 
polarized light microscopy. Confocal microscopy has lim-
ited value because it requires the oocyte to be stained, fixed, 
and nonviable [54]. Advances in polarized light microscopy 
have offered the opportunity to visualize the meiotic spindle 
non-invasively before and/or after cryopreservation [55, 56]. 
However, the inability of polarized light microscopy to dis-
tinguish between spindles with normal (bipolar) and highly 
disarranged conformation and to predict the degree of mi-
crotubule polymerization in metaphase II (MII) spindles of 
frozen/thawed oocytes make it an inefficient method to as-
sess the MII spindle, especially after cryopreservation [57]. 
Recently, Gomes et al. [58] used polarized field microscopy, 
a noninvasive imaging method, and immunocytochemistry 
to compare the polymerization status of mouse oocyte spin-
dles at various stages of meiosis, metaphase I (MI), telo-
phase I (TI), and MII exposed to various temperatures 
(37°C, room temperature, 4°C, and vitrification) for 0, 10, 
30, and 60 min. They found that the temperature- and 
time-dependent differences in the depolymerization/    
repolymerization equilibrium of oocyte spindles are related 
to the meiotic stage, in which TI shows less depolymeriza-
tion at room temperature, 4°C, and after vitrification and 
warming than that of spindles in MI and MII oocytes.  

Oocytes analyzed immediately after thawing display se-
vere disorganization or disappearance of spindles following 
both slow freezing and vitrification methods [55,59,60] with 
a more deleterious effect of the slow freezing procedure 
[61]. However, there is disappearance and reappearance of 
meiotic spindles during MII after vitrification and slow 
freezing [35,6163], which depends on the time interval 
after thawing, methods of freezing and thawing, and the 
species [55,59,60,64]. It has also been proposed that tem-
perature-induced oocyte microtubule depolymerization may 
be dependent on the nuclear maturation state of oocytes 
[58,65]. A potential strategy to avoid spindle depolymeriza-
tion is cryopreservation of oocytes at the germinal vesicle 
(GV) stage. However, immature oocytes are less permeable 
to water and CPAs [66], more sensitive to cryopreservation 
[67], and live births are rarer than those achieved with ma-
ture oocytes [68]. 

Cytokeratin is an intermediate filament that plays im-
portant roles in oocyte maturation and embryonic develop-
ment [69]. The cytokeratin structure is affected during vitri-
fication of both mature [70] and immature oocytes [71], 
which most likely contributes to oocyte death [70]. The 
post-warming survival and blastocyst formation rates ob-
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tained after the use of cytochalasin B and taxol as cytoskel-
etal stabilizer agents during vitrification are still controver-
sial. Improvement of the post-warming developmental 
competence of oocytes after using a cytoskeleton stabilizer 
has been reported in mouse [72], bovine [73], porcine [74, 75], 
and ovine [76] oocytes. However, some reports have indi-
cated no improvements in bovine [77], porcine [78], and 
rabbit [79] oocytes. Further investigation is needed to over-
come the consequences of cytoskeletal injuries and enhance 
cryopreservation procedures. 

2.2  Zona pellucida  

The zona pellucida is a glycoprotein membrane surrounding 
the plasma membrane of oocytes and preimplantation em-
bryos. It is known to play a critical role in the entire fertili-
zation process and blockade of polyspermy following initial 
penetration by one spermatozoon through triggering cortical 
granule exocytosis. The cortical reaction results in blockade 
of polyspermy by modifying the zona pellucida (zona reac-
tion), oolemma, or both. During cryopreservation of oocytes, 
CPAs cause transient calcium increases in oocytes [80], and 
thus trigger cortical granule exocytosis [81] that is sufficient 
to cause zona hardening and compromises sperm penetra-
tion and fertilization [82]. A rapid change in the cell con-
figuration is another negative effect of cryopreservation on 
oocytes. Alterations of the cell shape are observed as the 
cell folds in on itself, forming a concave appearance and 
thus resulting in fracture of the zona pellucida [44] and most 
likely contributing to polyspermic fertilization following 
oocyte cryopreservation. 

2.3  Mitochondria 

Mitochondria are the most abundant organelles in mamma-
lian oocytes and their dysfunction or abnormalities are crit-
ical determinates of oocyte and embryonic developmental 
competence. Mitochondria are the sole source of energy 
production in the ooplasm to provide adenosine triphos-
phate (ATP) for fertilization and preimplantation embryonic 
development. A reduction in mitochondrial ATP production 
is associated with developmental failure in the preimplanta-
tion embryo [83]. Moreover, developmental failure in the 
preimplantation embryo may result from an abnormal  
distribution of mitochondria in the oolemma [52]. Vitrifica-
tion has been reported to compromise mitochondrial func-
tion and reduce ATP content in human [84] and bovine [85] 
oocytes, which might contribute to poor oocyte develop-
ment after cryopreservation [85]. The intracellular distribu-
tion of mitochondria is dependent on microtubules [86], 
which is important for redistribution of ATP and allows 
increased levels of ATP to be produced in different intra-
cellular areas during periods of high energy requirements 
[86,87]. Cryopreservation has been reported to compromise 
the functions of microtubules [88], which can lead to ab-

normal distribution of mitochondria [51] and consequently 
alter intracellular ATP distribution. It has been suggested 
that the inability of mitochondria to return to normal distri-
bution patterns can lead to less competent oocytes because 
an altered ATP distribution may affect vital processes dur-
ing fertilization and development [51]. In addition, cryo-
preservation can lead to mitochondrial swelling [70,89], 
abnormally shaped mitochondria, and rupture of their inner 
and outer membranes [44,90]. To reduce the negative effect 
of vitrification on mitochondrial functions, addition of 1 
mol L1 glycine to vitrification solutions results in mainte-
nance of oocyte mitochondrial function and a subsequent 
improvement in the blastocyst developmental rate [51]. 

3  Molecular effects of cryopreservation 

Cryopreservation has been reported to negatively affect the 
expression of genes related to oxidative stress, apoptosis, 
and the cell cycle as well as those important for the 
sperm-oocyte interaction [9097]. Such alterations of gene 
expression might be responsible for the reduced ability of 
cryopreserved oocytes to undergo fertilization. Based on 
clinical results, the biological functions affected by slow 
freezing and vitrification are different with a more deleteri-
ous effect of the slow freezing procedure. Compared with 
vitrification, slow freezing results in down-regulation of 
genes involved in chromosomal structure maintenance and 
cell cycle regulation [98], poorer mRNA preservation 
(39.4%) in human MII (63.3%) [99], and a negative effect 
on protein expression and oocyte physiology [100]. Apop-
tosis is an underlying process in oocyte degeneration and 
embryo fragmentation [101]. Bcl2 family members play a 
major role in regulation of apoptosis and are considered as 
anti-apoptosis factors that promote cell survival, whereas 
BAX is a pro-apoptosis factor that promotes cell death [102]. 
Vitrification does not alter the expression pattern of BAX in 
canine oocytes or mouse embryos [90,103], whereas Bcl2 is 
strongly expressed in vitrified-warmed oocytes [90]. In 
contrast, vitrification has been reported to up-regulate 
pro-apoptotic genes (Fas, FasL, Bax, and Bcl-2) in bovine 
oocytes [93] and down-regulate Bcl2 in mouse embryos 
compared with that in the control [104].  

CD9 is a four-transmembrane superfamily protein locat-
ed on the plasma membrane of the mouse oocyte [105], and 
is essential for gamete fusion [106]. Lower CD9 mRNA 
expression has been observed in vitrified-warmed bovine 
[91] and ovine [94] oocytes compared with that in non- vit-
rified oocytes. There are a wide range of consequences re-
sulting from vitrification of mouse embryos, including ef-
fects on metabolism and regulation of cellular and physio-
logical activities such as proliferation, the cell cycle, devel-
opment, biosynthesis, respiration, and stress-related gene 
expression [107,108]. Interestingly, vitrification causes ma-
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jor changes in the gene expression of IVF bovine embryos, 
whereas no major changes are observed in the gene expres-
sion of in vivo-derived (IVV) embryos after vitrification 
[109]. A total of 268 genes are differentially regulated in  
IVF and IVV blastocysts, indicating greater sensitivity of 
IVF embryos to vitrification than that of IVV embryos 
[109].  

There have been numerous studies on the epigenetic ef-
fects of vitrification [92,110120]. Some studies have 
demonstrated that vitrification does not significantly alter 
gene methylation patterns in oocytes [110,115,119] and 
blastocysts [112]. In contrast, vitrification has been found to 
reduce gene methylation in mouse oocytes [113], embryos 
[112], and fetuses [117]. However, other studies have 
demonstrated that vitrification significantly increases gene 
methylation in mouse oocytes [116] as well as bovine two 
cell embryos and the resulting in vitro-derived blastocysts 
[111]. Regarding the effects of vitrification on acetylation 
patterns, several studies have indicated that vitrification 
significantly alters acetylation patterns in oocytes [92,114, 
116,118,120]. The conclusions of these studies are some-
what contradictory, suggesting that the effects of vitrifica-
tion on gene methylation patterns vary in a manner de-
pendent on species, developmental stage, and genes, and 
may also depend on the size of the analyzed genomic re-
gions [110]. The aberrant epigenetic modifications reported 
in these previous studies may partially explain the reduction 
in developmental competence of vitrified oocytes. 

4  Cryopreservation of oocytes versus embryos 

Regardless of the methodology used for cryopreservation, 
oocytes are much more difficult to cryopreserve than 
cleavage-stage embryos [121]. Attention should be paid to 
oocyte cryopreservation procedures because oocytes are 
particularly susceptible to cryodamage as discussed below.  

4.1  Differences in size  

It is well known that oocytes are the largest cell in the 
mammalian body. In cryobiology, the smaller the size of the 
sample, the better the cryopreservation results. The cumula-
tive mass of cells decreases during the first week of embry-
onic development. At the expanded blastocyst stage, the 
mass may become as low as 1/10 to 1/100 of that of the 
oocyte. Consequently, because of the large surface ar-
ea/volume ratio and low water permeability of oocytes, they 
are likely to retain water when frozen, creating intracellular 
ice that is extremely damaging to cells [39]. Importantly, 
the permeability of the plasma membrane of oocytes and 
embryos varies among maturational/developmental stages. 
For example, in bovine, the oocyte is less permeable to wa-
ter and CPAs than that of the morula and blastocyst [66]. In 
mammalian oocytes/early embryos, water and CPAs move 

across the plasma membrane slowly by simple diffusion. 
Thus, long exposure to cryoprotectant solutions and a 
two-step treatment would be necessary to dehydrate the cell 
and allow CPAs to permeate sufficiently. In the morula and 
blastocyst, the movement of water and CPAs occurs rapidly 
via channels. Consequently, a one-step treatment and short 
exposure would be effective. Additionally, the temperatures 
at which oocytes are exposed to the CPA before cooling and 
at warming are critical. However, in the morula and blasto-
cyst, the temperature may not be very important in terms of 
permeability, because facilitated diffusion through channels 
is less affected by temperature.  

4.2  Differences in water content 

Oocytes contain more water than embryos. However, the 
solution in the blastocoel may be a source for damage by ice 
crystal formation [122,123]. Such detrimental effects are 
more serious if they are present within oocytes. 

4.3  Differences in cell number 

Multicellular embryos can compensate for as much as a 
50% loss of their cells as demonstrated by biopsies and bi-
section of embryos. The oocyte has no such ability and 
cannot regenerate from a serious injury. 

5  Attempts for successful cryopreservation 

For development of a successful cryopreservation strategy, 
several attempts have been made to reduce cryoinjuries and 
maintain a high survival rate. The main results of these 
studies are summarized below. 

5.1  Exposure to or equilibration of the cryoprotectants 

To avoid ice crystal formation, much attention has been 
paid to the equilibration before cooling. There are two 
strategies are applied, the first is extremely short equilibra-
tion for both the diluted and concentrated CPAs [124] and 
the second is extended equilibration in the first diluted, fol-
lowed by a short, but relatively prolonged incubation in the 
second concentrated cryoprotectant solution [125]. It has 
been reported that the shorter the time, the better the vitrifi-
cation of oocytes and embryos [126]. In this regard, it has 
been suggested that the time should be less than 10 s [127]. 
On the other hand, a short equilibration time for oocytes in 
the vitrification solution results in low survival and blasto-
cyst formation rates [128,129]. This observation suggests 
that, in the short protocol, intracellular water may not be 
completely replaced by CPAs in the oocytes after exposure 
to the vitrification solution, and may contribute to damage 
of some organelles inside the oocyte. However, a prolonged 
exposure time may ensure proper penetration of CPAs, 
providing appropriate protection for the entire oocyte. 
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5.2  The type of cryoprotectants 

There is an obvious need for the use of highly permeable 
CPAs with low toxicity. Various substances are used for 
this purpose such as ethylene glycol (EG), glycerol, dime-
thylsulphoxide (DMSO), propylene glycol (PROH), and 
acetamide [130]. EG is the CPA of choice for this purpose 
[131]. It has been shown that DMSO facilitates the permea-
bility of EG, which may have a beneficial effect on spindle 
polymerization and consequently a protective effect during 
oocyte vitrification [132]. EG is usually combined with 
DMSO to freeze and vitrify oocytes [39,133] and optimal 
concentrations have been studied in pigs [134]. However, 
vitrification of oocytes using the combination of EG and 
PROH provides better results than those using EG and 
DMSO in bovine [135] and humans [136]. This finding may 
be because of the lower toxicity of PROH than that of 
DMSO. Superior vitrification solutions with very low tox-
icity have been described and may have some advantages in 
reproductive cryobiology. For example, mouse ova vitrified 
with a solution known as 90% VM3 are able to be fertilized 
and develop to blastocysts at 80% of the rate of untreated 
control ova without the need for intracytoplasmic sperm 
injection [137]. The addition of low toxic, non-permeable 
CPAs in cryopreservation media is also required to facilitate 
dehydration and consequently minimize the toxic effects of 
a vitrification solution. For this purpose, trehalose and su-
crose appear to be efficient [138]. They also counteract the 
osmotic effect exerted by CPAs on oocyte survival [21]. 
Methods to introduce and remove cryoprotectants also re-
duce toxicity and the resulting damage. During freezing, 
stepwise addition of CPAs or gradually increasing concen- 
trations, as well as stepwise removal of these compounds 

 upon warming/thawing help to minimize osmotic stress. 

5.3  Avoiding zona pellucida hardening 

Zona hardening and the subsequent low level of fertilization 
after oocyte cryopreservation [80] can be avoided by intra-
cytoplasmic sperm injection [139], removal of calcium from 
the vitrification medium [81], and the use of bovine fetal 
serum [140].  

5.4  Reducing chilling sensitivity of oocytes 

The high sensitivity of oocytes to chilling injury because of 
large amounts of cytoplasmic lipid droplets [74] can be 
overcome by mechanical removal of lipid droplets [74,141], 
their reduction by chemical agents [142], and supplementa-
tion of culture media with L-carnitine that is known to play 
an essential role in fat metabolism [143–145]. 

5.5  Increasing cooling and warming rates by minimum 
volume methods 

An extremely high cooling rate is one of the most important 
factors for improving the effectiveness of vitrification. 
Faster cooling and warming rates can be achieved by mini-
mizing the volume of the solution in which oocytes/     
embryos are vitrified using minute tools such as electron 
microscope grids, open pulled straws (OPS), cryoloops, 
cryotops, hemi-straws, cryotips, and aluminum sheets. Suc-
cessful development of oocytes into blastocysts (Table 1), 
pregnancy, and live births have been achieved by vitrifica-
tion of mammalian oocytes (Table 2) and embryos (Table 3) 

Table 1  Blastocyst rates of vitrified mammalian oocytes compared with that of fresh oocytes at GV/MII stages 
Species Oocyte stage Device used Blastocyst % vs. control References 

Sheep Immature oocytes Cryoloop 29.4 vs. 45.1 [12] 

Cat In vitro matured oocytes Cryotop 10 vs. 25 [15] 

Pig Immature (GV) & matured oocytes Solid Surface Vitrification (SSV) 
GV: 3 vs. 60 
MII : 9 vs. 20 

[18] 

Buffalo Denude immature oocytes Solid Surface Vitrification (SSV) 7.0 vs. 5.8 [19] 

Buffalo Denude immature oocytes Cryoloop 2.8 vs. 5.8 [19] 

Mouse Matured oocytes Nylon Loop 83.9 vs. 84.1 [51] 

Cattle Matured oocytes Electron Microscope grids 15 vs. 42 [124] 

Human Matured oocyte Cryotop 48.7 vs. 47.5 [146] 

Cattle Immature oocytes Cryotop 1.6 vs. 34.4 [147] 

Cat Matured oocytes Cryoloop 36.7 vs. 55.2 [148] 

Table 2  Successful vitrification of mammalian oocytes by various tools 

Species Oocyte stage Device used Clinical outcomes References 

Mouse In vivo matured oocytes Cryotop The offspring rate was 56.7% and 57.8 % for vitrified and fresh oocytes. [13] 

Cattle Immature oocytes 
Aluminum Sheets and 

Nylon-Mesh holder 
One calf was born from those vitrified by Aluminum Sheets. 

Live birth rate was 1.8%. 
[14] 

Cat In vitro matured oocytes Cryotop Four live kittens were born, live birth was 10%. [15] 

Human In vitro matured oocytes Cryoleaf A woman delivered a single healthy live baby , live birth rate was 5.8%. [149] 
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Table 3  Successful vitrification of mammalian embryos by various tools 

Species Embryo stage Device used Clinical outcomes References 
Sika deer (Cervus 

nippon) 
Eight-cell stage, morula 

and blastocyst 
0.25 mL plastic straw Birth rates were 64.3% and 53.9% for fresh and vitrified embryos. [23] 

Goat Morula and blastocysts. OPS When used 40% (v/v) EG or 15% (v/v) EG+15% (v/v) DMSO in 
vitrification solution, the kidding rates were 46.2%, 51.4%. these 

rates were no significantly different from that of fresh ones 57.1%. 

[25] 

European polecat 
(Mustela putorius) 

Morula and blastocyst OPS Two recipients delivered a total of eight offspring (16% survival 
rate). 

[26] 

Cattle Blastocyst produced by 
Somatic cell nuclear 

transfer 

0.25 ml plastic straw Two healthy calves (25%) were obtained from fresh blastocysts and 
one (11%) from vitrified/thawed blastocysts. 

[27] 

Sheep In vivo derived embryos OPS The lambing rates were 56%. [28] 

Rabbit Morula and blastocysts. Modified (sealed) OPS Vitrified embryos resulted in 51.7% live birth compared to 58.5% 
for fresh embryos. 

[29] 

Human Blastocyst Electron Microscope 
grids 

34.1% clinical pregnancy and 11 live births were achieved. [30] 

Human Blastocyst Cryoloop 23 healthy babies were born in 18 deliveries, and 37 pregnancies 
were ongoing. 

[150] 

Human Blastocyst Hemi-straw 27% ongoing pregnancy rate was obtained. [151] 

Pig Blastocyst OPS Nine recipients came to term (42.9%) and farrowed an average of 
5.4 ± 0.8 piglets (range from 3 to 9). 

[152] 

 
using various carrier systems.  

6  Conclusion and future perspectives 

Significant advances in cryopreservation procedures are 
clearly evident when comparing current results with those 
obtained when the technology first became available. The 
methods to cryopreserve mammalian oocytes/embryos can 
be divided into two categories, slow freezing and vitrifica-
tion. It is evident from data summarized in this review that 
vitrification is a viable approach for broad application of 
cryopreservation in many areas of ART. For humans, im-
provements in embryo cryopreservation will allow transfer 
of fewer embryos, decreasing the incidence of multiple 
pregnancies, which is a major complication of ART treat-
ment. With a better understanding of the physical and bio-
logical principles of vitrification, we can achieve more suc-
cess and higher efficiency. Several aspects should be taken 
into account during cryopreservation of oocytes and em-
bryos as follows. 

6.1  Plasma membrane permeability 

The permeability of the plasma membrane of oocytes and 
embryos varies among maturational/developmental stages, 
even in the same species. Therefore, the survival of oo-
cytes/embryos after cryopreservation differs using same 
cryopreservation protocol. 

6.2  Methodology of cryopreservation 

Maximizing the survival rate of oocytes/embryos subjected 
to freezing and thawing requires careful selection of less 
toxic cryoprotective agents, close monitoring of their tem-

perature, time of exposure, concentration, and their stepwise 
addition and removal from cells. Vitrification solutions 
based on minimal perturbation of intracellular water appear 
to be superior and promote successful vitrification of 
mammalian oocytes and embryos.  

6.3  Use of aseptic technologies 

The high risk of contamination because of the direct contact 
of oocytes/embryos with liquid nitrogen [153] using open 
carriers raises the need to develop safety strategies to reduce 
the risk of contamination. Recently, satisfactory results ob-
tained using various types of “closed” systems [22,154] 
have allowed the transition to closed and more safe vitrifi-
cation systems. These findings highlight the need for further 
efforts to optimize protocols for closed vitrification systems.  

Further studies are needed to ensure the safest and most 
expeditious development of oocyte/embryo cryopreserva-
tion technology and advance vitrification technology to 
achieve undamaged oocytes/embryos after cryopreservation. 
Such studies will involve continued molecular and bio-
chemical evaluation of various CPAs and careful selection 
of the most effective CPAs combined with efficient storage 
methods. These advances will undoubtedly have a signifi-
cant effect on the practical use of cryopreservation as a ma-
jor part in ART.  
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